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Although oral dental tissue is a vertebrate attribute, trunk dental tissue

evolved in several extinct vertebrate lineages but is rare among living

species. The question of which processes trigger dental-tissue formation in

the trunk remains open, and would shed light on odontogenesis evolution.

Extra-oral dental structures (odontodes) in the trunk are associated with

underlying dermal bony plates, leading us to ask whether the formation

of trunk bony plates is necessary for trunk odontodes to emerge. To address

this question, we focus on Loricarioidei: an extant, highly diverse group of

catfish whose species all have odontodes. We examined the location and

cover of odontodes and trunk dermal bony plates for all six loricarioid

families and 17 non-loricarioid catfish families for comparison. We inferred

the phylogeny of Loricarioidei using a new 10-gene dataset, eight time-

calibration points, and noise-reduction techniques. Based on this phylogeny,

we reconstructed the ancestral states of odontode and bony plate cover, and

find that trunk odontodes emerged before dermal bony plates in Loricarioi-

dei. Yet we discovered that when bony plates are absent, other surface bones

are always associated with odontodes, suggesting a link between osteogenic

and odontogenic developmental pathways, and indicating a remarkable

trunk odontogenic potential in Loricarioidei.
1. Introduction
A skeletal system formed by mineralized tissues is a major vertebrate inno-

vation that contributed to the evolutionary success of this lineage [1]. Dermal

bones and dental structures are important components of this skeletal system

and can be found, often in direct contact, in almost all extinct and extant

gnathostomes ( jawed vertebrates) [1–5]. However, while dermal bones have

formed part of the skeleton of both the head and the trunk throughout

vertebrate evolution, dental structures, although present in the body in some

extinct lineages, are found almost exclusively in the head in extant species.

The rarity of trunk dental tissue in extant vertebrates has been explained by

the reduced potential of neural crest (NC) cells in the trunk relative to their

potential in the head [6]. The NC is an ectodermal cell lineage exclusive to ver-

tebrates that is required for the production of a variety of cell types [7], dental

structures and some cranial bones [5,8]. Currently, there are two recognized

subpopulations of NC cells with different potentials and fates: cranial and

trunk NC cells [9]. Several studies have found that the trunk NC has a reduced

developmental potential relative to the cranial NC in vivo [10–12], and one

of the potentials presumed to be lost is that of producing bony and dental

structures [13,14].
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However, there are exceptional living vertebrate lineages

that have dental structures on their trunk. These extra-oral

dental structures are called odontodes, and they are virtually

indistinguishable from oral teeth at the structural level

(they contain dentine, enamel and a pulp cavity). Odontodes

were also an integral part of the dermal bony armour of

many lineages of extinct jawed and jawless vertebrates [15].

Interestingly, in both extinct and extant vertebrates, trunk

odontodes are always associated with an underlying

dermal bony plate. This general rule seems to apply to all

known lineages, and the few instances in which trunk odon-

todes are found without an underlying dermal bony plate are

cases in which these bony plates were secondarily reduced, as

in chondrichthyans (sharks and rays) [16].

These observations led us to investigate whether unlock-

ing odontogenesis in the trunk requires the pre-existence or

the concomitant emergence of dermal bony plates in the

trunk, even if the plates are later reduced or lost while

trunk odontodes are retained. A consistent pattern of evol-

utionary association between trunk dermal bony plates and

dental elements in fossil and extant lineages would suggest

an interplay between the activation of osteogenic gene

pathways and the potentialization of trunk tissues for odon-

togenic fates. If this were the case, we would expect that all

species with trunk odontodes would have ancestors with

trunk dermal bony plates with or without odontodes.

The catfish order (Teleostei: Siluriformes) provides a living

case study for addressing this question, as members of this line-

age possess both trunk dermal bony plates and trunk odontodes

in different combinations (figure 1). This order is organized into

three groups: the South American Diplomystidae family, the

globally distributed Siluroidei suborder and the South American

Loricarioidei suborder [17–20]. All species of Siluriformes lack

scales, and the assumed ancestral state of the order is naked

skin [21]. However, some groups within this order indepen-

dently evolved dermal bony plates that cover their bodies to

different degrees. While in most lineages these trunk dermal

bony plates are only composed of bone [22], within the Loricar-

ioidei suborder, these plates bear odontodes [23] (figure 1). These

odontodes seem to have different functions across species, and

they may be important in territorial disputes, provide better

hydrodynamics in rheophilic species and serve as protection

against predation in juveniles (personal observations). Loricar-

ioid odontodes have been studied in detail by other authors

[22,24–29], but these studies were focused on location and

structure in selected representatives.

