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ABSTRACT: Given the demonstrated utility of coarse-
grained modeling and simulations approaches in studying
protein structure and dynamics, developing methods that allow
experimental observables to be directly recovered from coarse-
grained models is of great importance. In this work, we
develop one such method that enables protein backbone
chemical shifts (1HN, 1Hα, 13Cα, 13C, 13Cβ, and 15N) to be
predicted from Cα coordinates. We show that our Cα-based
method, LARMORCα, predicts backbone chemical shifts with
comparable accuracy to some all-atom approaches. More importantly, we demonstrate that LARMORCα predicted chemical shifts
are able to resolve native structure from decoy pools that contain both native and non-native models, and so it is sensitive to
protein structure. As an application, we use LARMORCα to characterize the transient state of the fast-folding protein gpW using
recently published NMR relaxation dispersion derived backbone chemical shifts. The model we obtain is consistent with the
previously proposed model based on independent analysis of the chemical shift dispersion pattern of the transient state. We
anticipate that LARMORCα will find utility as a tool that enables important protein conformational substates to be identified by
“parsing” trajectories and ensembles generated using coarse-grained modeling and simulations.

■ INTRODUCTION
Characterizing the folding/unfolding pathway of proteins
remains an outstanding and significant challenge in structural
biology. Though the emphasis has been on characterizing the
native state structure of proteins, new experimental techniques
are now being developed that enable transiently populated
intermediates along the protein folding pathway to be
characterized at the atomic scale.1−6 Identifying such folding
intermediates has always been viewed as an important task, but
now as these and other non-native states have been implicated
in several diseases,7 developing approaches that enable the
“complete” folding pathway to be characterized is of even
greater importance.
In principle, classical molecular dynamics (MD) simulations,

which can generate full atomic trajectories of a protein by
propagating Newton’s equations of motions, can be used to
characterize its folding pathway(s). However, rigorous MD
simulations are computationally expensive, making it difficult to
simulate protein folding; typical simulations are on the order of
nanosecond to microseconds, whereas proteins (with the
exception of fast-folders) fold on a time scale of milliseconds
and beyond. Though recent advances in computer hardware,
software, and methodology8−11 now allow the long time scale
dynamics of some proteins to be studied,12 these approaches
still require significant computational resources. Thus, there
remains a keen need for approaches that allow the folding
pathway(s) of proteins to be characterized using readily
available computational resources.

Coarse-grained molecular simulations, in which the full
atomic system is reduced to a smaller less complex system of
interacting “coarse-grained” particles, have been used to
overcome the “mismatch” between simulation and biological
time scales by sacrificing resolution for enhanced sampling
efficiency. Remarkably, despite their simplicity, coarse-grained
modeling and simulation approaches have been used to provide
significant insights into protein functioning.13−16

Of considerable interest is the use of coarse-graining within a
“multiscale” approach, in which coarse-grained simulations are
used to rapidly and exhaustively sample the conformational
space of a target protein, and then “selected” conformers from
the coarse-grained simulations are used to “seed” more rigorous
all-atom simulations. One approach to identifying relevant
“seed” conformations is to use advanced clustering17−19 and
other data-reduction techniques.20 Alternatively, experimental
data can be used to select relevant “seed” structures by
constructing ensembles that are consistent with the ensemble
averaged data.21−25 A prerequisite for such an “experimentally-
augmented” identification of relevant conformational substates
is the ability to calculate experimental observables from
structural models, and, in the context of coarse-grained
modeling, this typically requires mapping reduced models
back to their all-atom representations.26−31 Unfortunately, in
addition to suffering from issues of nonuniqueness, this

Received: October 14, 2014
Published: December 8, 2014

Article

pubs.acs.org/JCTC

© 2014 American Chemical Society 325 dx.doi.org/10.1021/ct5009125 | J. Chem. Theory Comput. 2015, 11, 325−331

