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In many studies, it is of interest to predict the future trajectory of subjects based
on their historical data, referred to as dynamic prediction. Mixed effects models
have traditionally been used for dynamic prediction. However, the commonly
used random intercept and slope model is often not sufficiently flexible for
modeling subject-specific trajectories. In addition, there may be useful expo-
sures/predictors of interest that are measured concurrently with the outcome,
complicating dynamic prediction. To address these problems, we propose a
dynamic functional concurrent regression model to handle the case where both
the functional response and the functional predictors are irregularly measured.
Currently, such a model cannot be fit by existing software. We apply the model
to dynamically predict children's length conditional on prior length, weight, and
baseline covariates. Inference on model parameters and subject-specific trajec-
tories is conducted using the mixed effects representation of the proposed model.
An extensive simulation study shows that the dynamic functional regression
model provides more accurate estimation and inference than existing methods.
Methods are supported by fast, flexible, open source software that uses heavily
tested smoothing techniques.
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1 INTRODUCTION

In many biological and epidemiological studies, sampling is conducted at multiple time points resulting in longitudinal
data that exhibit within-subject correlation. Traditionally, longitudinal data have been analyzed using either marginal
models1 or conditional mixed effect models.2-4 Both approaches are parametric and are not designed to account for subtle
or strong departures from the assumed parametric trends. This problem can manifest in a number of ways in longitudinal
data, including autocorrelation in the residuals of random intercept/slope models.5 To address such challenges, one may
consider using methods for functional data, which allow more flexible modeling of subject-specific random curves. A
random functional intercept model can be understood as a special case of a broader class of models referred to as functional
mixed effects models. However, functional mixed models are complex, and the computational burden for fitting them is
nontrivial.

A computationally feasible approach to estimating functional mixed effects models is to combine semiparamet-
ric regression techniques6 with functional data analysis.7 Arguably, the functional mixed effects framework was first
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introduced by Guo8 and was further developed in subsequent years.9-19 Recently, Scheipl et al20 provided a general frame-
work for fitting functional mixed effects models based on the idea of incorporating nonparametric smoothing approaches
into the standard mixed effects modeling framework.6

Although the aforementioned advances in methodology are substantial, the release of accompanying software has been
limited. As a result, use of functional mixed effects models in scientific studies has lagged behind traditional methods
in spite of the wide range of data types amenable to this modeling framework. To the best of our knowledge, only the R
package refund21 has provided functions that fit standard functional mixed effects models. Despite the varied models that
can be fit using the refund package, the estimation of a functional concurrent regression (FCR) model with both irregu-
larly measured response and predictors is not currently possible. Moreover, neither refund nor the standard R packages
for fitting mixed effects models, lme422 and nlme,23 are able to readily handle dynamic prediction. Specifically, the current
software packages do not allow for predictions on subjects not included in the model fitting procedure. With reproducibil-
ity and dissemination of our methods as a primary goal, we propose a dynamic FCR model applied to growth curve data
in children and provide an accompanying R package, fcr, capable of fitting this class of models.

Dynamic prediction in functional data analysis is relatively new. Recently, several authors have proposed methods,
which allow for prediction of partially observed functional data via functional principal component analysis.24-28 How-
ever, these works involve only functional responses and do not consider subject-specific predictors of any form. The
proposed work fills this gap using a functional concurrent model. Indeed, in our application, subject predictions are based
on time-invariant covariates (sex), time-varying covariates (weight), and past length measurements. The effects of both
time-varying and time-invariant covariates are modeled using time-varying coefficients.29 A child's past length measure-
ments and their length at a future age are modeled by a child-specific functional random intercept. While a random
intercept/random slope model could be used to characterize child-specific growth trajectories of height, such an approach
is not well suited for the nonlinear growth trajectories of children (see Figure 2).

The rest of the paper is organized as follows. In Section 2, we describe the motivating data and provide an exploratory
analysis. In Sections 3 and 4, we introduce the dynamic FCR model and propose an estimation method. In Section 5, we
apply the method to the CONTENT growth data and discuss our findings. In Section 6, we conduct a simulation study
to evaluate the performance of the proposed functional mixed effects model. We conclude the paper with a discussion in
Section 7.

2 THE CONTENT CHILD GROWTH DATA

The CONTENT study was conducted in 2 peri-urban shanty towns approximately 25 km south of central Lima in Peru.
The goal of the study was to assess the impact of a particular bacterial infection, Helicobacter pylori, on child growth.30

To that end, anthropometric measurements on 215 children (106 boys and 109 girls) were collected periodically starting
from birth. We focus on data collected at 547 unique time points between 0 and 24 months. Children have an average of
39 anthropometric measurements each, with measurements observed more frequently during the first few months of life.