The cover and location of both bony plates and odontodes

vary greatly from family to family in the Loricarioidei, with

some displaying complete cover of the body surface with

plates bearing odontodes and others lacking bony plates

altogether with odontodes on some fins only. Tracing the evol-

ution of these characters in the Loricarioidei phylogeny would

allow us to determine the pattern of trunk odontode emer-

gence, and through ancestral state reconstruction we can

infer whether the formation of these trunk odontodes was pre-

ceded by the emergence of trunk dermal bony plates in the

ancestor to all Loricarioidei. Answering this question using

an extant lineage in which trunk odontodes emerged relatively

recently, rather than using an extinct fossil lineage, provides us

with a more comprehensive view of the evolutionary paths

that led to the origination of these characteristics.

The reconstruction of ancestral traits requires a robust, time-

calibrated phylogeny and a precise knowledge of the character
states in the terminal extant taxa. The phylogenetic relationships

among loricarioid families have been addressed with both mor-

phological [17,19,24,30–32] and molecular data [18,33], but

there is conflict among the inferred hypotheses of relationships.

The published molecular studies used relatively small datasets

(one and two genes), and show signs of a lack of information

and phylogenetic artefacts that emerge due to substitution

saturation [18,33]. Because a robust phylogeny is required to

enable a realistic reconstruction of the ancestral condition of

the Loricarioidei, a more thorough analysis with a larger

molecular dataset must be conducted.

For this study, we first collected information on the presence

and location of trunk dermal bony plates and odontodes for all

loricarioid families and several outgroup catfish families. Then,

using representatives from the same groups, we produced a

new 11 188 bp multi-gene sequence dataset consisting of 10

genes sequenced in 47 taxa. We performed a thorough phylo-

genetic analysis of this dataset and confirmed old and

proposed new inter-familial arrangements within the Loricar-

ioidei. We dated the age of the families by time calibrating

the phylogeny using eight calibration points. Based on the char-

acter state information and the time-calibrated phylogeny, we

reconstructed the ancestral condition of trunk dermal bony

plates and odontodes in all inter-familial loricarioid ancestors,

and showed how these trunk skeletal and dental structures

were associated during Loricarioidei evolution.
2. Material and methods
(a) Taxon sampling and data collection
We studied all six families of Loricarioidei, with 17 other non-loricar-

ioid catfish families as outgroups. Within the outgroups, we

included all four siluriform families that are known to contain

species with dermal bony plates (without odontodes) on their trunk.

Our morphological scoring was based on the information

contained in the extensive literature on siluriform morphology,

and we confirmed the states with living or museum specimens,

when these were available. For trunk dermal bony plates, we

used a binary character to reflect the presence or absence of

dermal bony plates on the species in the family. In the literature,

a specimen is determined to have a bony plate when osseous

plates of dermal bone are found on the skin surface (e.g. [24]).

For odontodes, we plotted a four-state character to represent

odontode location: no odontodes (0), odontodes on the head

but not on the trunk (1), odontodes somewhere on the trunk

but not on the head (2), and odontodes on the head and on the

trunk (3). In the literature, odontodes are usually defined as

extra-oral structural elements that have a crown, a pulp cavity

and an attachment bone, and in which dentine can be observed

as an electron-dense mineralized tissue when observed with

transmission electron microscopy (e.g. [22,26]). Our unit of

analysis was the family; therefore, we coded the presence or

absence of a character at the family level (i.e. when the character

was present in at least one representative, it was coded as present

in the family). The museum specimens were provided by the

Museum of Natural History of Geneva (MNHG) (voucher num-

bers and reference numbers in electronic supplementary

material, table S1). For illustrative purposes, we also extracted

odontode-bearing tissues from representative species of each of

the six loricarioid families and did histological cryosections

and imaging using Nomarski interference contrast (methods in

electronic supplementary material).