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JCTC
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


mapping incurs an additional computational cost; typically
coarse-grained approaches generate on the order 106 con-
formers, so this additional cost can be significant. Techniques
are therefore needed that maximize the structural information
that can be directly extracted from coarse-grained models and
thus obviate the need for all-atom reconstruction of an entire
trajectory or ensemble generated using coarse-grained simu-
lations.
NMR relaxation dispersion (NMR-RD) experiments have

recently garnered significant attention because they allow NMR
observables of low-populated intermediates to be detected.
These observables can be then used to “unveil” the structure of
these previously “invisible” states. Using such an approach,
NMR-RD derived chemical shifts, which are exquisitely
sensitive to protein structure, have now been used to
structurally characterize the folding intermediates of several
proteins.32−34 Incorporating NMR-RD derived chemical shifts
into the analysis of coarse-grained simulations would allow
relevant intermediate states that are sampled along the folding/
unfolding pathways to be identified. As a first step toward being
able to use NMR chemical shifts to “parse” trajectories or
ensembles generated using coarse-grained modeling and
simulations, we introduce LARMORCα, a prediction method
that allows protein backbone (1HN, 1Hα, 13Cα, 13C, 13Cβ, and
15N) chemical shifts to be predicted based only on Cα-based
atomic coordinates. In what follows we (i) describe the model
used to generate LARMORCα; (ii) assess the accuracy of
LARMORCα; (iii) assess the sensitivity of LARMORCα

predicted chemical shifts to protein structure; and (iv) use
coarse-grained simulations and LARMORCα to characterize the
transient state of the gpW, a small fast-folding protein.

■ METHODS

Training and Testing Set. LARMORCα predictors were
trained and tested using the RefDB database.35 Briefly, the data
set contains proteins for which both high-resolution X-ray
structures and NMR chemical shifts are available in the Protein
Data Bank (PDB: http://www.pdb.org) and Biological
Magnetic Resonance Bank (BMRB: http://www.bmrb.wisc.
edu/), respectively. The training and testing set used here
consisted of 196 and 61 proteins, respectively (Table S1).
Cα-Cα Distance-Based Structure Features. The dis-

tance-based structural features used to predict backbone
chemical shifts from Cα coordinates were identical to those
recently used by the program PCASSO to assign protein
secondary structure from Cα coordinates.36 Briefly, for a given
residue, i, a set of 43 features are calculated from the Cα
coordinates and the pseudocenter coordinates, respectively (see
Table S2 and also ref 36 for a list of all features). The
pseudocenter for the ith residue is defined as the center-of-
geometry between Cα(i) and Cα(i+1). The feature vector,
V(i), for the ith residue is made up by features from the ith, i−
1th, and i+1th residues which results in a total of 258 feature
elements (Table S2).
Generating LARMORCα Using Randomized Decision

Trees. For all proteins in the training set, the Cα-Cα distance-
based structural features described above were extracted from
the X-ray structures and combined with their corresponding
chemical shift data. The resulting data set was used as input to
build a set of models to separately predict 1HN, 1Hα, 13Cα, 13C,
13Cβ, or 15N backbone chemical shifts. Specifically, for each
backbone nucleus type, the random forest machine learning

technique, implemented in the RandomForest module in the
Scikit-learn Python package,37 was used to build a predictive
model. Each random forest predictor consisted of 50
randomized decision trees, and the maximum depth was set
to 25. Each node in a given tree was split using the best splitting
variable from a subset of 16 randomly chosen feature variables.
The minimum number of samples required for splitting an
internal node and the minimum number of samples required in
a leaf node were both set to 5. Default values were used for all
other parameters.