We examine 3 World Health Organization (WHO)-defined anthropometric measurements: length-for-age z-score
(LAZ), weight-for-length z-score, and weight-for-age z-score (WAZ).31 The z-scores are calculated using the age- and
sex-specific WHO standard references. This z-scoring procedure is standard in growth curve modeling and provides data
on a scale relative to a standard of growth, with a z-score of 0 representing the WHO-defined average for that age and
sex. Z-scores greater (smaller) than 0 indicate above (below) average measurement relative to the WHO standard in that
category. As a result, the z-scores can be compared within- and between-children over time. For example, a z-score of 0
at 3 months compared with a z-score of 1 at 6 months for the same child indicates that the child is at the WHO average
length at 3 months, but above the WHO average by 6 months.

Figure 1A-C displays the marginal distributions of anthropometric measurements binned into monthly intervals. Sev-
eral features of the data can be observed. First, these children are, on average, below the WHO-standard average length
and above the WHO-standard average weight. These growth characteristics have been reported in similar populations.32,33

In addition, the trend in z-scores for boys and girls is similar across all ages. Furthermore, there appears to be a
disproportionate weight gain relative to length gain for the 0- to 3-month period (see Figure 1C).

Figure 1D displays the estimated correlation between subjects' LAZ(t) and WAZ(s) for all months t, s. Correlations are
generally high between measurements taken close in time and are higher closer to birth (notice the shades of red along
the main diagonal and the darker red shades in the lower left corner). Correlations remain high even at larger time lags
(months 20+ ) with values above 0.4 for many time pairs.



1378 LEROUX ET AL.

Unlike nonstandardized length (height) and weight measurements, which increase continuously for most children, the
trend in z-scores is quite different. Figure 2 displays the LAZ and WAZ scores for 4 children, indicating strong nonlinear
characteristics of the curves. These 4 subjects are representative of subjects' diverse growth patterns. Subject 1 has a fairly
steady increasing trajectory up to 12 months followed by a period of relatively stable growth from 12 to 24 months. In con-
trast, subjects 2 and 3 experience steep declines (increases) followed by steep increases (declines) in early life. Following
a period of relatively consistent growth, near 12 months, subject 3 undergoes a period of rapid decline in standardized
length, suggesting some degree of stunting. Accounting for the diverse and markedly nonlinear growth patterns observed
requires flexible models. Regarding the relationship between LAZ and WAZ, Figure 2 suggests these 2 z-scores exhibit
positive correlations, reinforcing the observed population level correlations displayed in Figure 1.

Since it is known that delayed growth development is associated with a number of negative health outcomes, it is of
interest to identify children at risk of delayed growth and/or growth stunting as early as possible. Such identification via
growth trajectories can only be achieved using a dynamic approach. Indeed, a post hoc analysis can only identify that cer-
tain children were stunted and cannot inform the development of potential interventions. Correspondingly, the primary
goal of our application is to build a model that can dynamically predict length-for-age z-scores in the first 2 years of life.
As there is a clear association between weight and length in children, we aim to build a model that addresses this rela-
tionship that is compatible with dynamic prediction. The procedure requires the use of historical information available
up to a particular time point to predict the future trajectory. In Figure 3, we provide an illustration of the dynamic pre-
diction of LAZ based on observed LAZ and WAZ. Finally, we propose an inferential framework that provides confidence
intervals both for curve predictions and model parameters.

FIGURE 1 Distribution of, A, length-for-age z-scores (LAZ), B, weight-for-age z-scores (WAZ), C, weight-for-length z-scores (WLZ)
binned into monthly categories, and, D, estimated empirical correlation between LAZ and WAZ at each month. Correlations were calculated
using Z-scores projected onto an evenly spaced grid of ages {0.5, 1.5, … , 23.5} for all subjects using face::face.sparse() applied separately to
LAZ and WAZ
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FIGURE 2 Length-for-age z-score and weight-for-age z-score curves for 4 children. Length-for-age z-score is presented as ◦ and
weight-for-age z-score is presented as +

FIGURE 3 Illustration of dynamic prediction using a subject from the CONTENT study. Conditional on the weight-for-age z-score (WAZ)
and length-for-age z-score (LAZ) data in blue, the interest is to predict the length-for-age z-score (LAZ) in red

3 MODEL

3.1 Notation
Let t denote age in months. For subject i, let Yi(t) be the LAZ at age t, Zi(t) be the WAZ at age t, and Xi be the sex indicator
(1 for boys and 0 for girls). The observed data are [{tij,Yij = Yi(tij),Zij = Zi(tij),Xi}, 1 ≤ j ≤ mi, 1 ≤ i ≤ N], where tij denotes
the jth visit time for subject i, mi is the number of observations for subject i, and N is the total number of subjects.

