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ABSTRACT

Objective: Decentralized privacy-preserving predictive modeling enables multiple institutions to learn a more

generalizable model on healthcare or genomic data by sharing the partially trained models instead of patient-

level data, while avoiding risks such as single point of control. State-of-the-art blockchain-based methods

remove the “server” role but can be less accurate than models that rely on a server. Therefore, we aim at devel-

oping a general model sharing framework to preserve predictive correctness, mitigate the risks of a centralized

architecture, and compute the models in a fair way. Materials and Methods: We propose a framework that

includes both server and “client” roles to preserve correctness. We adopt a blockchain network to obtain the

benefits of decentralization, by alternating the roles for each site to ensure computational fairness. Also, we de-

veloped GloreChain (Grid Binary LOgistic REgression on Permissioned BlockChain) as a concrete example, and

compared it to a centralized algorithm on 3 healthcare or genomic datasets to evaluate predictive correctness,

number of learning iterations and execution time. Results: GloreChain performs exactly the same as the central-

ized method in terms of correctness and number of iterations. It inherits the advantages of blockchain, at the

cost of increased time to reach a consensus model. Discussion: Our framework is general or flexible and can

also address intrinsic challenges of blockchain networks. Further investigations will focus on higher-

dimensional datasets, additional use cases, privacy-preserving quality concerns, and ethical, legal, and social

implications. Conclusions: Our framework provides a promising potential for institutions to learn a predictive

model based on healthcare or genomic data in a privacy-preserving and decentralized way.

Key words: blockchain distributed ledger technology, privacy-preserving predictive modeling, batch machine learning, clinical

information systems, decision support systems

INTRODUCTION

Healthcare and genomics are some of the most important types of

data for cross-institution predictive modeling that estimates patient

outcomes by analyzing observed data and generating scientific evi-

dence using data from multiple institutions.1–13 Specifically, as the

volume of the shared healthcare or genomic data increases, the

“learned” model (ie, the parameters identified by the learning algo-

rithms) becomes more generalizable, thus improves the predictive

correctness for each of the participating institutions. Initiatives such

as ClinVar4,5 aim at the same goal and allow researchers to perform

case-based predictions.

To avoid potential risks of improper protected health informa-

tion (PHI) data disclosure in direct data sharing,6–11 several privacy-

preserving algorithms, such as GLORE12 and EXPLORER,13 have

been proposed to exchange only the model (ie, aggregated parame-

ters) but not the observation-level patient data. As shown in Figure

1A, such methods are mostly based on a centralized architecture (ie,

they require a central server as an intermediary) that includes 2
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Figure 1. Comparison of privacy-preserving learning methods. (A) Basic idea of learning on a centralized architecture (eg, GLORE). Each site computes its local

model and submits the model to the central server. The central server combines the models into a global one, and submits the models back to each site. This pro-

cess continues until the global model converges. (B) Types of attack related to a centralized architecture. The central server is taken over by an attacker during

the model learning process. The potential risks are as follows: (1) single point of control: because the attacker now controls the learning process, a site (s1 in this

example) may be assigned more computational work than the others; (2) mutable data/records: if the attacker submits a falsified or fabricated global model to a

site (eg, s2), no other sites can detect this misconduct, because the transparency about the models is limited; (3) change provenance: the attacker may change the

ownership of the local model submitted by a site (eg, s3) to another site (eg, s1); and (4) partial visibility: a site (s4) can only access its own local models and the

global models, and therefore cannot see the models from the other sites (s1, s2, and s3). (C) Basic idea of learning on a decentralized architecture (eg, GloreChain).

There is no central server. Instead, each site exchanges its models to improve the predictive correctness on a peer-to-peer blockchain network. (D) Reducing risks

by using a decentralized architecture. Site s1 is taken over by an attacker. The risks described in panel B can be mitigated as follows: (1) no single point of control:

although the attacker can change or even stop the computational work on site s1, the loading of the other sites cannot be easily raised because the learning pro-

cess is not controlled by s1; the attacker cannot overload any other site as would be the case in panel B; (2) immutable data or records: if the attacker who took

over s1 tries to submit a falsified or fabricated model to another site (eg, s2), all other sites (eg, s3 and s4) will receive the tampered model on the blockchain net-

work, and thus the probability of detecting such misconduct increases; (3) data provenance: the attacker cannot claim that a model generated by s3 came from s1,

because on a blockchain network the source of each model is recorded and is verifiable; and (4) complete visibility: a site (eg, s4) can easily see all models from

all sites, because on a blockchain network every site has a full copy of all models.
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roles: a central server (the “server” role) and multiple sites (the