The molecular dataset included 47 representatives of the 23

families from the morphological study, 21 from Loricarioidei
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Figure 1. Light microscopy images using Nomarski interference contrast of 8 mm thick histological cryosections of trunk odontodes in representatives from all six families
of Loricarioidei. (a) An odontode on a dermal bony plate of a representative of the Loricariidae family, Planiloricaria cryptodon. (b) An odontode on the caudal fin spine of a
member of Astroblepidae, Astroblepus sp. (c) An early odontode on a dermal bony plate of a juvenile from the Callichthyidae family, Corydoras sterbai. (d ) Three odontodes
growing on the interopercle bone of Tridensimilis brevis, a member of Trichomycteridae. (e) An odontode growing on a dermal bony plate from the ventral series of a
member of the Scoloplacidae family, Scoloplax sp. (f ) An odontode growing on the pectoral fin spine of the only member of the Nematogenyidae family, Nematogenys
inermis. The crown of each individual odontode is marked by a star, and the abbreviated terms are the following: pulp cavity ( pc), attachment bone (ab), dermal bony plate
(dbp), interopercle bone (iop), and fin spine (fs). Black spots in the images are from skin pigmentation.
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and 26 outgroups. DNA samples came from the DNA collection

of the MNHG (voucher numbers in the electronic supplementary

material, table S2). We used a total of 10 genes, four of which

were new genetic markers for inferring inter-familial relation-

ships in Siluriformes: the 28S large ribosomal subunit (LSU),

rhodopsin, fish reticulon 4 receptor-like 2a (rtn4rl2a) and peripla-

kin ( ppk). We also sequenced six markers that are frequently used

in fish phylogenetics (rag1, rag2, cytB, COI, 12S and 16S),

and, when available, we took sequences from GenBank. The

GenBank accession numbers for these sequences are in the

electronic supplementary material, table S3. Genes were ampli-

fied and sequenced following standard protocols (electronic
supplementary material, information and table S4). Missing

sequence data were encoded as question marks.

(b) Phylogenetic analyses
After checking the sequencing quality on the chromatograms, we

aligned by eye the sequences of all markers using BIOEDIT

v. 7.0.5.3 [34] and removed areas of ambiguous alignment. We

used MEGACC, the command line implementation of MEGA 7

[35,36], to calculate the best nucleotide substitution model for

each gene; for the six coding genes, we also calculated the best

amino acid substitution model.
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We concatenated the nucleotide sequences of all 10 genes,

producing the ‘DS1’ dataset. To determine whether substitution

saturation was affecting our inferences, we produced three more

versions of this alignment in which we employed increasingly

stringent substitution saturation-reduction techniques. In the first

instance, we translated all six protein-coding genes into amino

acids and kept the four ribosomal RNA genes as nucleotide

data, which resulted in a mixed data matrix referred to as ‘DS2’.

Translating codons reduces the effect of substitution saturation

due to multiple synonymous mutations [37]. For the other two

alignment versions, we used the translated protein-coding genes;

we then analysed the ribosomal RNA genes’ nucleotide data

with the baseml program of the PAML v. 4.7 package [38] under

10 gamma rate categories (GRC) to assign each site to one of the

10 GRC. We then removed the nucleotide sites of the RNA

genes that belonged to the fastest-evolving GRC (category 10;

5.4% of sites) to produce the next alignment, referred to as

‘DS3’, and the nucleotide sites that belonged to the two fastest-

evolving GRCs (categories 9 and 10; 10% of sites) to produce

the last alignment version, referred to as ‘DS4’. While removing

sites results in shorter alignments, these datasets contain less

phylogenetic noise due to substitution saturation and a lower

potential of containing misleading information [39].

We performed maximum-likelihood (ML) phylogenetic infer-

ences with RAXML v. 8.0.26 [40] and Bayesian inferences (BI)

with MRBAYES v. 3.2.6 [41], partitioning the data by gene. To

test node support in the ML inferences, we performed 1000 boot-

strap replicates for each analysis. The BI analyses were

performed with 4 chains, 20 million generations sampled every

100th generation and a burn-in of the 25% initial generations.