3.2 Model
We consider the following model:
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Yi(t) = f0(t) + Xi f1(t) + Zi(t) f2(t) + bi(t) + 𝜖i(t), (1)

where f0(·) is the population intercept function, f1(·) models the sex difference, f2(·) models the concurrent association of
WAZ with LAZ, bi(·) models the subject-specific random functional deviation of subject i from f0(·), and 𝜖i(t) are inde-
pendent random errors. More specifically, we model bi(t) as a zero-mean Gaussian process with a covariance function
cov{bi(s), bi(t)} = C(s, t) and assume that 𝜖i(t) are independent and identically distributed as N(0, 𝜎2

𝜖 ). We assume that
bi(·) and 𝜖i(tij) are mutually independent across subjects.

The WAZ process is also measured with error, and we assume that for subject i, the observed WAZ is Zi,obs(tij) = Zi(tij)+
𝜖z

i (tij). Here, 𝜖z
i (tij) is the term for measurement errors and is assumed to be independent and identically distributed as

N(0, 𝜎2
𝜖z). We let Zi(tij) = 𝜇z(tij)+biz(tij), where 𝜇z(·) is the population mean of WAZ and biz(·) is the subject-specific random

functional deviation from the population mean. We model biz(·) as a stochastic process with zero mean and a covariance
function cov{biz(s), biz(t)} = Cz(s, t) and assume that biz(·) are independent across subjects. It is possible to use additional
predictors in estimating Zi(tij), although this option is not explored here.

Model (1) is a concurrent effect model for the time-varying covariate Zi(tij). We show how this concurrent modeling
framework can be used for dynamic prediction in Section 4. The historical information is incorporated implicitly in model
(1) via the functional random effect bi(t). We have found this implicit approach to provide an excellent alternative to the
explicit modeling of historical functional data. Thus, our proposal will add to the literature and will provide alternative
inferential approaches that are especially useful in the case of sparse longitudinal data.

The explicit modeling of historical functional data was introduced by Malfait and Ramsay,34 while Şentürk and Müller35

allowed the response to depend on smooth functions of arbitrarily many lagged covariate values. Building on the idea of
historical models, Şentürk and Müller36 used the concept of a “history index” to allow for a response to depend only on
the recent historical values of a covariate. Given the existence of these models, it is tempting to consider a full historical
effect term ∫ t

0 𝛽(s, t)Zi(s)ds, where 𝛽(s, t) is an unknown bivariate function. We do not adopt such a specification because
it did not improve fit to the CONTENT data.

3.3 Model estimation
One of our main contributions is to provide explicit methods and formulas to fit model (1). This is not trivial, as such
models have not been implemented before, and they require some heavy notation and attention to detail. First, we conduct
a functional principal component analysis on the Zi,obs(tij)s using the R package face. This results in estimates 𝜇̂z(t), Ĉz(s, t),
and 𝜎̂2

𝜖z. Then, conditional on the observed data Zi,obs = {Zi,obs(ti1), … ,Zi,obs(timi)}
′, we predict Zi(t) by its best linear

unbiased predictor (BLUP), Z̃i(t) = 𝝁̂z(t)+ Ĉz(t, ti)′
{

Ĉz(ti, ti) + 𝜎̂2
𝜖zImi

}−1{Zi,obs− 𝝁̂z(ti)},37 where ti = (ti1, … , timi )
′ ∈ Rmi ,

Ĉz(t, ti) = {Cz(t, ti1), … ,Cz(t, timi )}
′ ∈ Rmi , 𝜇̂z(ti) = {𝜇z(ti1), … , 𝜇z(timi)}

′ ∈ Rmi , and Ĉz(ti, ti) = {Ĉz(tij, tik)}1≤j,k≤mi ∈
Rmi×mi . We then substitute Z̃i(tij) for Zi(tij) in model (1).

For notational convenience, we rewrite model (1) as

Yij = f0(tij) +
P∑

p=1
zp,ij fp(tij) + bi(tij) + 𝜖ij, (2)

where P = 2, z1,ij = Xi, z2,ij = Zij. Models for functional responses have been studied in Ivanescu et al38 and Scheipl
et al20 and are implemented via the pffr function in the R package refund. However, pffr currently accommodates only
time-varying predictors, which are measured on a regular grid. As a result, pffr cannot be used to implement the method
described above using the CONTENT data. Below we detail our estimation method using P-splines,39 and we provide an
R package that extends the pffr function for concurrent models with irregularly measured time-varying covariates.