“client” role). The server controls the learning process and combines

the models generated by the clients. An analog is the shared compu-

tation with people’s personal computers, such as the Fight AIDS @

Home project.14 Although these approaches preserve privacy during

the learning process, such a centralized architecture may be vulnera-

ble to attacks (Figure 1B) due to its single point of control, mutable

data or records, change provenance trail, and partial visibility.15–18

To mitigate these risks, one plausible idea is to adopt a decentral-

ized architecture, as shown in Figure 1C. Without a central server

(ie, no server role), the benefits of the decentralized solution include:

no single point of control, immutable data or records, ascertained

data provenance, and complete visibility (Figure 1D). Based on this

idea, recent studies such as ModelChain19 and ExplorerChain20 pro-

posed to combine privacy-preserving learning with the blockchain

technology,15–17,21–28 which is a distributed chain of transaction

blocks and has been proposed by many researchers for various

healthcare or genomic applications.18,29–60 ModelChain/Explorer-

Chain execute learning algorithms on the peer-to-peer permissioned

blockchain network (ie, participants are preauthorized) and utilize

the metadata of the transaction to disseminate the partially trained

models. In the design of ModelChain and ExplorerChain, the server

role is removed to achieve decentralization (Figure 2A). Without a

server role to oversee and combine the local models, ModelChain/

ExplorerChain are actually approximate methods to integrate the

learning algorithm with blockchain,20 and thus have reduced cor-

rectness when compared with centralized algorithms such as EX-

PLORER.12

Owing to the importance of the predictive correctness for cross-

institutional healthcare or genomic modeling, the inclusion of both

server and client roles can ensure the learning algorithm performs as

well as the centralized methods. On the other hand, the fairness of

the compute loads sharing should also be considered. That is, every

site should share the loads of acting as the server in a fair way. Such

fairness is important because the server site is responsible for the

combination of the partial models from all sites, and the combina-

tion process involves non-negligible computational costs and

thereby high energy consumption.

Objective
We sought to develop a general privacy-preserving predictive model

sharing framework that achieves 3 goals: (1) preserves the predictive

correctness, (2) mitigates the risks of a centralized architecture, and

(3) computes the models in a fair way, facilitating cross-institution

healthcare or genomic studies and quality improvement initiatives.

MATERIALS AND METHODS

In our proposed framework, to achieve the first goal of preserving

predictive correctness, every site serves as both a server and client

while computing the model (Figure 2B). With this approach, the

high level of correctness can be preserved because the learning pro-

cess is exactly the same as that of centralized learning. To achieve

the second goal of mitigating the risks of centralized architecture,

we adopt the peer-to-peer blockchain technology, and can thus in-

herit the benefits of blockchain (eg, no single point of control). To

achieve the third goal of computing the models in a fair way, we

propose to adopt the round-robin approach in which every site alter-

natively serves as server for each learning iteration, as shown in

Figure 3. This approach can avoid computational unfairness, such

as what happens when one or few sites acts significantly more times

as the server than the other sites. Note that permissioned blockchain

platforms such as MultiChain22,61 utilize the round-robin approach

as a fast and low computational cost consensus protocol to mitigate

the slow and high energy consumption of blockchain.

To examine our proposed blockchain-enabled fair compute

loads framework, we developed GloreChain (Grid Binary LOgistic

REgression on Permissioned BlockChain) as a concrete example.

The 3 main components of GloreChain—batch model learning,

blockchain data/network, and consensus learning algorithm—are

described sequentially in the following 3 subsections, followed by

the details of our implementation.

The GLORE batch model learning
There are 2 major types of privacy-preserving predictive modeling

algorithms. The first type includes online methods (eg, EX-

PLORER)12 that update the model using partial data sequentially

and focus on the efficiency of the retraining process (ie, when the

data are updated, the model does not need to be completely

retrained). The second type includes batch methods (eg, GLORE)13

that update the model using all data at the same time and focus on

learning a model that is exactly the same as the one trained by

“traditional” logistic regression (ie, disseminate all data to a single

server first and then perform learning).