Molecular Dynamics (MD) Simulations. Coarse-grained
decoy pools were generated for four arbitrarily chosen proteins
in the testing set (PDB ID 1LM4: chain B,38 2C5L: chain C,39

1DYT: chain A40 and 1H4A: chain X41) using Go̅ model MD
simulations. The native contacts used to define the Go̅ models
were derived from the coordinates in the corresponding PDBs
using the MMTSB Go̅ Model Server (https://mmtsb.org/
webservices/gomodel.html).42,43 All simulations were carried
out using CHARMM MD simulation package.44 Trajectories of
7.5 μs each were propagated using Langevin dynamics at 300 K
with a friction coefficient of 0.10 ps−1. All bonds were
constrained using SHAKE,45 and nonbond interactions were
truncated at 25 Å with a smooth switching function between 21
and 23 Å. Go̅ model MD simulations of the gpW protein were
carried out using the same procedure described above. In this
case, the native contacts used to define the Go̅ model were
derived from the gpW NMR structure (PDBID: 2L6Q; model
1).46,47 For all the proteins, simulations at 300 K enabled both
native and non-native conformations to be sampled.

Chemical Shift Analysis. For each of the four test systems,
backbone chemical shifts were predicted from the resulting
trajectory using LARMORCα, and then the weighted-root-
mean-squared-error (wRMSE) between predicted and meas-
ured chemical shifts along each trajectory were calculated. The
wRMSE is given as
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meas, and wi are the predicted chemical shift, the
measured chemical shift, and weighting factor, respectively, for
a given nucleus, i. The summation runs over the set of NCS
chemical shifts. The weighting factors (wi) were used to
account for the differential accuracy of the predictors.
Specifically,
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where Ri and MAEi are the estimated Pearson correlation
coefficient and estimated mean-absolute-error, respectively,
between the measured and LARMORCα predicted chemical
shifts for the nucleus type associated with i. The weighting
factor also scales the contribution to the overall error such that
nuclei with different dispersion ranges can contribute equally to
the wRMSE.
In addition to extracting the model with the lowest wRMSE

and then comparing to the native structure, for each of the four
systems receiver-operator-characteristic (ROC) analysis was
carried out. First, the fraction of native contacts, Q, was
calculated for each conformer along each trajectory. Con-
formers along the trajectories were then designated as native if
Q > 0.90 and non-native otherwise. ROC curves were plotted
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for each test case, and the area-under-curve (AUC) was
determined. Here the AUC, which ranges between 0 and 1, was
used as a measure of the resolving power of the LARMORCα

predicted chemical shifts. An AUC approaching 1 indicated that
the models with the lowest error wRMSE corresponded to the
native conformer and thus the wRMSE was effective at
resolving native and non-native conformers, whereas an AUC
of 0.5 indicated that the use of wRMSE to distinguish native
from non-native conformers was no better than a random
designation. In addition to carrying out ROC analysis using the
total wRMSE, parallel analyses were carried out using only
1HN, 1Hα, 13Cα, 13C, 13Cβ, or 15N chemical shifts.
For the gpW protein, the wRMSE between LARMORCα

predicted chemical shifts and measured chemical shifts
corresponding to (i) the native states and (ii) the transient
state were determined.46 The conformation closest to the
average structure of the 10 models exhibiting the lowest
wRMSE was then extracted and considered representative of
the state.

■ RESULTS AND DISCUSSION

The prospect of predicting backbone chemical shifts directly
from Cα atomic coordinates opens up the possibility of utilizing
chemical shifts to parse trajectories of Cα-based coarse-grained
simulations and so identify intermediate states along the folding
pathway of proteins. However, relying only on Cα atomic
coordinates reduces the information content in the models and
thus places an inherent limit on how accurately chemical shifts
can be predicted. In what follows, we first examine the accuracy
with which LARMORCα predicts backbone chemical shifts and
then compare it to all-atom prediction methods. We then assess
whether, given its current accuracy, LARMORCα predicted
backbone chemical shifts are likely to be of utility in resolving
protein structure. The latter is essential because it is sensitivity
to protein structure rather than absolute prediction accuracy
that will be most important when utilizing chemical shifts to
study the folding pathway of proteins.
LARMORCα Backbone Chemical Shift Prediction