We approximate fp(·) by a linear combination of B-spline basis functions. More specifically, let B(t) = {B1(t), … ,Bc(t)}′

be a sequence of B-spline basis functions evaluated at t, where c is the number of interior knots plus the order of the
B-spline basis functions. We use cubic B-splines and place interior knots at the quantiles of the observed time points.40 For
simplicity, we use the same basis functions for all fp, p = 0, 1, … ,P. Then we let fp(t) = B(t)′𝜽p, where 𝜽p = (𝜃p1, … , 𝜃pc)′

is the vector of coefficients.
We also approximate the random subject-specific curves bi(t) using B-spline basis functions with bi(t) =

∑c
k=1 uikBk(t),

where ui = (ui1, … ,uic)′ ∈ Rc. Unlike Chen and Wang12 who used a small number of basis functions, we use a relatively
large number of basis functions to allow for increased modeling flexibility of subject-specific functions. We assume that
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ui follows a multivariate normal distribution with zero mean and covariance 𝚪 = (𝛾k𝓁)1≤k,𝓁≤c ∈ Rc×c. This implies that
C(s, t) =

∑
1≤k,𝓁≤c 𝛾k𝓁Bk(s)B𝓁(t). The covariance matrix 𝚪 is estimated from the data. Details are provided in Section 3.4.

For each i, we let yi = (Yi1, … ,Yimi)
′ ∈ Rmi , zp,i = (zp,i1, … , zp,imi )

′ ∈ Rmi , Bi = [B(ti1), … ,B(timi)]
′ ∈ Rmi×c, and

Xi = [Bi, diag(z1,i)Bi, … , diag(zP,i)Bi] ∈ Rmi×(P+1)c. With this notation, we have E(yi) = Xi𝜽, where 𝜽 = (𝜽0, … ,𝜽P)′ ∈
R(P+1)c, and Vi = Cov(yi) = Bi𝚪B′

i + 𝜎2
𝜖 Imi . The generalized least squares estimate for 𝜽 is then

𝜽̂ = argmin
𝜽

N−1
N∑

i=1
(yi − Xi𝜽)′V−1

i (yi − Xi𝜽).

Because regression splines tend to over-fit, we enforce smoothness in the estimated coefficient functions by impos-
ing a penalty on 𝜽 as suggested by Eilers and Marx.39 Specifically, we let P = blockdiag(P0,P1, … ,PP) and for p ∈
{0, 1, … ,P},Pp = 𝜆pD′D, where D is the (c − o) × c differencing matrix and o is the order of the difference penalty.41 We
use o = 2 throughout the paper. Thus, we estimate 𝜽 by penalized generalized least squares

𝜽̂ = argmin
𝜽

N−1
N∑

i=1
(yi − Xi𝜽)′V−1

i (yi − Xi𝜽) + 𝜽′P𝜽

and we obtain

𝜽̂ =

(
N−1

N∑
i=1

X′
iV

−1
i Xi + P

)−1 (
N−1

N∑
i=1

X′
iV

−1
i yi

)
. (3)

Let 𝜽̂ = (𝜽̂0, … , 𝜽̂P)′ such that 𝜽̂p is the corresponding estimate of 𝜽p. Then each coefficient function can be estimated as
f̂p(t) = B(t)′𝜽̂p.

Using simple algebra, it follows that

Cov(𝜽̂) =

(
N−1

N∑
i=1

X′
iV

−1
i Xi + P

)−1 (
N−2

N∑
i=1

XiV−1
i Xi

)(
N−1

N∑
i=1

X′
iV

−1
i Xi + P

)−1

.

Then we can easily construct pointwise standard error for f̂p(t), the details of which are omitted here.

3.4 Estimation of variance components
We adopt a 4-step procedure for estimating C(s, t), i.e., 𝚪, and 𝜎2

𝜖 . In step 1, we get an initial estimate 𝜽̂
0 of 𝜽 by letting

Vi = Imi . In step 2, we obtain residuals ei = yi − Xi𝜽̂
0
, 1 ≤ i ≤ N, which are then used to estimate C(s, t) and 𝜎2

𝜖 . In step 3,
given the estimates 𝚪̂ and 𝜎̂2

𝜖 of 𝚪 and 𝜎2
𝜖 , respectively, we update 𝜽̂ using (3). Then, in step 4, we again obtain residuals

ei = yi −Xi𝜽̂, 1 ≤ i ≤ N which are used to produce final estimates of C(s, t) and 𝜎2
𝜖 . While this procedure can be iterated to

obtain updated estimates of variance components and fixed effects, in our application, multiple iterations did not result
in meaningful changes to estimated quantities.

We use the R package face42 for estimating C(s, t) and 𝜎2
𝜖 using the residuals ei, 1 ≤ i ≤ N. The face package is based on

Xiao et al,37 where C(s, t) is decomposed as
∑

1≤k,𝓁≤c Bk(s)Bk(t)𝛾k𝓁 .

