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Abstract: Hypovitaminosis D is prevalent worldwide; however, analytical bias in the measurement
of circulating 25-hydroxyvitamin D (25(OH)D) concentrations may affect clinical treatment decisions
and research. We performed parallel plasma 25(OH)D analyses using the Abbott Architect i2000
chemiluminescent immunoassay (CIA) and liquid chromatography–tandem mass spectrometry
(LC–MS/MS) for paired samples from the same infants at 3 (n = 69), 6 (n = 79) and 12 months (n = 73)
of age. To test agreement, we used Lin’s concordance correlation coefficient and corresponding
95% confidence interval, Bland–Altman’s limits of agreement, and Bradley–Blackwood (BB) test.
Agreement was high at 3 months (coefficient between difference and mean −0.076; BB F = 0.825;
p = 0.440), good at 12 months (−0.25; BB F = 2.41; p = 0.097) but missing at 6 months of age (−0.39;
BB F = 12.30; p < 0.001). Overall, 18 infants had disparate results based on the cut-off point for
vitamin D deficiency (25(OH)D < 50 nmol/L), particularly at three months, with seven (10%) infants
deficient according to CIA but not LC–MS/MS, and four (6%) deficient by LC–MS/MS but not CIA.
To our knowledge, this is the first study to show that the reported 25(OH)D concentration may be
influenced by both age and assay type. Physicians and researchers should be aware of these pitfalls
when measuring circulating 25(OH)D concentrations in infants and when developing treatment plans
based on measured vitamin D status.

Keywords: 25-hydroxyvitamin D; analytical bias; infants; vitamin D

1. Introduction

Vitamin D deficiency is a significant global concern due to both its high prevalence in diverse
populations and its multisystem health implications [1–5]. Sunlight exposure is required for vitamin D

Int. J. Environ. Res. Public Health 2020, 17, 412; doi:10.3390/ijerph17020412 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-2498-8343
https://orcid.org/0000-0003-4845-8590
https://orcid.org/0000-0002-9963-3988
http://www.mdpi.com/1660-4601/17/2/412?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17020412
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 412 2 of 12

synthesis, and a growing body of evidence suggests that lifestyle changes, including reduced outdoor
activity, may explain the global rise of vitamin D insufficiency over the last decades [6–8]. There is
long-standing awareness of the importance of vitamin D for bone health [4]. There is also expanding
evidence that vitamin D plays a role in various other inflammatory non-communicable diseases [2–4].

Many of these multisystem effects may be influenced by the impact of vitamin D on the immune
function [9]. Increased knowledge of the broader health implications of vitamin D status has translated
to higher demands for measuring circulating 25-hydroxyvitamin D (25(OH)D) concentrations, with
substantial cost to health systems [10,11]. This underscores the importance of cost-effective, reliable
and accurate assays for determining vitamin D status—and a clear understanding of the variability
between different assays used in clinical practice and research.

Thresholds for vitamin D deficiency are based on total 25(OH)D concentrations (25(OH)D3 plus
25(OH)D2) [12,13]. However, the accurate assessment of vitamin D status is challenging, since 25(OH)D
is lipophilic, strongly bound to vitamin D-binding protein and has more than 50 epimers [12,14].
The interpretation of total circulating 25(OH)D concentrations is further complicated by the presence
of the C3-epimeric form (C3-epi-25(OH)D3), particularly in infants aged ≤12 months [15,16]. Due
to their molecular similarity, C3-epi-25(OH)D3 may be incorrectly interpreted as 25(OH)D by some
assays. Furthermore, the downstream hydroxylated C3-1,25(OH)2D is thought to have considerably
lower biological activity than the active form of vitamin D, 1,25-dihydroxyvitamin D. Inadvertently
including C3-epi-25(OH)D3 may result in an overestimation of circulating 25(OH)D concentrations in
infants, leading to under-prescription of supplements and undue toxicity concerns [15,16].