(c) Inferring the time-calibrated phylogeny
We produced a time-calibrated phylogeny based on the DS4

alignment (a mixed amino acid and nucleotide matrix with the

fast-evolving nucleotide sites belonging to GRC 9 and 10 removed)

using eight calibration points. Seven of these points were

previously published, and one of them is new in this study (elec-

tronic supplementary material, table S5). The new calibration

point determines the age of the most recent common ancestor

(MRCA) of the clade that includes the loricarioid families Scolopla-

cidae, Astroblepidae and Loricariidae at a maximum of 100 Mya.

This maximum age is based on the observation that all known

extant and fossil members of Loricarioidei are South American,

and given the large diversity and adaptability of this group,

their main radiation must have occurred after the separation of

South America and Africa (approx. 100 Ma [42,43]); otherwise, Lor-

icarioidei representatives would be present in Africa, which is not

the case according to current knowledge on extant and fossil

fishes. However, the internal branches within the most basal

groups of Loricarioidei are long and our taxon sampling is

not dense enough to determine when the diversification of the

species-rich Trichomycteridae and Callichthyidae families

occurred. Hence, a conservative way to include this information

was to place this calibration point after the emergence of the Tricho-

mycteridae and Callichthyidae and just before the diversification of

the Astroblepidae, Scoloplacidae and Loricariidae.

We set the oldest boundary of all the calibration points that

lacked a clear oldest possible age at 161.2 Ma, following the

maximum age constraint for the clade Otocephala (of which

Siluriformes forms part) employed by [44]. We then used

BEAUTI and BEAST v. 1.8.3 [45] to produce the time-calibrated

phylogeny (details in electronic supplementary material).

(d) Ancestral state reconstruction
We independently reconstructed the ancestral loricarioid con-

ditions for the presence of trunk dermal bony plates and of

odontodes on different parts of the body. We analysed each
character independently through ML using BAYESTRAITS v. 3.0

[46] based on our time-calibrated tree. All ML runs were repeated

10 000 times (parameter ‘MLT 10000’), and the ancestral state

for each family and inter-familial relationship was computed.

An in-house bash script parsed the BAYESTRAITS results, and

another in-house script in R [47], using the ape library [48],

plotted the probability of each state as a pie chart on each node

of the phylogeny.

We tested two models for the reconstruction of the ancestral

condition of odontodes in Loricarioidei. The first model, model 1,

assumes that the probability that the ancestral loricarioid gained

odontodes is the same if these structures emerged on the head

only, on the trunk only or on the full body ( p01 ¼ p02 ¼ p03).

In addition, this model assumes that the probability of losing

the odontodes, either located on the head only, on the trunk

only or on the full body, is equal as well ( p10 ¼ p20 ¼ p30).

Furthermore, all transitions between incomplete odontode

cover and a more complete cover are equally probable ( p23 ¼

p31 ¼ p32 ¼ p13). The second model, model 2, focuses more on

the emergence of trunk odontogenesis, and hence the probabil-

ities of gaining odontodes on the trunk are the same,

regardless of the initial state ( p02 ¼ p03 ¼ p12 ¼ p13). This model

also assumes that the probabilities of losing trunk odontodes

are the same, regardless of the final state ( p20 ¼ p30 ¼ p21 ¼ p31).

The model used for the inference of the ancestral state of

dermal bony plates assumes that the probabilities of gaining

and losing plates are independent.
3. Results
(a) Morphological characters
Based on the literature and our observations of living and

museum specimens, we assembled a character matrix for

the presence or absence of dermal bony plates on the trunk

in Siluriformes (figure 2; electronic supplementary material,

table S6). Trunk dermal bony plates can be found in several

lineages across the Siluriformes and, among the groups we

considered in this analysis, are present in the Amphiliidae,

Aspredinidae, Callichthyidae, Doradidae, Loricariidae,

Scoloplacidae and Sisoridae.

We also assembled a character matrix for the presence or

absence of odontodes and their location on the body

(figure 2; electronic supplementary material, table S6). Only

our group of interest, the Loricarioidei, have representatives

possessing odontodes (figure 1), but only a subset of loricar-

ioid families have odontodes on the trunk: the Astroblepidae

(figure 1b), Callichthyidae (figure 1c), Loricariidae (figure 1a),

Nematogenyidae (figure 1f ) and Scoloplacidae (figure 1e).