Accuracy Is Comparable to Some All-Atom-Based
Approaches. We began our analysis by determining the
accuracy with which LARMORCα predicts protein backbone
chemical shifts for the proteins in the testing set (Table S1).
The accuracy of the predictions for 1HN, 1Hα, 13Cα, 13C, 13Cβ,
and 15N nuclei were quantified by computing the root-mean-
square-error (RMSE), mean-absolute-error (MAE), and the
Pearson correlation coefficient (R) between LARMORCα

predicted chemical shifts and measured chemical shifts. The
results are summarized in Table 1. For 1HN, 1Hα, 13Cα, 13C,
13Cβ, and 15N the RMSE, MAE and R, calculated over all
corresponding chemical shifts in the testing set, were 0.54, 0.35,
1.21, 1.79, 4.18, and 3.32 ppm, 0.39, 0.25, 0.90, 1.03, 1.55, and
2.45 ppm, and 0.67, 0.77, 0.82, 0.93, 0.94, and 0.81,
respectively.
The large discrepancy between the RMSE and MAE is

indicative of the presence of a small set of large prediction
outliers. To confirm this, outlier analysis was carried out for
each backbone nucleus. Specifically, we identified possible
prediction outliers using the 3-sigma rule, i.e. a prediction
outlier was identified as one that had an error that exceeded the
median error by more than three standard deviations. When
excluding the prediction outliers−on average ∼4.0% of the total
testing set for each nucleus−the RMSE and MAE decreased to

0.44, 0.28, 1.06, 0.99, 1.06, and 2.88 ppm and 0.35, 0.22, 0.83,
0.76, 0.81, and 2.25 ppm and the R increased to 0.75, 0.83, 0.86,
0.98, 0.99, and 0.85, for 1HN, 1Hα, 13Cα, 13C, 13Cβ, and 15N
nucleus, respectively.
Consistent with our expectation, backbone chemical shifts

predicted using LARMORCα were generally less accurate than
those calculated using all-atom methods. For example,
SHIFX248 and SPARTA+,49 which are currently the “gold-
standard” for empirical structure-based protein chemical shift
prediction, exhibited significantly lower RMSE over the testing
set (Table S3) and had mean Rs of 0.98 and 0.92, respectively,
compared with 0.82 for LARMORCα (Table S4). A similar
picture emerges when comparing LARMORCα to CamShift;50

the mean R for CamShift was 0.89 (Tables S3 and S4).
However, LARMORCα predicts backbone chemical shifts with
an accuracy comparable to PROSHIFT51 and SHIFTS;52 the
mean R for PROSHIFT and SHIFTS were 0.86 and 0.81,
respectively, compared to LARMORCα’s 0.82. When prediction
outliers were accounted for, the overall accuracy of LARMORCα

prediction accuracy was on par with Camshift (Tables S3 and
S4). Together these results show that although LARMORCα

generally predicts backbone chemical shifts less accurately than
all-atom methods, with the exception of SHIFTX2 and
SPARTA+, the drop off in accuracy is not too severe, this
despite predicting backbone chemical shifts based only on Cα
coordinates.

Sensitivity to Structure Allows LARMORCα To Dis-
tinguish Native and Non-Native States. Next, we examined
whether chemical shifts predicted by LARMORCα were
sensitive to protein structure by assessing their ability to
resolve native structure from decoy conformational pools that
contained both native and non-native conformers. If sensitive
to protein structure, the native-like models in the decoy pool
should exhibit the lowest error between LARMORCα predicted
chemical shifts and measured chemical shifts and vice versa.
To test this, decoy pools for 4 arbitrarily chosen proteins in

the testing were generated using Go̅ model MD simulations.
The final pools contained a total of 100,000 conformers. As
shown in Figure 1, the decoy pools generally contained a
mixture of native and non-native conformers. For each protein,
LARMORCα was used to predict backbone chemical shifts for
every conformer in the decoy pool, and then the corresponding