A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method that is certified to
the reference measurement procedures (RMPs) developed by the National Institute of Standards
and Technology, Ghent University, and the US Centers for Disease Control and Prevention [17,18] is
considered to be the gold standard for measuring circulating 25(OH)D concentrations [19]. LC–MS/MS
can report 25(OH)D3 concentrations independently of 25(OH)D2 and C3-epi-25(OH)D3 [12]. However,
the requirement of highly trained technologists, the limited sample throughput, and the high cost of the
equipment, places constraints on the widespread use of LC–MS/MS in clinical laboratories. In contrast,
the automated immunoassay is less expensive and much easier to perform with high-throughput
capacity [20]. This is the method most commonly used in clinical laboratories and is the basis for
the clinical classification of vitamin D deficiency and subsequent recommendations for vitamin D
supplementation [12].

Despite the introduction of monitoring programs (International Vitamin D External Quality
Assessment Scheme (DEQAS) [21], Vitamin D Standardization Program (VDSP) [17,22] and the College
of Pathologists’ recommendations [23]), substantial between-assay differences have been documented
between laboratories engaged in measuring circulating 25(OH)D concentrations [24]. Studies in adults
have demonstrated that serum 25(OH)D concentrations measured by LC–MS/MS were generally higher
than those measured by other assays [19,24].

Limited data on assay variability are available in infants [25,26]. An Australian study in neonates
showed a tendency towards lower serum 25(OH)D concentrations measured by LC–MS/MS compared
with those determined by immunoassay, although the difference was not statistically significant [25].
Adequate vitamin D status in infancy has unique implications for long-term health—not only for
life-long bone health [27], but also for immune and metabolic health [28]. Even small individual
differences around the cut-off point for vitamin D deficiency can potentially result in misclassification
of vitamin D status [26] and alter decisions around vitamin D supplementation [29]. Given the lack of
data comparing the performances of vitamin D assays in infants, we aimed to investigate the inter-assay
variability between the chemiluminescent immunoassay (CIA) and the LC–MS/MS method in infants
at 3, 6 and 12 months of age.
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2. Materials and Methods

This is an observational study comparing parallel analyses by CIA and LC–MS/MS of identical
paired samples for plasma 25(OH)D concentrations in the same cohort of infants at 3, 6, and 12 months
of age. The samples were collected between March 2012 and August 2016 as part of a randomized
controlled trial conducted in Perth, Australia [30], which was designed to assess the effect of oral
vitamin D supplementation (400 IU/day cholecalciferol over 6 months) on infant immune outcomes
(ACTRN12612000787886). Written informed consent was obtained before trial participation. Ethics
approval was granted by the Human Research Ethics Committees of Princess Margaret Hospital
(1959EP).

Peripheral blood was collected by venipuncture and processed for plasma and mononuclear cells.
Ref. [30] Two different assays were used for the determination of plasma 25(OH)D concentrations.

We used a delayed one-step chemiluminescent microparticle immunoassay (CIA) on an automated
Abbott Architect i2000 (Abbott Laboratories, Illinois). The calibrators were standardized against
Standard Reference Material 2-972 from the National Institute of Standards and Technology [31].
The analytical coefficient of variation for 25(OH)D was 7.8% at 24 nmol/L, 4.2% at 46 nmol/L and 4.1%
at 82 nmol/L. Cross reactivity between 25(OH) vitamin D and 25(OH)D3 epimer was 1.3%, and that
between 25(OH) vitamin D and 25(OH)D2 epimer was 0.8%. The Abbott Architect i2000 is accredited
by the National Association of Testing Authorities for measurement of 25(OH)D, and the recently
improved version has been shown to have reduced variability in comparison to LC–MS/MS [32].

The concentrations of 25(OH)D were also analysed by the LC–MS/MS method certified by
the VDSP [17]. This method has been previously described [33]. Briefly, liquid–liquid extraction
of vitamin D metabolites was followed by 2-dimensional LC–MS/MS analysis on an Agilent 6460
LC–QQQ mass spectrometer. The coefficient of variation of the assay was consistently <5% at 23 to
182 nmol/L and could report down to 2 nmol/L. Using this assay, 25(OH)D2, 25(OH)D3 and C3-epimer
concentrations were measured; 25(OH)D2 concentrations were consistently <3 nmol/L and were
therefore not reported [33]. As Abbott Architect i2000 did not measure C3-epimer concentrations, these
were not included in our analysis, however, they are reported in Tables 1 and 2.