3.5 Selection of smoothing parameters
Either restricted maximum likelihood or generalized cross validation can be used to select the smoothing parameters
𝜆k(0 ≤ k ≤ p) contained in the penalty matrix P.43 Due to the size of the CONTENT data and the large number of
smoothing parameters requiring estimation, we estimate our model using the bam function in the mgcv package, which
uses estimation procedures designed to be much faster for very large datasets.44

4 DYNAMIC PREDICTION OF LAZ

Consider a new subject with sex covariate X and observed growth data {tj,Yj, Z̃j, 1 ≤ j ≤ m}. For simplicity, we
drop the subject index and assume t1 < t2 < · · · < tm. We would like to predict Y(t) for tm < t < Tmax where
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Tmax = max(t1,m1 , t2,m2 , … , ti,mi ). That is, Tmax denotes the time of the latest observed outcome among all subjects on
which the model is fit. Extrapolating beyond all observed data is clearly infeasible in the absence of additional information
or assumptions on the features of trajectories beyond the observed domain.

From model (1), the model for the new subject is

Yj = f0(tj) + X f1(tj) + Zj f2(tij) + b(tj) + 𝜖j, 1 ≤ j ≤ m.

Let y = (Y1, … ,Ym)′, z1 = X1m, z2 = (Z1, … ,Zm)′, B∗ = [B(t1), … ,B(tm)]′, and X = [B∗, diag(z1)B∗, diag(z2)B∗].
Let b(t) = B(t)′u, where u ∈ Rc. It can then be derived that the BLUP of u is ũ = E(u|y) = 𝚪B′

∗(B∗𝚪B′
∗ + 𝜎2

𝜖 Im)−1(y−X𝜽).6

Thus, the BLUP of b(t) is B(t)′ũ, and the BLUP of Y(t) is Ỹ (t) = X𝜽 + B(t)′ΓB′
∗(B∗ΓB′

∗ + 𝜎2
𝜖 Im)−1(y − X𝜽). The variance

for Ỹ (t) − Y (t) is B(t)′
{
𝚪 − 𝚪B′

∗(B∗𝚪B′
∗ + 𝜎2

𝜖 Im)−1B∗𝚪
}

B(t) + 𝜎2
𝜖 , which can be used to construct the approximate 95%

pointwise prediction interval for Y(t) as

Ỹ (t)±2
√

B(t)′
{
𝚪 − 𝚪B′

∗(B∗𝚪B′
∗ + 𝜎2

𝜖 Im)−1B∗𝚪
}

B(t) + 𝜎2
𝜖 .

In practice, we use the estimated BLUP, where we plug in the estimates of parameters. In particular, we replace Zi = Z(ti)
by their respective BLUP estimates Z̃(ti).

Note that the width of the prediction intervals will depend on both 𝚪 and 𝜎2
𝜖 . Intuitively, the higher the correlation

between Y(t) and observed data, the narrower the prediction intervals will be regardless of the temporal distance t and the
observed time points. However, in many biological applications, correlation decreases consistently as temporal distance
increases. In such scenarios, we expect prediction intervals to generally increase as one attempts to predict further in time
from observed time points.

5 DATA APPLICATION

We apply the proposed model (1) to the CONTENT child growth data introduced in Section 2. The estimated coefficient
functions are displayed in Figure 4. The baseline/intercept function is negative and generally decreasing. The sex effect
is estimated to be near zero at all ages, which is not surprising because the z-scores already account for sex differences.
WAZ is positively associated with LAZ with the strongest association near birth and around ages 18 to 24 months.

Figure 5 displays key features of the estimated covariance function: the correlation function, the variance function
Ĉ(t, t), t ∈ (0, 24), and the top 5 estimated eigenfunctions. The within-curve correlation of the LAZ is relatively high (>0.5
at most pairs of time points), and the variation of LAZ peaks around 6 months. Interestingly, this period corresponds
with the time where WAZ has the smallest estimated association with LAZ, suggesting some potential unobserved factor
influencing LAZ trajectories during early life. The total variance in the estimated covariance function, which is equal to
the sum of the eigenvalues of Ĉ(s, t), is approximately 0.43, and the estimated error variance, 𝜎̂2

𝜖 , is 0.033. Accordingly,
about 93% of variation in LAZ unexplained by WAZ and sex can be modeled by the random subject-specific functions.

To illustrate the idea of dynamic prediction, in Figure 6, we dynamically predict LAZ curves conditioned on up to 6, 12,
and 18 months of observed LAZ and WAZ for 4 subjects. This allows for a direct evaluation of future LAZ predictions using
partial subject data as a proxy for true out-of-sample subject prediction accuracy. Here, each column corresponds to a

FIGURE 4 Estimated coefficient functions (solid lines) and associated 95% pointwise confidence intervals (dashed lines). WAZ,
weight-for-age z-score
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FIGURE 5 Left to right: A, estimated correlation function; B, estimated variance function; C, first 5 estimated eigenfunctions (𝜙) and
corresponding eigenvalues (𝜆)

FIGURE 6 Example of dynamic prediction for 4 subjects. Points represent subjects' observed length-for-age z-score (LAZs), solid black/red
lines represent the predicted curves, dashed black/red lines indicate 95% pointwise confidence intervals for the trajectories. Only observed
data on and to the left of the vertical grey dashed line (blue points) are used for prediction

subject. Only the points on the left of the vertical dashed grey line are used to predict the entire curve. The predicted curves
with associated confidence intervals at future time points are shown in red. Unsurprisingly, we see that predictions closer
in time to the observed data are generally more accurate. Predictions based on fewer observed data points and farther
into the future are generally less accurate and associated with larger uncertainty (wider confidence bands). Moreover, the
dynamic prediction intervals generally contain the future actual observed data, indicating the capability of the proposed
model to predict future LAZ.