Table 1. Backbone Chemical Shifts Prediction Accuracya

nucleus
RMSE
(ppm) MAE (ppm) R

no. of
shifts

%
prediction
outliers

Hα 0.54 (0.44) 0.39 (0.35) 0.67 (0.75) 5776 2.98
HN 0.35 (0.28) 0.25 (0.22) 0.77 (0.83) 8346 3.34
Cα 1.21 (1.06) 0.90 (0.83) 0.82 (0.86) 8856 2.31
C 1.79 (0.99) 1.03 (0.76) 0.93 (0.98) 7218 5.96
Cβ 4.18 (1.06) 1.55 (0.81) 0.94 (1.00) 7322 7.39
N 3.32 (2.88) 2.45 (2.25) 0.81 (0.85) 8125 2.43

aThe root-mean-square-error (RMSE), mean-absolute-error (MAE),
and Pearson correlation coefficient (R) between LARMORCα-
predicted and experimental chemical shifts. For each nucleus, the
RMSE, MAE, and R statistics were calculated using all chemical shifts
in the testing set. In parentheses are the statistics obtained when
prediction outliers are excluded. Also listed for each nucleus is the
number of chemical shifts over which the statistics were computed and
the percentage of prediction outliers identified. A prediction outlier is
identified as having an error that exceeds the median error by more
than three standard deviations (i.e., the 3-sigma rule).
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wRMSE was computed. The fraction of native contacts (Q) was
also determined for every conformer in the decoy pool.
Receiver-operator-characteristic (ROC) analysis was then
carried out to assess the extent to which native-like conformers
(Q > 0.90) could be resolved from non-native conformers (Q ≤
0.90).
With the exception of 2C5L, the AUC determined from

ROC curves (when using all available backbone chemical shift
data) were all ≥0.95; the AUC for 2C5L was ∼0.70 (Figure 1).
Similar results were obtained if 1HN, 1Hα, 13Cα, 13C, 13Cβ, or
15N chemical shifts were used separately; with the exception of
Cα and N nuclei for 1LM4 and 1HN, 1Hα, 13Cα, 13C, and 15N
nuclei for 2C5L, the AUC were all ≥0.88 (Figure 1).
Encouragingly, for all four proteins, when using all available
backbone chemical shifts, the models with the lowest wRMSE
had Q ≥ 0.97 (Figure 2).
As a further test of its sensitivity to structure, we examined

whether LARMORCα predicted chemical shifts could be used to
resolve the difference between conformational substates of the
phage T4 lysozyme (T4L). The free-energy landscape of a
mutant T4L, L99A, has been recently studied using NMR-RD
experiments, allowing chemical shifts to be obtained of a
transient low-populated (∼3%) conformational substate.33

Using a mutate-to-trap approach, chemical shifts were also
obtained for a triple mutant (L99A-G113A-R119P T4L) that
was purported to “resemble” the transient state. The structures
of the transient L99A and the triple T4L mutants were
determined using CS-Rosetta and confirmed that the structure
of the transient state closely resembles that of the triple T4L
mutant. The RMSD between the transient state of the L99A
mutant and the triple T4L mutant was ∼0.8 Å, whereas the
RMSDs of the transient single and triple mutants compared to
the highly populated state of L99 T4L were ∼2.5 and 2.3 Å,
respectively (Figure 3).

Figure 1. Sensitivity of LARMORCα chemical shifts to protein structure (I). Shown are the results of using LARMORCα predicted chemical shifts to
resolve native conformers from decoy pools generated using Cα-Go̅ model MD simulations. Results are shown for four arbitrarily chosen proteins in
the testing set: PDB IDs (A) 1LM4, (B) 2C5L, (C) 1DYT, and (D) 1H4A, respectively. Shown for each protein are plots of the distribution of the
fraction of native contacts (Q) in the decoy pool and the ROC curves (right). The plots characterize the degree to which the wRMSE between
measured and LARMORCα predicted chemical shifts can distinguish native from non-native conformers in the decoy pools. In addition to ROC
curves obtained using the total chemical shift error (black), separate ROC curves are shown when using only 1HN (red), 1Hα (orange), 13Cα
(green), 13C (purple), 13Cβ (cyan), or 15N (blue) chemical shifts. The AUC values associated with each ROC curve are shown in boxes.