Statistical analysis was conducted using Stata v14 (ref: StataCorp. 2015. Stata Statistical Software:
Release 14. College Station, TX: StataCorp LP). As measures of agreement, we used Lin’s concordance
correlation coefficient and corresponding 95% confidence interval and Bland–Altman’s limits of
agreement method. Bradley–Blackwood test, a test of equality of means and variances of both variables,
was also performed. All statistical tests were two-tailed. Statistical significance was set at p < 0.05.
Concordance was implied if the value for the correlation between difference and mean was near zero
and the Bradley–Blackwood coefficient (F) was not statistically significant. Vitamin D deficiency was
defined as 25(OH)D concentrations < 50 nmol/L, the preferred cut-off point used in Australia [34,35].
We compared results for plasma 25(OH)D concentrations between CIA and LC–MS/MS. For each assay,
we also determined the proportion of samples identified as below the cut-off point for vitamin D
deficiency (25(OH)D < 50 nmol/L) [36,37].

3. Results

Of the 120 participants, parallel plasma 25(OH)D measurements using CIA and LC–MS/MS
were available for paired samples of 69 infants at 3 months, 79 infants at 6 months, and 73 infants at
12 months of age (Table 1).
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Table 1. Descriptive statistics for plasma 25(OH)D concentrations reported by chemiluminescent
immunoassay (CIA) and liquid chromatography–tandem mass spectrometry (LC–MS/MS).

Assay n Range (nmol/L) Mean (nmol/L) SD (nmol/L) Mean (SD) Difference
between Laboratories

Age: 3 months
CIA 69 18.00–97.00 72.16 28.81

LC–MS/MS
C3-epimer 69 9.30–183.80

2.40–33.00
74.79
11.11

27.43
7.40 +2.63 (19.35)

Age: 6 months
CIA 79 26.00–182.00 86.91 29.29

LC–MS/MS
C3-epimer 79 25.80–149.80

2.60–36.00
93.23
10.92

22.18
7.32 +6.32 (19.04)

Age: 12 months
CIA 73 42.00–167.00 76.19 21.83

LC–MS/MS
C3-epimer 73 36.00–125.60

1.80–16.20
76.62
4.53

18.19
2.56 +0.43 (15.71)

SD, standard deviation.

Table 2. Individual plasma 25(OH)D concentrations of infants with inconsistent measurements at the
cut-off point for vitamin D deficiency comparing CIA and LC–MS/MS data.

Age CIA (nmol/L) LC–MS/MS (nmol/L)

3
months

40 * 84.3 (9 ∧)
46 * 56.2 (3.6 ∧)
44 * 56.6 (6.9 ∧)
49 * 66.9 (15 ∧)
49 * 53.5 (2.6 ∧)
34 * 56.3 (5.3 ∧)
46 * 51.7 (4.3 ∧)
78 31.2 * (4.0 ∧)

102 40.9 * (3.4 ∧)
89 35.2 * (3.6 ∧)
87 44.8 * (2.4 ∧)

6
months

36 * 120.8 (2.7 ∧)
34 * 55.6 (4.4 ∧)
46 * 55.4 (3.8 ∧)
45 * 66.2 (4.8 ∧)
26 * 89.3 (10.6 ∧)

12
months

44 * 52.2 (2.4 ∧)
42 * 63.3 (3.0 ∧)

* Below the cut-off point for vitamin D deficiency (25(OH)D <50 nmol/L); ∧ including C3-epimeric form.

The Abbott CIA reported the sum of D2 and D3 metabolites. Using LC–MS/MS, we were able to
differentiate D2 and D3 metabolites, and this analysis consistently revealed 25(OH)D2 concentrations
of <3 nmol/L for each included sample.