Although our framework is general and can adopt both online

and batch methods while still being decentralized, for GloreChain,

we adopt the batch learning algorithm GLORE.13 This is because

we focus on obtaining a high-level of predictive correctness. GLORE

applies the Newton-Raphson method,62 and decomposes the deriva-

tives of the log-likelihood function to estimate model coefficients.13

We denote the client and the server parts of the learning algorithms

in GLORE as GLORE-Client and GLORE-Server, respectively.

The blockchain data and network
GloreChain utilizes the metadata of the transaction to disseminate

partially trained predictive models (ie, a set of aggregated numerical

coefficients or parameters) and relevant meta information. The de-

sign of GloreChain is shown in Figure 4. As shown in Figure 4A,

each transaction represents an action of a model, and stores the par-

tial model with meta information in the metadata of the transaction.

Table 1 describes the details of each data field stored in the metadata

of the transaction on the blockchain. Only partially trained models

are disseminated on-chain, and the observation-level patient data

are stored off-chain, to improve privacy protection. Also, there is no

transaction amount (ie, the coin value transferred within every

transaction is 0), and thus GloreChain takes advantage of only the

distributed data ledger but not of the cryptocurrency aspect of

blockchain.

Regarding the type of the underlying blockchain network, a per-

missioned one (ie, only permitted participants can join the network)

is suitable for GloreChain. We only store the aggregated partial

models on-chain, but a permissioned blockchain network provides

an additional layer of privacy protection. It should also be noted

that GloreChain provides nonfinancial incentives (ie, improved pre-

dictive power) instead of financial ones (ie, coins) for each partici-

pating site to contribute to the computation (eg, learning the

models, creating the blocks, and verifying the transactions). In a

complex network, however, not all sites participate in a study, so it

is important that all institutions (ie, nodes in the network) know
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how to build a model and are thus not dependent on a single institu-

tion to act as a “server.”

The Proof-of-Equity consensus learning algorithm
We designed a new algorithm, Proof of Equity (PoE), to determine a

fair order for each site to serve as the server in a round-robin way.

The PoE algorithm determines the order alphabetically using the

unique name or identifier that represents a site. Each site first sub-

mits to the blockchain its unique name or identifier (eg, “San Diego

Hospital” and “Davis Hospital”), and then every site retrieves the

names or identifiers from blockchain to determine the order, alpha-

betically (eg, “Davis Hospital” ! “San Diego Hospital”). Thereaf-

ter, the learning process starts, and each site follows the

predetermined order to serve as the server for each iteration, in a

round-robin way (eg, “Davis Hospital”! “San Diego Hospital”!
“Davis Hospital”! “San Diego Hospital”!. . .). This process con-

tinues until the model converges or the maximum number of learn-

ing iterations is reached. We then regard the final predictive model

as the consensus model.

A running example of the PoE algorithm is shown in Figure 5,

while the details are described in Algorithm 1 (the high-level PoE al-

gorithm in GloreChain). There are 4 hyperparameters in the algo-

rithm: the polling time period D, the waiting time period H, the

maximum iteration X, and the total number of participating sites N.

The size of the model (including mean and variance) is O(m2), where

m is the total number of covariates.

Figure 2. Comparison of the methods to integrate predictive modeling in a decentralized architecture. (A) Inclusion of only the “client” role to approximate model

learning. One of the sites (eg, s3) serves as a client at each learning iteration. (B) Inclusion of both client and “server” roles to perform exact model computation.

Every site serves as a “client,” and 1 of the sites (eg, s3) serves as the “server,” at each learning iteration.

Figure 3. An illustration of the alternating client-server method. At each learning iteration, 1 site (eg, s3, s2 and s1) serves as the “server” in an alternating manner.
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Algorithm 1
Input: The local data D, the polling time period D, the waiting time

period H, the maximum iteration X, and the total number of partici-

pating sites N.

Output: The consensus batch predictive model M.

Step 1. Submit an initial transaction to the blockchain.

Step 2. Check the blockchain every time D until the initial transac-

tions from all N sites are received, and determine the learning order

alphabetically using the unique name or identifier of each site.

Step 3. Wait for time H to let every site determine the learning order.

Step 4. Initialize the global model G by setting all coefficients to

zeroes.