6 A SIMULATION STUDY

We conduct a simulation study to investigate the performance of the functional concurrent model in estimating the fixed
effects and predicting the individual response curves. For simplicity, hereafter, we denote our proposed model as FCR. We
compare our model with an additive model with the same mean structure, but no subject random effects (AM), an additive
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TABLE 1 Various models

AM: LAZij = f0(tij) + f1(tij)Malei + f2(tij)Zij + 𝜖ij

AMM: LAZij = f0(tij) + f1(tij)Malei + f2(tij)Zij + b0i + b1itij + 𝜖ij

FCR: LAZij = f0(tij) + f1(tij)Malei + f2(tij)Zij + bi(tij) + 𝜖ij

FRI: LAZij = f0(tij) + bi(tij) + 𝜖ij

Abbreviations: AM, additive model with the same mean structure; AMM, addi-
tive model with scalar random effects; FCR, functional concurrent regression;
FRI, functional random intercept; LAZ, length-for-age z-score.

model with scalar random effects (AMM), and a model with functional random intercept but no covariates (FRI). We find
that FCR provides more accurate and efficient estimators of coefficient functions and prediction of subject-specific curves
in terms of both in-sample and out-of-sample dynamic prediction.

6.1 Settings
Table 1 presents the list of models we consider. For the AMM, b0i and b1i are subject-specific random intercepts and
slopes, respectively. More specifically, (b0i, b1i) are assumed to follow a bivariate normal distribution. For the FCR, bi(·)
are subject-specific random functions. In all models, 𝜖ij are independent and identically distributed random errors with
a normal distribution N(0, 𝜎2

𝜖 ). We let the generating covariance and coefficient functions be the estimates from applying
FCR to the real data. Note that the estimates used in the simulation are slightly different than those presented in Section
5 as we reduced the number of basis functions used to estimate C(s, t), resulting in fewer estimated eigenfunctions and
faster computation times for the simulations. This reduced number of basis functions was also used for simulating WAZ
as described below.

We compare the FCR to the AM, which ignores within-subject correlation entirely, the AMM, which allows for
subject-specific random intercepts and slopes for age, and FRI, for which only time is used. We use mgcv::gam() for fitting
the AM, mgcv::gamm() for fitting the AMM, and face::face.sparse() for fitting the FRI.

The number of subjects is either N = 100 or 200, the number of observations mi is sampled from either a Uniform(15,25)
or a Uniform(25,35), and 𝜎𝜖 = 0.18 or 0.37. In the data, 𝜎𝜖 is estimated to be 0.18 for the FCR. Given mi, the observation
times tij are sampled uniformly without replacement from an evenly spaced grid of 500 points in the unit interval. The
male indicator variable is sampled from a Bernoulli distribution with p = 0.5.

Both weight-for-age z-scores WAZij and subject-specific random functional intercepts bi(tij) are simulated based on
the results of applying FRI to the real data. For example, WAZs are generated by WAZij = 𝜇w(tij) +

∑K
k=1 𝜉ik𝜙k(tij) + 𝜖z

ij,
where 𝜇w(t) is the mean function estimate of WAZ, 𝜉ik is generated from N(0, 𝜆k), and 𝜆k, 𝜙k are the estimated eigenvalues
and eigenfunctions, and 𝜖z

ij ∼ N(0, 𝜎2
z ) where 𝜎z = 0.16 is the square root of the estimated error variance of WAZ in

the CONTENT data. Finally, 500 datasets are generated for each setting. Additional simulation scenarios considering
alternative covariance structures and varied signal-to-noise ratios yield similar results and hence are included in the
Supporting Information.

6.2 Results
6.2.1 Estimation of coefficient functions
To evaluate the performance of the FCR for estimating coefficient functions, we use integrated squared error (ISE) defined

as ∫ 1
0

{
fk(t) − f̂k(t)

}2
dt where k = 0, 1, 2. We compare the FCR with the AM and the AMM fits. For each coefficient

function, we calculate the medians and interquartile ranges of ISEs of the estimates from each model.
Table 2 indicates that FCR consistently provides more accurate estimates of all coefficient functions than AMM and