There was good agreement between assays at three months of age (Bland–Altman bias =2.63,
correlation between difference and mean R = −0.076; Bradley–Blackwood F = 0.825; p = 0.443) (Figure 1)
but not at six months of age (Bland–Altman bias= 6.316; R = −0.40; F = 12.32; p < 0.001) (Figure 2).
There was agreement at 12 months of age (Bland–Altman bias= 0.433, R = −0.25; F = 2.41; p = 0.097)
(Figure 3).
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Figure 1. Comparison of 25(OH)D concentrations in paired samples at three months of age using two
different assays: (A) Bland–Altman plot; (B) Concordance analysis; 25(OH)D, 25-hydroxyvitamin D;
Lin’s correlation = 0.760 (0.659–0.860, p < 0.001).
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Mean 25(OH)D concentrations (nmol/L) of paired samples  
measured by LC-MS/MS and CIA 

73 pairs, 95% Limits Of Agreement 

Figure 2. Comparison of assays in paired samples at six months of age: (A) Difference between
two parallel analyses using Bland–Altman plots; (B) Concordance analysis; Lin’s correlation = 0.710
(0.610–0.810, p < 0.001).
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Figure 3. Comparison of assays in paired samples at 12 months of age: (A) Difference between
two parallel analyses using Bland–Altman plots; (B) Concordance analysis; Lin’s correlation = 0.694
(0.578–0.811, p < 0.001).

For each assay, we also determined the proportion of samples identified as below the cut-off point
for vitamin D deficiency (25(OH)D < 50 nmol/L). Seven (10%) of the three-month-old infants were
defined as vitamin D-deficient by CIA but not LC–MS/MS, and four (6%) were defined as deficient



Int. J. Environ. Res. Public Health 2020, 17, 412 8 of 12

by LC–MS/MS but not CIA (Table 2). Among the 6- and 12-month-old infants, five and two infants,
respectively, were deficient according to laboratory CIA but not LC–MS/MS. None of the 6- and
12-month-old infants were vitamin D-deficient according to LC–MS/MS. (Table 2).

4. Discussion

This study compared the two major 25(OH)D assays currently in use (immunoassay and
LC–MS/MS) for analysing plasma 25(OH)D concentrations in the same cohort of 3-, 6-, and 12-month-old
infants. We found that inter-assay variation differed by age. Overall, there was agreement at 3 and
12 months, but not at 6 months of age. On an individual basis, measurements around the cut-off

point for vitamin D deficiency (25(OH)D < 50 nmol/L) differed between assays. At three months of
age, 10% of the infants were defined as vitamin D-deficient by CIA but not LC–MS/MS, and 6% were
defined as deficient by LC–MS/MS but not CIA. Hence, such assay variability may lead to therapeutic
consequences for younger infants, including errors in the determination of the need and dose of
vitamin D supplementation to promote bone health.

Uniquely, we compared CIA and LC–MS/MS longitudinally in the first year of life and noticed
an age difference in assay variability which is supported by a European study in older children
and adults [6], suggesting that this finding may be influenced by age-related metabolic changes.
The observed age difference in assay variability in our cohort may also be impacted by the actual
25(OH)D concentration, as other studies have observed more agreement for lower than for higher
concentrations of 25(OH)D [24,38]. In our study, 25(OH)D concentrations were higher at 6 months
than at 3 and 12 months of age, which could be explained by nutritional factors, such as changing
from breastfeeding to vitamin D-enriched formulas. Further, vitamin D supplementation commenced
in some infants at three months of age due to low vitamin D status, which likely resulted in higher
plasma 25(OH)D concentrations at six months.

Potentially, it could be argued that the C3-epimer concentrations may have affected the outcome
of the comparison between the two assays. However, in our study, C3-epimer concentrations were
very similar at three and six months of age, although our results showed agreement between methods
at three months of age but not at six months of age. Furthermore, looking at CIA, cross reactivity
between 25(OH)D3 and the C3-epimer is known to be only minimal (1.3%). Hence, detection of the
C3-epimer would not explain the missing agreement between the two assays at six months of age.