A

B

Figure 4. The design of GloreChain. (A) The simplified blocks and transactions. The details of the data fields stored in the metadata of the transaction are de-

scribed in Table 1. (B) The implementation architecture of GloreChain, based on an 8-site configuration. The Blockchain-Connector is a software component we

programmed as an interface of the GloreChain and the underlying MultiChain blockchain platform. PHI: protected health information; VM: virtual machine.
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Step 5. Wait for time H to let every site initialize its global model.

Step 6. Loop until G converges or the maximum iteration X is

reached.

Step 6.1. Wait for time H, update the local model L using G

and local data D through the GLORE-Client learning algorithm,

and submit L to the blockchain.

Step 6.2. If this site is the next server site, check the blockchain

every time D until all N local models are received, update model G

using all local models received through the GLORE-Server learning

algorithm, and then submit G to the blockchain.

Step 6.3. If this site is not the next server site, check the block-

chain every time D until the next G is found.

Step 7. The consensus model is M¼G.

The implementation of GloreChain
The architecture of GloreChain is demonstrated in Figure 4B. Glore-

Chain, as well as the blockchain-connector and the two GLORE

components (ie, GLORE-Client and GLORE-Server, as introduced

in Section 3.1) were written in Java. The code of GLORE was refac-

tored to the application programming interface that can be called by

GloreChain, while the original modeling capabilities remained the

same. Note that PHI was only used to compute the local model (ie,

GLORE-Client) and was not disseminated to the blockchain net-

work.

Based on a recent survey of the blockchain platforms,66 we

adopted MultiChain22,61 in GloreChain, because (1) MultiChain is

based on the popular Bitcoin Blockchain25,67 and (2) MultiChain is

developed to serve as a general-purpose permissioned blockchain

network.20 We used its default parameters and consensus protocol

(ie, Mining Diversity)22,61 in our implementation. The computation

environment for GloreChain is the iDASH (integrating Data for

Analysis, Anonymization, and SHaring) cloud network,68,69 a pri-

vate cloud network compliant with requirements from the Health

Insurance Portability and Accountability Act. We simulated the mul-

tisite scenarios (2, 4, and 8 sites in our experiment) on iDASH vir-

tual machines (VMs). Each VM included 2 of Intel Xeon 2.30 GHz

CPUs, 8 GB of RAM, and 100GB of storage.

Datasets
We evaluated GloreChain on 3 healthcare or genomic test datasets,

and each of them had a binary outcome. First, the Edinburg (Edin)

dataset70 was used to predict whether myocardial infarction was

present, based on phenotyping features. Next, the cancer biomarkers

(CA) dataset71 was used to predict whether the cancer was present

based on biomarkers (ie, CA-19 and CA-125). Finally, the total hip

arthroplasty (THA) dataset20,72 was used to predict whether a

patient’s actual hospital length of stay was greater than the expected

length of stay (3 days) for the unilateral primary THA surgery at

University of California, San Diego (UCSD), based on various cova-

riates including demographics, osteoarthritis grade, surgical ap-

proach, and comorbidities. Table 2 summarizes the statistics of the

3 datasets.

These test datasets were used to evaluate privacy-preserving pre-

dictive models in the previous studies.12,13,20 For the THA dataset,

the Institutional Review Board at UCSD approved this research with

Project Number 171344X on February 9, 2018. Also, the Human

Research Protections Program at UCSD exempted the informed con-

sent requirement, because the THA dataset was defined as Health

Insurance Portability and Accountability Act de-identified and con-

tained no sensitive patient health information.

Experiment settings
The goal of our experiments was to evaluate whether GloreChain,

containing the alternating server and client roles, could in practice

provide the exact same predictive power as centralized methods,

Table 1. The on-chain data of GloreChain demonstrating an example of the transfer action of a model.

Field Description Possible Values Example

Model Mean The mean vector of the

GLORE partial model13

A numerical vector with its

length equals mþ 1

[�1.046593, �63.844112, 4.276981]

Model

Covariance

The variance-covariance matrix

of the GLORE partial model13

A numerical (mþ 1) x (mþ 1)

square symmetric matrix

[[1.413845, 43.833862, 22.948767],

[43.833862, 2985.832248, 720.785133],

[22.948767, 720.785133, 487.095031]]