There is one loricarioid family without trunk odontodes,

the Trichomycteridae, in which the odontodes are restricted

to the opercle and interopercle bones of the head (figure 1d ).

When both character matrices are compared, different

combinations of both traits can be observed on the trunk:

only dermal bony plates in Amphiliidae, Aspredinidae, Dor-

adidae and Sisoridae; trunk dermal bony plates and trunk

odontodes in Callichthyidae, Loricariidae and Scoloplacidae;

and trunk odontodes but no trunk dermal bony plates in

Astroblepidae and Nematogenyidae.

(b) Loricarioidei phylogeny
To infer the phylogeny of the Loricarioidei, we generated a

10-gene sequence alignment of 11 188 nucleotide sites

(DS1), which contained a total of 21% missing data. The
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best substitution models according to the Bayesian infor-

mation criterion (BIC) are presented in the electronic

supplementary material, table S7 for all genes both in their

nucleotide and in their amino acid encoding.

The ML analysis of the first nucleotide dataset, DS1,

resulted in a topological arrangement in which the oldest

split separates a clade composed of the Trichomycteridae

and Callichthyidae families, and on the other side, a clade

composed of Nematogenyidae followed by the Scoloplacidae

and Astroblepidae families sister to Loricariidae (electronic

supplementary material, figure S1). However, the bootstrap

supports (BS) of almost all inter-familial relationships were

low (table 1). The ML and BI inferences differ in that the

latter showed the Nematogenyidae as the first group to
branch out in Loricarioidei, followed by Trichomycteridae,

then Callichthyidae, and finally the Scoloplacidae plus Astro-

blepidae families sister to Loricariidae, albeit also with low

posterior probabilities (PP) (electronic supplementary

material, figure S1). The grouping of the Callichthyidae and

Trichomycteridae families in the ML inference appears to

be the result of phylogenetic artefacts, as both groups have

very high substitution rates; based on previous knowledge

of these families, this relationship is highly unlikely (see

[49]). Indeed, with the second dataset, DS2, where the

coding nucleotide sequences were translated into amino

acids to reduce noise due to synonymous substitution satur-

ation, this relationship was not present, and both ML and BI

inferences agreed in the tree topology. A major change in this



Table 1. Summary of node supports for the monophyly of Loricarioidei and of interfamilial relationships through a series of datasets in which the causes of potential
phylogenetic signal saturation are progressively reduced. BS, bootstrap supports after 1000 bootstrap replicates; PP, Bayesian posterior probability after 20M generations;
n/r, clade not recovered. N, Nematogenyidae; T, Trichomycteridae; C, Callichthyidae; S, Scoloplacidae; A, Astroblepidae; L, Loricariidae. The last row shows the PP of each
clade based on our final, time-calibrated phylogeny as obtained with a 30M generation analysis with BEAST, based on the DS4 dataset and eight time-calibration points.

Loricarioidei N 1 T CSAL SAL S 1 A

BS PP BS PP BS PP BS PP BS PP

DS1 100 1 n/r n/r n/r 0.8 100 1 66 1

DS2 100 1 69 1 68 1 99 1 86 1

DS3 100 1 74 1 73 1 100 1 72 1

DS4 100 1 77 1 74 1 99 1 71 1

DS4 þ time cal. — 1 — 1 — 1 — 1 — 1
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new topology was the grouping of the Trichomycteridae with

the Nematogenyidae, with good statistical support (BS ¼ 69;