Figure 2. Comparison between X-ray structures and models with the
lowest chemical shift error. Side-by-side comparison of the X-ray
structure (lef t) and the models with the lowest total error (wRMSE)
between experimental and LARMORCα-predicted chemical shifts
(right) for proteins corresponding to PDB IDs (A) 1LM4, (B)
2C5L, (C) 1DYT, and (D) 1H4A. In each panel, the fraction of native
contacts (Q) is indicated below the model with the lowest chemical
shift error.
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To test whether LARMORCα could resolve the small
structural differences between these three states (namely, the
highly and transiently populated states of L99A T4L and the
conformation of the triple mutant), LARMORCα was used to
predict backbone chemical shifts from the solved structures of
each species. For each species, we computed the wRMSE
between the predicted and experimental chemical shifts; the
wRMSEs were computed using data for residues 100−120 and
132−146 as these were the only residues that exhibited
significant changes in chemical shifts between the different the
states of T4L. We expect that the structures with the lowest
wRMSE should match the system associated with reference
(experimental) chemical shifts. As shown in Figure 3, this was
indeed the case. The L99A T4L structure exhibited the lowest
wRMSE relative to the chemical shifts computed for the highly
populated state, the transient state L99A T4L structure showed
the lowest wRMSE relative to the transient-state chemical
shifts, and the triple mutant structure displayed the lowest
wRMSE relative to the mutant chemical shifts. These results
indicate that LARMORCα was able to resolve the small
structural difference between conformational substates of T4L.
Although LARMORCα was able to resolve the “correct”

structure based upon the chemical shifts, the errors for the
L99A transient state and the triple mutant were higher than the
error for the L99A T4L. The higher errors for the transient
states suggest that models for these states can be refined even
further. Indeed, during the CS-Rosetta protocol used to
generate these models, it was assumed, based upon chemical

shifts dispersion patterns, that only residues 100−120 and
132−146 were significantly different between the L99A
transient state and the triple mutant. Thus, during refinement
only atoms in these residues were allowed to deviate from the
native L99A T4L structure.
Together these results indicate that backbone chemical shifts

predicted by LARMORCα are sufficiently sensitive to protein
structure to allow chemical shifts to be used in resolving native
from non-native structure. Even small structural differences
between similar conformational substates can be detected. As
such, NMR chemical shifts should be useful in “parsing”
trajectories and ensembles generated using coarse-grained
simulations to identify physically relevant conformational
substates along the folding pathway of proteins.

Analysis Using LARMORCα Indicates That the Tran-
sient State of gpW Is Locally Unfolded. Recently, NMR
relaxation dispersion (RD) experiments were used to study the
free-energy landscape of gpW, a 62-residue α+β fast-folding
protein (see Figure 4). NMR RD experiments allowed chemical

shifts to be obtained for both the native-state and a low-
populated transient state.46 Analysis of the chemical shift
dispersion pattern of the transient state revealed that the helices
remained intact, whereas the beta-strand region was unfolded.46

In principle combining LARMORCα with coarse-grained
simulations should allow for structures consistent with the
chemical shifts of the transient state to be identified. Thus, we
used LARMORCα to probe the folding pathway of gpW during
Go̅ model MD simulations.
The representative model based on the native state chemical

shifts was found to contain α+β topology (Figure 4B),
indicating that the LARMORCα was able to resolve the native
structure from the ensemble of structures generated during the
Go̅ model simulations. In contrast to the representative model
of the native states, the representative model of the transient-
state exhibited an unfolded beta-region (Figure 4C). These
results agree well with the analysis of Kay and co-workers,46 and
they serve to further confirm that LARMORCα can be used to
efficiently parse coarse-grained trajectories and ensembles to