While our results are consistent with those of the previous small (n = 10) South Australian study
on neonates [25], there are a number of points of distinction. Firstly, the South Australian study used an
enzyme immunoassay for comparison with LC–MS/MS, while we compared the more commonly used
CIA. Secondly, in the South Australian study, a capillary blood sample was collected for a newborn
screening test, while we used venous blood samples from older infants. Thirdly, we analysed plasma
25(OH)D concentrations at three different time points through the first year of life, while the South
Australian study only collected a single sample during the neonatal period. Hence, for the first time,
we were able to track inter-assay differences in infancy longitudinally.

Using blood samples from children aged 9–11 years, an Iranian paediatric study compared a
competitive protein-binding assay-based enzyme immunoassay (CPBA) with a high-pressure liquid
chromatography (HPLC) method for measuring 25(OH)D concentrations [39]. They found that CPBA
sensitivity and specificity were poor (44% and 61%, respectively) compared to HPLC. Although
the results of this study cannot be directly compared to ours (different assays, ages, ethnicity and
lower cut-off point for vitamin D deficiency at 12.5 nmol/L) [19,38], its findings nonetheless support
that vitamin D determinations in infants are influenced by the assay used. A recent German study
which includes children aged 1 to 17 years highlights how standardization has a substantial impact
on estimates of vitamin D status. The authors concluded that standardization of clinical, research
laboratory and commercial assays for 25(OH)D measurement is urgently required, supporting our
findings that until then, researchers and clinicians need to be aware of the problems when using
different assays [6].
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Studies in adults also demonstrate inter-assay variability [17,19,24,38,40]. Due to differences in
sample preparation and lack of standardization in calibration, there is also substantial variability
between the same assay type in different laboratories [13,19,25,41,42]. Substantial variation was even
observed using repeated measures of the same assay in the same laboratory [38].

Since accurate and reliable measures are essential for clinical indications for vitamin D
supplementation, assay variability may have an influence on clinical decisions. Correct clinical
decisions, while important at all ages, are particularly important in early childhood [43,44], a life stage
when optimal bone health is crucial for gross motor development. Furthermore, there is growing
evidence that vitamin D deficiency may have a long-lasting impact on immune and metabolic health.
This highlights the need for reliable and standardized measurements and, if required, adequate vitamin
D supplementation early in life [28]. Ideally, the same assay should be used longitudinally to monitor
treatment responses.

Assay variability may also impact on research, since the use of different assays hinders pooling of
results. A few randomized controlled trials have assessed the efficacy of daily drops of 400 IU vitamin
D in the first year of life. However, different assays were used to quantify 25(OH)D: CIA [30,45],
radioimmunoassay (RIA) [46] and LC–MS/MS [47], and only two of these studies referred to the use of
an external quality assessment system [30,47].

Although efforts have been made to standardize 25(OH)D measurements in research and clinical
settings [17,21,22,42], substantial variability in the measurement of 25(OH)D concentrations still occurs.
In these instances, harmonising results to international standards by reanalysing a relatively small
number of samples is suggested [24].

A strength of the present study is the analysis of sample pairs in the same cohort of infants at 3, 6
and 12 months of age. However, our study was a single-centre study with a limited number of analysed
samples; therefore, results may not be generalizable. The inherent limitations of vitamin D assays must
also be considered when comparing variability, including variations between and within methods
carried out in different laboratories, by different operators, or using different reagent kit batches.

5. Conclusions

We have shown that age in infancy influences the variability between commonly used assays for
measuring 25(OH)D concentrations. Physicians, researchers, laboratory technicians and authorities
need to be aware of the current limitations when interpreting and comparing vitamin D values derived
from different assays. Accurate measurement of circulating 25(OH)D concentrations is essential for
indicating the need for vitamin D supplementation, which is particularly important in pregnancy,
lactation and infancy, when optimal bone growth is of paramount importance. Reliable measurement
is also crucial for research and public health initiatives, particularly for estimating the prevalence of
vitamin D deficiency and for following participants longitudinally.
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