Flag The type of action a

site has taken to the model

UNKNOWN, INITIALIZE, UPDATE,

TRANSFER, CONSENSUS, TEST,

CLEAR

TRANSFER

Result The value of the evaluation metric when

the learning process is complete

A numerical value between 0 and 1 0.921875

From Site The site that has submitted the model A unique name or identifier

representing the site

San Diego Hospital

To Site The site that will receive the model A unique name or identifier

representing the site

San Diego Hospital

Time The time that the site

submitted the model

A timestamp 2018–10–16 11: 29: 41

Iteration The current iteration

of the learning process

A non-negative integer 7

In this example, m¼ 2 is the number of the covariates in the dataset. The partial model of GLORE contains both Model Mean (eg, the mþ 1¼ 3-dimensional

vector) and Model Covariance (eg, the (mþ 1) x (mþ 1)¼ 3 x 3 matrix), while the final model is the consensus mean vector.13 The Flag is TRANSFER, represent-

ing the submission of a global model to the blockchain (in contrast to UPDATE, representing the submission of a local model). The Result indicates the value of

the evaluation metric for correctness (eg, the full area under the receiver operating characteristic curve).63–65 In this round, San Diego Hospital acts as the “server,”

and thus it is both the From Site and To Site. The Time field stands for the timestamp of the transaction, and the Iteration is the number of learning iterations
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while obtaining the benefits of the underlying decentralized block-

chain network. Therefore, we compared GloreChain with

GLORE,13 the state-of-the-art batch learning method, in our experi-

ments. The convergence criterion was set to 10�6 precision, the

same value described in Wu et al,13 for both methods.

The hyperparameters for GloreChain were configured as the

following: the polling time period D¼1 (second), the waiting time

period H¼30 (seconds), the maximum iteration X¼20, and the

total number of participating sites N¼2, 4, or 8. We selected the

time period hyperparameters D and H according to the learning

speed and the network latency based on a previous study.20 The

maximum iteration X was selected based on the average iteration

numbers for convergence (ie, 7 and 12 iterations for the Edin and

the CA datasets, respectively13) Also, we checked the latest N

transactions with the size of the transaction metadata >20 in the

PoE algorithm. Note that a waiting time was added in each itera-

tion for GLORE for the purpose of synchronization. We chose this

per-iteration waiting time in GLORE to be the same as the value

of H (ie, 30 seconds) in GloreChain, to retain the fairness of the

comparison.

We evenly and randomly split each dataset for the 2-, 4-, and 8-

site scenarios. For each site, the dataset was randomly divided into

80% and 20% training and the testing records, respectively. Note

that each training or testing dataset preserved a similar class distri-

bution as described in Table 2, and contained at least 1 positive and

1 negative record. The full area under the receiver-operating charac-

teristic curve (AUC)63–65 on the test datasets was adopted as our

evaluation measure. We used the averaged test AUC among all N

sites as the result for the predictive correctness.

We repeated the previously mentioned process (ie, data splitting,

model learning, and averaged test AUC computation) over 30 trials.

We also compared consensus iterations and the execution time of

GloreChain and GLORE. To collect the results, a pausing time of

240 seconds was added between each trial for both GloreChain and

GLORE, and this per-trial waiting time was deducted in the execu-

tion time computation. It should be noted that, for the N site config-

A B

C D

Figure 5. An example of the Proof-of-Equity (PoE) algorithm (ie, model consensus protocol). The notations are as follows: Is denotes the initial transaction on site

s for determining the order, Lis is the local model at iteration i on site s, and Gi is the global model in iteration i. (A) Order determination. Each site s first starts the

ordering process by submitting an initial transaction Is, which includes the unique name/identifier of the site (Los Angeles Hospital, Irvine Hospital, Davis Hospi-

tal, and San Diego Hospital in our example), to the blockchain. Then, each site collects the initial transactions from all sites, and then starts the checking process

by ordering the unique name or identifier in an alphabetical order (eg, Davis Hospital! Irvine Hospital! Los Angeles Hospital! San Diego Hospital, or s3! s2