Figure 3. Sensitivity of LARMORCα chemical shifts to protein
structure (II): Structures of three conformational substates of T4L:
(A) native L99A T4L, (B) the transiently populated intermediate of
L99A T4L, and (C) the L99A-G113A-R119P T4L triple mutant,
respectively. The region in the transient intermediate of L99A and the
triple mutant that differs significantly from native L99A T4L is circled
(yellow dotted). LARMORCα backbone chemical shifts were predicted
from the Cα coordinates taken from the solved structure of each of
these three substates and then compared to NMR-RD-derived
chemical shifts of the native L99A T4L, the transient intermediate
state of L99A T4L, and the triple T4L mutant, respectively. For each
structure, the wRMSE relative to the native L99A T4L, the transient
intermediate state of L99A T4L, and the triple T4L mutant are shown
in black, red, and blue, respectively (boxes) and the lowest is
highlighted (bold and underlined). Also, for each structure, the
structural RMSD relative to the native L99A T4L, the transient
intermediate state of L99A T4L, and the L99A-G113A-R119P T4L
mutant structure are shown in black, red, and blue, respectively
(boxes). Here, the wRMSE and RMSDs were calculated for residues
100−120 and 132−146.

Figure 4. Resolving native and transient states along the folding
pathway of the fast-folding protein gpW using LARMORCα. The
folding pathway of gpW was studied using Cα-based Go̅-model MD
simulations. Shown are cartoon representations comparing (A) the
solved native-state structure of the gpW and the representative models
of (B) the native and (C) the transient states selected from the Cα-
trajectory using LARMORCα. Representative models were selected by
comparing LARMORCα-predicted chemical shifts to recently reported
NMR-RD-derived backbone chemical shifts for the native and the
transient intermediate states.46 The models in (B) and (C) correspond
to the two models that were closest to the average structure of the 10
models that exhibited the lowest error (wRMSE) between
LARMORCα-predicted and the measured chemical shifts of the native
state and the transient state, respectively.
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identify important conformational substates (i.e., both native
and intermediary states).
Though in the current study we focused on using

LARMORCα to seamlessly incorporate backbone chemical shifts
into the analysis of coarse-grained MD simulations, LAR-
MORCα is also well suited for incorporation into most protein
structure prediction methods where it can be used to enable
backbone chemical shifts to actively guide conformation
sampling. Additionally, LARMORCα can also be used to parse
large all-atom trajectories and ensembles to identify a smaller
subset of relevant conformational states. In the spirit of “multi-
scale analysis”,36 more accurate and complete chemical shifts
prediction (i.e., prediction of both backbone and side-chain
chemical shifts) can then be carried out for the smaller subset
using all-atom prediction approaches.

■ CONCLUSION
In summary, we have developed LARMORCα, a Cα-based
approach that enables the prediction of backbone chemical
shifts from coarse-grained models of proteins. We show that in
addition to predicting chemical shifts with accuracy comparable
to some all-atom approaches, LARMORCα was capable of
resolving protein structure. This sensitivity to protein structure
enables LARMORCα to identify conformational substates from
coarse-grained simulations that are consistent with available
NMR chemical shifts. An exciting application of the method is
to identify “invisible” intermediate substates using chemical
shifts obtained from NMR relaxation dispersion experiments, as
was demonstrated here for the gpW fast-folding protein.
Structural information on transiently populated intermediates
afforded by the combination of coarse-grained simulation and
LARMORCα has the potential to offer functional insights into
the mechanism of protein folding, misfolding, and aggregation,
and their role in folding-related diseases.7 Beyond coarse-
grained simulations, LARMORCα could be used to quickly
parse all-atom MD trajectories and also be incorporated into
existing structure prediction methods. To facilitate its use, the
source code for LARMORCα is made freely available at https://
github.com/atfrank/LARMORCA.
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