PP ¼ 1). In addition, the clade composed of Callichthyidae,

Scoloplacidae, Astroblepidae and Loricariidae (the CSAL

clade) went from not recovered in the ML analyses of DS1

to recovered with BS ¼ 68 with DS2, and in the BI analyses

from PP ¼ 0.83 with DS1 to a PP ¼ 1 with DS2 (table 1). Sup-

port for the clade grouping Astroblepidae and Scoloplacidae

also increased from a BS of 66 with DS1 to 86 with DS2 and a

PP of 0.96 to 1, respectively. For the DS3 dataset, in which the

GRCs of the fastest-evolving nucleotide sites were removed

to reduce a step further the phylogenetic noise due to substi-

tution saturation, the topology obtained was the same as with

DS2, and the statistical support for most of the inter-familial

relationships improved or remained high (table 1). The sole

exception was the BS for the clade grouping Astroblepidae

and Scoloplacidae, which exhibited a slight drop from 86 to

72, but the PP barely changed, from 1 to 0.99. The topology

did not change in the analysis of the DS4 dataset, in which

the next category of fast-evolving nucleotide sites of the ribo-

somal genes was additionally removed to further reduce

phylogenetic noise. Again, the support for all inter-familial

relationships either remained high or increased (table 1).

The best overall statistical node supports for inter-

familial loricarioid relationships were obtained with the DS4

dataset. In this phylogeny (electronic supplementary material,

figure S1), the Loricarioidei were monophyletic with BS¼ 100

and PP ¼ 1. The clade was organized as follows: Nematogenyi-

dae and Trichomycteridae clustered together (BS ¼ 77; PP ¼ 1)

and were sister to the CSAL clade (BS ¼ 74; PP ¼ 1). Within

the CSAL, the Callichthyidae was the first group to branch

out, followed by a clade composed of the Scoloplacidae, Astro-

blepidae and Loricariidae families (BS¼ 99; PP ¼ 1). This

group then divided into the Loricariidae family sister to a

clade including the Astroblepidae and Scoloplacidae (BS¼ 71;

PP ¼ 0.99). In addition, this phylogenetic arrangement of

Loricarioidei was confirmed, and the supports increased further

when the information of the time calibration points was added

to the phylogeny inference (see below).

(c) Time calibration of the phylogeny
The time-calibrated phylogeny showed the MRCA of Loricar-

ioidei at 123.8 Ma (figure 2; electronic supplementary

material, table S8). The split between the Nematogenyidae

and Trichomycteridae families was estimated at 114.0 Ma
and the split between the Callichthyidae and the clade

containing Loricariidae, Astroblepidae and Scoloplacidae

was estimated at 117.2 Ma. The Loricariidae split from the

clade including the Astroblepidae and Scoloplacidae at

97.4 Ma, and the Astroblepidae and Scoloplacidae families

split at 92.1 Ma. In addition, the MRCA of the Siluriformes

order was placed at 146.7 Ma, and the split between

the Diplomystidae family and the Siluroidei was at

approximately the same time (142.2 Ma).

The time calibration analysis also searches for the best

topology and uses the information of the calibration points

to make better inferences of the phylogeny. The consensus

topology within Loricarioidei after 25% data burn-in is iden-

tical to the one obtained with the same dataset with ML and

BI methods, and the statistical supports of all inter-familial

relationships within Loricarioidei increased to a maximum

(PP ¼ 1; table 1 and figure 2).

(d) Ancestral states reconstruction
The results from the reconstruction of the ancestral states of

trunk dermal bony plates and odontodes are summarized in

figure 2. Trunk dermal bony plates were not present in the

ancestor to all Loricarioidei (probability of absence ¼ 0.82).

This trait emerged later on, and is firmly present in the

MRCA of the CSAL clade (probability of presence ¼ 0.97)

and its descendants. However, dermal bony plates were prob-

ably lost in the MRCA of the Scoloplacidae and Astroblepidae

(probability of absence ¼ 0.80) and regained in the Scolo-

placidae family. In the outgroup, trunk dermal bony plates

emerged in the MRCA to the Doradidae, Auchenipteridae

and Aspredinidae (probability of presence ¼ 0.72), but were

presumably lost in the MRCA of the Doradidae and

Auchenipteridae families (probability of absence ¼ 0.74) and

regained in the Doradidae family. The other two siluroid

families with dermal bony plates, the Amphiliidae and the

Sisoridae, gained this trait independently.