! s1! s4). In this round-robin way, the same order is determined on each site (eg, s3! s2! s1! s4! s3! s2! s1! s4!. . .). (B) Initialization of the predictive

model. Next, each site starts to compute the initial local model (in local iteration 0), and submits its local model (ie, L0s on site s) to the blockchain. Then, based

on the predetermined order, the first “server” site (s3) computes the initial global model (in global iteration 0), and submits the global model (G0) to the block-

chain. Note that, every site serves as a “client,” while only s3 acts as the “server,” in this initial learning process. Therefore, sites s1, s2, and s4 do not perform

global model computation to avoid duplicated work and unnecessary energy consumption. (C) The first iteration. At iteration 1, each site first computes its local

model (ie, L1s on site s) based on the initial global model (G0), and submits L1s to the blockchain. Then, the next server site (s2) computes the global model (G1)

and submits G1 to the blockchain. Other sites (s1, s3, and s4) skip the global model computation and serve as clients only. (D) The final or consensus iteration. The

learning process repeats until a converged model is identified or the maximum number of iterations is reached. For the example shown in panel D, at iteration 7,

site s4 acts as the server, and after the global model computation it determines that the global model (G7) converged. That is, G7 is very close to G6, the global

model in the previous iteration, based on the convergence criterion (10�6 precision in our experiments). In this case, s4 submits this consensus predictive model

G7 to the blockchain, and the PoE algorithm is complete.
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uration, GLORE actually requires Nþ1 VMs (ie, N VMs for the

clients and 1 VM for the server), while GloreChain requires exactly

N VMs.

RESULTS

The comparison results for predictive correctness and number of

learning iterations are shown in Table 3. For both correctness and

iterations, the results of GloreChain are exactly the same as the ones

from GLORE. In general, the mean AUC, the standard deviation of

AUC, and the mean of the iterations remained stable in different sce-

narios (ie, 2, 4, and 8 sites) for the same dataset.

On the other hand, the standard deviations of an iteration in

some combinations of datasets and scenarios (ie, Edin for 8 sites,

and THA for 2, 4, and 8 sites) were relatively high. Therefore, we

further investigated the iterations per trial for each dataset and for

each scenario. As shown in Figure 6, 1 of the 30 trials for Edin and

the 8-site configuration reaches the maximum iteration X (ie, 20).

Also, for the THA dataset, most of the trials reach the maximum it-

eration, while some of the trials converged in 5 iterations. Although

increasing the maximum iteration X can potentially improve the pre-

dictive power, our goal is to evaluate whether GloreChain performs

exactly the same as GLORE in terms of correctness, instead of im-

proving the predictive power for each dataset. Also, current correct-

ness results are already comparable to ones shown in the previous

studies.12,13,20 Therefore, we kept the hyperparameter X as 20 in

our experiments.

Table 4 illustrates the total and the per-iteration execution time

results. GloreChain has higher total execution time when compared

with GLORE because of the additional time requirement of the PoE

algorithm to determine the learning order of the institutions at the

beginning of the modeling process, as described in Section 3.3. Also,

GloreChain had higher running time (about 3–8 times slower than

GLORE in terms of the per-iteration running time), because Glore-

Chain adopts a blockchain network and therefore incurs additional

time to create and synchronize the transactions and blocks.

GLORE used 3, 5, and 9 VMs for the 2-, 4-, and 8-site scenarios,

respectively, while GloreChain used exactly 2, 4 and 8 VMs for the

corresponding scenarios. Therefore, the actual difference of the ag-

gregated running time on all VMs is smaller. For example, the per-

iteration running time for the Edin dataset and the 2-site setting of

GLORE and GloreChain are 0.024 and 0.092, respectively (Glore-

Chain takes 4 times longer than GLORE). However, considering the

aggregated running time by multiplying the number of VMs (3 for

GLORE and 2 for GloreChain) in the same dataset and scenario,

GloreChain takes only 2.5 times longer than GLORE.

DISCUSSION

Based on the results, GloreChain, with its alternating server and cli-

ent roles, had exactly the same predictive power as well as number

of learning iterations when compared with GLORE. Additionally,

GloreChain possessed the advantages of adopting the blockchain

technology, such as no single point of control. The cost of inheriting

these additional benefits from blockchain technology was a slight in-

crease in execution time (including both running and synchroniza-

tion time) when compared with an equivalent approach that did not

use blockchain. This slight increase was minimal when compared

with what would have been the energy consumption if we had de-

cided to utilize the typical Proof-of-Work protocol25,67 that made

Bitcoin blockchain famous worldwide for promoting the use of com-

puter “farms” by block miners.73,74 We used instead a low energy-

consumption protocol (ie, Mining Diversity) that was sufficiently se-

cure to run GloreChain on a permissioned blockchain network (eg,

MultiChain).22,61 In fact, we used fewer machines to run Glore-

Chain than we would have used had we followed other approaches

(eg, GLORE) because the central server and its backups were not

needed due to the dis-intermediation and redundancy features pro-

vided by blockchain technology.