AM. Table 3 provides the average pointwise coverage probability of estimated coefficient functions across 500 evenly
spaced points between 0 and 1. The FCR and AMM perform reasonably well, while the AM performs poorly. The FCR and
AMM provide comparable coverage probabilities for estimating the coefficient functions of the time-invariant covariates
(f0(·) and f1(·)). However, FCR provides substantially higher coverage probabilities for estimating the coefficient functions
of the time-varying covariate (f2(·)). All methods compared here seem to give lower than 95% coverage probabilities for
f2. Additional simulations (not shown) indicate that this poor performance can be attributed to the magnitude of the
f2 coefficient and increasing the magnitude of the association between WAZ and the outcome results in close to 95%
confidence interval coverage probabilities for FCR.
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TABLE 2 100×Median (interquartile range) of integrated squared error for predicting coefficient
functions using FCR, AMM, and AM across 500 simulations for each combination of (N, 𝜎𝜖)

N = 100 N = 200
FCR AMM AM FCR AMM AM

mi ∼ Unif[15, 25]
𝜎𝜖 = 0.18 f0 0.48 (0.71) 0.57 (0.76) 0.63 (0.82) 0.25 (0.40) 0.27 (0.40) 0.34 (0.44)

f1 0.74 (1.73) 1.03 (1.83) 1.24 (2.01) 0.38 (0.69) 0.43 (0.82) 0.55 (0.96)
f2 0.26 (0.30) 0.30 (0.34) 0.42 (0.53) 0.14 (0.16) 0.15 (0.18) 0.25 (0.24)

𝜎𝜖 = 0.37 f0 0.54 (0.84) 0.57 (0.90) 0.65 (0.95) 0.28 (0.39) 0.28 (0.40) 0.36 (0.43)
f1 0.92 (1.68) 1.12 (1.92) 1.29 (1.87) 0.43 (0.84) 0.51 (0.86) 0.66 (1.00)
f2 0.30 (0.30) 0.33 (0.38) 0.49 (0.47) 0.16 (0.17) 0.17 (0.17) 0.26 (0.30)

mi ∼ Unif[25, 35]
𝜎𝜖 = 0.18 f0 0.50 (0.74) 0.60 (0.80) 0.71 (0.91) 0.22 (0.38) 0.26 (0.42) 0.32 (0.44)

f1 0.87 (1.46) 1.12 (1.83) 1.31 (1.94) 0.36 (0.73) 0.49 (0.73) 0.57 (0.87)
f2 0.21 (0.25) 0.29 (0.37) 0.38 (0.50) 0.11 (0.13) 0.14 (0.18) 0.21 (0.27)

𝜎𝜖 = 0.37 f0 0.54 (0.73) 0.55 (0.84) 0.61 (0.82) 0.27 (0.40) 0.27 (0.42) 0.32 (0.46)
f1 0.81 (1.60) 0.92 (1.68) 1.11 (1.73) 0.39 (0.79) 0.50 (0.88) 0.59 (0.93)
f2 0.26 (0.26) 0.30 (0.35) 0.44 (0.50) 0.12 (0.13) 0.13 (0.15) 0.23 (0.24)

Abbreviations: AM, additive model with the same mean structure; AMM, additive model with scalar random
effects; FCR, functional concurrent regression.

TABLE 3 Average coverage probabilities for 95% confidence bands using
FCR, AMM, and AM under various simulation scenarios

N = 100 N = 200
FCR AMM AM FCR AMM AM

mi ∼ Unif[15, 25]
𝜎𝜖 = 0.18 f0 0.93 0.94 0.56 0.93 0.93 0.60

f1 0.91 0.93 0.53 0.93 0.94 0.58
f2 0.84 0.71 0.63 0.84 0.72 0.64

𝜎𝜖 = 0.37 f0 0.93 0.93 0.60 0.93 0.93 0.63
f1 0.93 0.94 0.57 0.94 0.95 0.57
f2 0.86 0.79 0.65 0.88 0.80 0.67

mi ∼ Unif[25, 35]
𝜎𝜖 = 0.18 f0 0.91 0.92 0.50 0.93 0.94 0.55

f1 0.92 0.92 0.47 0.94 0.94 0.49
f2 0.84 0.64 0.58 0.85 0.65 0.61

𝜎𝜖 = 0.37 f0 0.92 0.94 0.55 0.93 0.94 0.58
f1 0.93 0.95 0.53 0.93 0.94 0.51
f2 0.86 0.75 0.59 0.90 0.78 0.63

Abbreviations: AM, additive model with the same mean structure; AMM, additive model
with scalar random effects; FCR, functional concurrent regression. Coverage is assessed
at 500 equally spaced points between 0 and 24 and then averaged across the 500 points for
each simulation scenario.