Based on model 1 of odontode evolution, in which gain-

ing odontodes is equally probable regardless of the location

in which these odontodes emerge, the ancestor to all Loricar-

ioidei already had odontodes on its trunk. The probability of

this is 0.83, and includes the probabilities of the ancestor

having odontodes on both the head and trunk (0.66), and

only on the trunk (0.17). This finding agrees with the results

obtained with model 2 of odontode evolution, the model in

which the emergence of odontodes on the trunk had a
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distinct probability from the emergence of odontodes on the

head. Under model 2, the probability that the MRCA to all

Loricarioidei had odontodes on the trunk is 1, including the

probability of having odontodes on both head and trunk

(0.44), and the probability of having odontodes only on the

trunk (0.56).
ypublishing.org
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4. Discussion and conclusion
In this work, we studied the emergence of trunk dermal bony

plates and odontodes in the Loricarioidei suborder to test the

hypothesis that dermal bony plates are a necessary prerequi-

site for the activation of odontogenesis in the trunk. To this

end, we inferred a robust phylogenetic reconstruction based

on a new, 10-gene molecular dataset and on eight fossil

calibration points and then inferred the ancestral states of

these structures throughout the loricarioid tree.

(a) Inter-familial relationships within Loricarioidei
and ages of major splits

After mitigating the effects of phylogenetic noise by translat-

ing coding sequences, eliminating the fastest-evolving

nucleotide sites of non-protein-coding genes and adding

time calibration points to aid in the tree inference, we

obtained a phylogeny that organized the loricarioid families

as presented in figure 2. This arrangement has two notable

points: the recovery of a basal clade composed of the Tricho-

mycteridae plus Nematogenyidae families, and the recovery

of a sister clade to Loricariidae composed of the Scoloplaci-

dae plus Astroblepidae families. The first point is not

new in the field of siluriform phylogeny, as it has been pro-

posed several times based on morphological characters

[17,19,30,32,50], and once using molecular data, albeit with

very low support [51]. Despite this, the sister group relation-

ship between nematogenyids and trichomycterids has been

contested [18,30]. This discrepancy may be because phylo-

genetic artefacts due to signal saturation are masking the

true relationship. Indeed, we found the Nematogenyidae at

the root of Loricarioidei when analysing only nucleotide

data using BI (DS1, electronic supplementary material,

figure S1), and fast-evolving nucleotide sites are known to

saturate quickly [37]. Support for the sister grouping of

Nematogenyidae and Trichomycteridae becomes stronger

as noise due to saturation is reduced through the datasets,

from DS1 to DS4, and reaches a maximum of PP ¼ 1 when

the information of the time calibration points is added

(table 1; electronic supplementary material, figure S1).

Hence, we show here the first instance in which a consensus

is reached, with very high statistical support, between the

molecular and morphological phylogenetic hypotheses

regarding the relationship between these two families.

The second novelty in our phylogeny is the grouping of the

Scoloplacidae and Astroblepidae. This study is the only

instance in which this relationship has been found among

both molecular and morphological phylogenetic studies.

Other studies usually recover the Scoloplacidae as sister to a

clade that includes the Loricariidae and the Astroblepidae

(e.g. [18,19]), but we did not find significant support for this

relationship in any of our datasets (BS on DS1¼ 33, DS2 ¼ 7,

DS3 ¼ 13 and DS4 ¼ 8; table 1). In addition, support for the

new grouping proposed herein shows a tendency to improve

as phylogenetic noise is reduced, with a complementary
drop in support for the classical grouping of Loricariidae

with Astroblepidae, and when the time calibration information

is added to the phylogenetic inference, this support becomes

absolute (PP ¼ 1; table 1). This study is the first time that the

relationships among all loricarioid families have been studied

with more than two genes and with time calibration, and thus

this unexpected relationship represents the best molecular

hypothesis available to date for these families.

Importantly, our ancestral state reconstructions remain

valid even when considering previous phylogenetic hypoth-

eses such as an earlier-branching Nematogenyidae instead

of one grouped with Trichomycteridae or an Astroblepidae

grouped with Loricariidae instead of Scoloplacidae (see

electronic supplementary material).

To date, three ages have been proposed for the siluriform

MRCA, with Nakatani et al. [52] placing it at 180 Ma, Near

et al. [53] at 106.1 Ma and Chen et al. [44] at 97 Ma. Our

result of 146.7 Ma falls in the midpoint between these dates

(electronic supplementary material, table S8). As for the

MRCA to all Loricarioidei, Nakatani et al. [52] place it

at 162.1 Ma, while Near et al. [53] place it at approximately

90 Ma. We place the MRCA to all Loricarioidei at 123.8 Ma,

which is during the early stages of the separation of South

America and Africa [42,43].