Although we adopted GLORE in GloreChain, the core privacy-

preserving learning can be replaced by any other centralized algo-

rithm. That is, our framework, containing both server and client

roles, provides a general and flexible framework that supports any

client-server–based algorithms. In related methods, such as those

used in ModelChain/ExplorerChain, the server is replaced by a con-

sensus algorithm to determine the learning order using model errors,

stored on-chain as a field in the metadata of the transaction.19,20

Therefore, ModelChain/ExplorerChain can only integrate online

Table 2. Statistics of the test datasets evaluated in our experiments,

including the percentage of the positive or negative classes

Dataset Edin CA THA

Description Myocardial

infarction

Cancer Length of

hospitalization

>3 days

Covariates 9 2 34

Observations 1253 141 960

Class Distribution

(Positive/

Negative)

0.219/0.781 0.638/0.362 0.278/0.722

Outcome Presence

of disease

Presence

of cancer

Hospital length of

stay for total hip

arthroplasty is

>3 days

The values for the myocardial infarction (Edin) and cancer biomarker (CA)

datasets are reproduced from Wang et al12 and the values for the length of

hospitalization (total hip arthroplasty [THA]) dataset are reproduced from

Kuo et al.20

Table 3. The predictive correctness and number of learning itera-

tions for the myocardial infarction (Edin), CA, and length of hospi-

talization (THA) datasets for the 2-, 4-, and 8-site scenarios

Dataset n Correctness (AUC) Number of Iterations

GLORE GloreChain GLORE GloreChain

Mean SD Mean SD Mean SD Mean SD

Edin 2 0.965 0.013 0.965 0.013 6.967 0.183 6.967 0.183

4 0.962 0.010 0.962 0.010 7.000 0.000 7.000 0.000

8 0.959 0.013 0.959 0.013 7.433 2.373 7.433 2.373

CA 2 0.893 0.054 0.893 0.054 11.633 0.49 11.633 0.490

4 0.866 0.071 0.866 0.071 11.833 0.379 11.833 0.379

8 0.900 0.058 0.900 0.058 11.800 0.407 11.800 0.407

THA 2 0.736 0.034 0.736 0.034 17.500 5.686 17.500 5.686

4 0.741 0.046 0.741 0.046 17.500 5.686 17.500 5.686

8 0.722 0.040 0.722 0.040 17.000 6.103 17.000 6.103

The evaluation metric for correctness is the averaged full AUC among N

sites for 30 trials.

AUC: area under the receiver-operating characteristic curve; CA: cancer

biomarkers; Edin: Edinburg; THA: total hip arthroplasty.
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learning algorithms with blockchain. GloreChain does not require

model errors to determine the order during the learning process,

and instead includes a field “Result” to store the value of AUC for

computing the overall predictive correctness results (Figure 4A and

Table 1).

The 3 intrinsic challenges of the blockchain networks18–20: trans-

parency or confidentiality, speed or scalability, and the threat of a

51% attack (ie, the blockchain network is taken over by the major-

ity of malicious nodes), are not critical for GloreChain because: (1)

GloreChain only disseminates partial models and not PHI on the

blockchain, and thus minimizes the risk of confidentiality breaches;

(2) the execution time of GloreChain is large (40–50 seconds per it-

eration) when compared with the transaction time of the underlying

blockchain platform (eg, 1000 transactions per second at a maxi-

mum for MultiChain),75 and the difference may be much larger for

the use cases on big data; and (3) GloreChain is based on a permis-

sioned blockchain network and the participating nodes are preau-

thorized, therefore mitigating the risk of a 51% attack.

In the PoE algorithm, we used the alphabetical order of the

unique site name or identifier to determine the next server site, and

more sophisticated methods may be applied so that the institutions

at the top of the order do not work more than others. For example,

a different order may be assigned every N iterations (eg, “s3! s2!
s1 ! s4,” followed by “s4 ! s1 ! s2 ! s3”). Although our method

is relatively simple, in the long run, the computational cost and en-

ergy consumption for each site can still be as “fair” as more

A

B

C

Figure 6. The pretrial iterations on the 3 scenarios (2, 4, and 8 sites) for each of the 30 trials, with the maximum iteration X set to 20. (A) Edinburg (Edin) dataset,

(B) cancer biomarkers (CA) dataset, (C) total hip arthroplasty (THA) dataset.