6.2.2 Dynamic curve prediction
Regarding individual curve predictions, we compare the FCR with the functional principal component model (FRI) and
the AMM described in Table 1. We do not include a comparison with the AM because it focuses on the estimation of
fixed effects and is therefore not suitable for individual prediction. For each simulated dataset, we calculate the mean ISE
(MISE) for predicting all individual curves. The evaluation criteria are the median and interquartile range of the MISEs
over all simulated datasets. Mean ISE is calculated using 50 subjects not included during model fitting. Dynamic pre-
diction is performed on 3 nonoverlapping intervals ([8∕24, 12∕24], [14∕24, 18∕24], [20∕24, 24∕24]) using data conditional
on up to 3 time points (6∕24, 12∕24, 18∕24). This results in 6 observed dynamic prediction periods, with MISE calculated
for each period separately (see Table 4). For ease of comparison with the CONTENT application, we rescale these time
periods to months on the interval 0 to 2 years.

Table 4 reports the results for dynamic prediction error for one simulation scenario (mi ∼ Unif(25, 35),N = 100, 𝜎𝜖 =
0.18). Dynamic prediction accuracy increases with the amount and proximity of subject data used in prediction. For
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TABLE 4 10×Median (interquartile range) of mean integrated squared error
for dynamically predicting subject-specific curves using the FCR, fPCA, and
AMM across 500 simulations for N = 100,mi ∼ Unif(25, 35), 𝜎𝜖 = 0.18

Prediction Time Window
8-12 mo 14-18 mo 20-24 mo

Observed Data 0-6 mo 2.06 (0.56) 3.41 (0.97) 3.74 (1.20) FCR
2.25 (0.64) 3.66 (1.07) 3.88 (1.17) FRI
2.21 (0.60) 3.68 (1.07) 4.71 (1.55) AMM

0-12 mo 1.80 (0.49) 2.42 (0.63) FCR
1.91 (0.56) 2.54 (0.70) FRI
2.17 (0.63) 4.77 (1.47) AMM

0-18 mo 1.18 (0.36) FCR
1.27 (0.36) FRI
2.50 (0.76) AMM

Abbreviations: AMM, additive model with scalar random effects; FCR, functional concurrent
regression; FRI, functional random intercept; fPCA, functional principal component analy-
sis. All dynamic prediction errors are assessed using 50 subjects that were not included in the
model fitting procedure are used to evaluate the dynamic prediction error presented here.
Note that although simulations were performed on the unit interval, the time periods have
been rescaled to reflect the time domain of the CONTENT data.

example, prediction accuracy for 20 to 24 months using data up to 18 months is better than both: (1) prediction accuracy
for 14 to 18 months using data up to 12 months and (2) prediction accuracy for 20 to 24 months using data up to 12
months. Comparing the FCR to the AMM, the improvement in dynamic prediction using up to 12 months of data is
substantial, with reductions in MISE between 17% and 53%. However, note that while FCR outperforms FRI, the difference
is consistently less than 10%.

Additional simulations (not reported) show that increasing the magnitude of the association between covariates and
the outcome increases the relative performance of both FCR and AMM relative to FRI. This makes sense as FRI does
not include any covariate information in the model. We therefore recommend using simulation to assess the rela-
tive performance of AMM, FRI, and FCR in a particular application under a range of plausible true data generating
mechanisms.

7 DISCUSSION

We have proposed a dynamic FCR model and provided accompanying code that is easy to use. We applied our method
directly to irregularly spaced growth curve data to study the association between length and weight of children and pro-
posed a procedure for performing dynamic prediction. Using the motivating data as a basis for a comprehensive simulation
study, our method showed superior performance compared to traditional methods for analyzing growth curve data in
terms of estimation and inference on fixed effects as well as both in-sample and dynamic subject predictions.

As we focus heavily on individual predictions, we would like to underline that simply predicting a new subject for
standard mixed effects models is not currently available in the most widely used R packages for fitting mixed models
(lme4 and nlme), or refund for functional mixed effects models. As a result, not only is our method more accurate in
terms of subject predictions, it is also easier to make out-of-sample predictions from the perspective of an end user. This
is particularly relevant for users who want to perform dynamic prediction as the BLUP estimates for the random effects
must be recalculated at every point of interest.

In addition to providing a user-friendly interface, the underlying software has been extensively tested by research groups
working on child growth data. While the estimation procedure described in this paper is similar to that proposed in
Cederbaum et al,19 the procedure has not been implemented in any peer-reviewed publication. Moreover, our covariance
estimation procedure37 is fast, accurate, and was designed specifically for sparse functional covariance estimation.

Although our primary focus is on dynamic prediction, the methods are not limited to the specific functional concur-
rent model considered in the paper. Indeed, it can be used for performing general functional regression with a random
functional intercept. This class of models is applicable to a wide variety of study designs and data types. Ultimately, the
use of statistical methods depends strongly on the degree to which these methods are accessible. Here, we provide both
the method and an estimation procedure that is relatively computationally inexpensive. The accessibility of our code may
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help facilitate adoption in practice. An R package fcr has been compiled to fit the proposed dynamic FCR models and will
be distributed to CRAN soon.
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