Interestingly, there are large differences in species rich-

ness among Loricarioidei families that cannot be explained

by family age only, and perhaps may be linked to a selective

advantage of having a body protected by an exoskeleton (see

electronic supplementary material).

(b) Ancestral reconstruction of siluriform trunk dermal
bony plates and odontodes

Our results show that in Siluriformes, trunk odontodes

emerged before trunk dermal bony plates, as the MRCA of

all Loricarioidei had trunk odontodes but not such bony

plates. We also show that the loricarioid trunk odontodes

were gained and never lost in the approximately 120 million

years since the emergence of the clade. Trunk dermal bony

plates emerged later, and twice within the Loricarioidei: in

the MRCA of the CSAL clade, and then in the MRCA of

the Scoloplacidae family. Dermal bony plates also emerged

independently four times within Siluroidei. In the Loricarioi-

dei, the gain or loss of dermal bony plates did not seem to

have had an effect in the presence of trunk odontodes.

These results answer the initial question of this study and

provide evidence that the evolutionary emergence of an

underlying dermal bony plate was not a prerequisite for acti-

vating odontogenesis in the trunk of the ancestral loricarioid.

(c) Potential links between trunk odontogenesis
and underlying bone

When analysing loricarioid specimens, we noticed that, in

species without dermal bony plates, trunk odontodes still

grow in close association with other bony structures, such as

highly ossified fin spines, or fin rays (figure 1b,f ). In some

species of the Hypoptomatinae subfamily of the Loricariidae,

odontodes form directly on the exposed coracoid bone of the

pectoral girdle [54]. Interestingly, the type of ossification of

the bone underlying the odontodes does not seem to be of

importance, as dermal bony plates and fin rays ossify intra-

membranously, and the coracoid ossifies endochondrally
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[55]. In this sense, it seems that any underlying bone, not just

dermal bony plates, may be necessary to trigger odontogen-

esis in otherwise non-odontogenic trunk tissue. Indeed, the

osteogenic and odontogenic gene regulatory networks interact

and have elements in common [56–60], and some of the cues

used during bone formation may have played a role

in enabling the deployment of the odontogenic pathway in

the trunk of the ancestral loricarioid.

However, this potential morphogenetic interaction alone

does not entirely explain why the loricarioid trunk is capable

of producing dental structures. In addition to cues for odon-

tode formation, these regions must have an odontogenic

potential, which does not seem to be the case in most extant

vertebrate lineages, and indeed in other non-loricarioid

catfish. Knowing that dental structures have always been

associated with the contribution of the NC, we suggest that

the loricarioid trunk is populated by NC cells of uncertain

origin with a higher potency than those found in the trunk

of most current-day vertebrates.

What exactly is needed to unlock odontogenesis in the

vertebrate trunk is a question that can be approached from

both an evolutionary and a developmental perspective, and

having a living lineage as a case study allows the use

of a diversity of experimental tools that are not accessible

otherwise. Having access to living individuals and their

sequence data enables informative experiments of gene

expression or sequence data analysis that can clarify how

the loricarioid trunk is able to produce dental structures.

For example, studying gene expression throughout embryo-

nic development can reveal whether the odontogenic gene

pathway that is deployed to form loricarioid odontodes is

the same as the one that is deployed to form their oropharyn-

geal dentition, and can reveal the upstream genetic changes
leading to such a change. Locally blocking certain morpho-

gens that are crucial for bone formation could reveal

important interactions between the osteogenic regulatory

pathways and the activation of odontogenesis in the trunk.

In addition, lineage-tracing studies can identify exactly

which cells are producing trunk odontodes, and if there are

differences in the migration patterns of NC cells between

loricarioids and fish that do not form trunk odontodes.

There are many experimental possibilities, and our study

provides fundamental information to develop new hypo-

theses and guide future approaches for deciphering how

dental tissues can be formed in the usually forbidden body

region: the trunk.
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