Table 4. The execution time (in seconds) for N sites in 30 trials.

Dataset n Overall Per Iteration

GLORE GloreChain GLORE GloreChain

Total Running Total Running Total Running Total Running

Edin 2 239.196 0.168 342.757 0.638 34.334 0.024 49.200 0.092

4 240.158 0.219 350.964 0.644 34.308 0.031 50.138 0.092

8 253.139 0.228 367.316 0.760 34.055 0.031 49.415 0.102

CA 2 379.094 0.178 488.326 0.717 32.587 0.015 41.976 0.062

4 385.145 0.182 505.684 0.774 32.547 0.015 42.734 0.065

8 384.121 0.192 509.440 0.856 32.553 0.016 43.173 0.073

THA 2 555.322 0.275 687.953 1.701 31.733 0.016 39.312 0.097

4 555.301 0.302 702.545 1.908 31.731 0.017 40.145 0.109

8 540.313 0.357 691.771 2.883 31.783 0.021 40.692 0.170

All measurements are in seconds and are averaged over N sites. The total time (ie, the “real” time in the Linux system) includes both running time (ie, the “user

þ sys” time in the Linux system) and synchronization time (ie, total minus running time). We divided the total time by the mean of iteration (as shown in Table 3)

to compute the per-iteration time. The additional per-trial pausing time (240 seconds) was deducted in the computation.

CA: cancer biomarkers; Edin: Edinburg; THA: total hip arthroplasty.
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complicated methods. Note that our framework is based on a

“semitrust” assumption, where every site would like to improve the

predictive correctness by sharing the aggregated partial model, but

might be “curious” about other sites. Moreover, we assume syntac-

tic and semantic interoperability for each site (ie, they adopted the

same data format, meaning, and standards).

Regarding the hyperparameters, the polling time period D
decides the balance of system responsiveness and network burden,

the waiting time period H determines execution speed while consid-

ering potential network latency, and the maximum iteration X rep-

resents the trade-off between predictive correctness and learning

efficiency. These hyperparameters can be adjusted based on the ac-

tual use case scenarios. Also, the size of the metadata of the transac-

tion is about 5KB for THA (ie, the largest dataset in our

experiment), and is way below the default size limit of MultiChain

(ie, 2 MB).

It should also be noted that, although we implemented Glore-

Chain based on MultiChain, the GloreChain framework itself is

platform independent, and can adopt other blockchain platforms

such as Ethereum76 or Hyperledger77 by changing the Blockchain-

Connector (as shown in Figure 4B). Finally, the deployment on the

iDASH private cloud compute environment also improved the secu-

rity level of the permissioned blockchain network.

Limitations
The limitations for this study are as follows: (1) our framework was

not evaluated on very high-dimensional datasets, which can create

large predictive models and therefore have impacts on the size of the

metadata of the transactions, the speed to disseminate partial mod-

els over the blockchain network, and the additional process to adjust

the hyperparameters; (2) several use case situations were not tested,

such as nonrepresentative samples, very different data distribution

among all sites, and low-quality models due to poor data; (3)

privacy-preserving concerns, such as those often raised by differen-

tial privacy advocates (ie, the potential privacy breach because of

the very small data size in some sites),78 were not fully studied; and

(4) more investigations about the potential ethical, legal, and social

implications arising from decentralized computer system access are

yet to be conducted.

CONCLUSION

By including both server and client roles in each learning iteration,

adopting blockchain as the underlying peer-to-peer network, and al-

ternating the roles for each site in a round-robin way, our proposed

framework preserves the prediction correctness, obtains the benefits

of decentralization, and ensures the computational fairness for pre-

dictive model building. GloreChain, an example of our framework,

demonstrates the capability to reach exactly the same predictive

power and number of learning iterations as the state-of-the-art cen-

tralized method. Considering the critical and sensitive nature of

healthcare or genomic data, the exchange of additional execution

time for benefits such as no single point of control may be consid-

ered attractive by some institutions. Although more evaluations and

refinements are warranted, our framework provides a promising po-

tential for multiple institutions to collaboratively learn a healthcare

or genomic predictive model in a privacy-preserving and decentral-

ized way, using blockchain platform that are maintained by a large

community of software developers worldwide, as opposed to custom

software.
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