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Abstract: Alzheimer’s disease (AD) is a degenerative brain disease with a high and irreversible
incidence. In recent years, because brain signals have complex nonlinear dynamics, there has been
growing interest in studying complex changes in the time series of brain signals in patients with AD.
We reviewed studies of complexity analyses of single-channel time series from electroencephalogram
(EEG), magnetoencephalogram (MEG), and functional magnetic resonance imaging (fMRI) in AD and
determined future research directions. A systematic literature search for 2000–2019 was performed
in the Web of Science and PubMed databases, resulting in 126 identified studies. Compared to
healthy individuals, the signals from AD patients have less complexity and more predictable
oscillations, which are found mainly in the left parietal, occipital, right frontal, and temporal regions.
This complexity is considered a potential biomarker for accurately responding to the functional
lesion in AD. The current review helps to reveal the patterns of dysfunction in the brains of patients
with AD and to investigate whether signal complexity can be used as a biomarker to accurately
respond to the functional lesion in AD. We proposed further studies in the signal complexities of AD
patients, including investigating the reliability of complexity algorithms and the spatial patterns of
signal complexity. In conclusion, the current review helps to better understand the complexity of
abnormalities in the AD brain and provide useful information for AD diagnosis.
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1. Introduction

Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative dementia and includes
a set of symptoms, such as memory loss and cognitive decline, that affect the ability to engage in
daily activities and processes, including attention, thinking, orientation, or language [1,2]. In AD
patients, proteins accumulate in the brain, forming amyloid plaques and neurofibrillary tangles,
which have been shown to be associated with local synaptic disruptions [3,4]. Eventually, AD leads to
the loss of connections between nerve cells, suggesting that AD is a disconnectivity disease. There are
currently two recognized predementia stages: subjective cognitive impairment (SCI) and mild cognitive
impairment (MCI) [5,6]. SCI refers to an individual’s main complaint of cognitive impairment with a
lack of objective evidence of cognitive impairment or pathology. In recent years, SCI has become a
hot topic in the research field of AD [5,7]. MCI increases the risk of and is an important risk factor for
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AD dementia, thus becoming an important target for early diagnosis of and intervention for AD [6].
Both SCI and MCI patients are at great risk of developing AD. Therefore, an in-depth understanding of
the mechanisms involved in the early diagnosis and effective treatment of AD is crucial.

Brain imaging analyses have been widely used to explore the mechanisms of AD [8–10] and
improve the accuracy of AD diagnosis [11,12]. Because the brain is a highly complex system and brain
signals have complex nonlinear dynamics, there has been increasing interest in complexity analyses
by using brain imaging data such as electroencephalograms (EEG), magnetoencephalogram (MEG),
and functional magnetic resonance imaging (fMRI) [13–15]. Most studies have analyzed brain signals
from a single channel, such as the signals from an electrode in EEG, a channel in MEG, or a voxel
in fMRI. Recently, the complexity of brain signals has been widely used to better understand the
complexity of abnormalities in the AD brain. Adequate study of brain imaging modalities provides an
opportunity to outline the mechanisms underlying AD and useful information for its diagnosis [16–18].
More recently, some studies have proposed that the levels of complexity are potential biomarkers for
identification in the early diagnosis of AD [19,20]. To date, there is no comprehensive review that
summarizes the different imaging modalities and explains the complexity of abnormalities in the
AD brain.

In the present review, we systematically examined 126 identified studies on the complexity of AD
from 2000 to 2019. We aim to review the complexity indexes that can accurately represent the functional
lesion in AD and outline the better complexity indicators. In addition, by analyzing changes in patients
through general trends and comparative studies of brain regions, we identified our knowledge gaps
as well as new issues for future research that can serve as a starting point for future applications of
complexity analysis for AD patients.

2. Methods

2.1. The Analysis of Complexity

Entropy (En) is one of the most commonly used nonlinear concepts in evaluating the dynamic
characteristics of signals [21]. This concept is an index of complexity analysis reflecting the degree
of system confusion in a time series. These methods combine the complexity of the signal with
its unpredictability: irregular signals are more complex than regular ones because they are more
unpredictable. Some researchers believe that these techniques can be used to analyze time series in
the time domain or frequency domain. In the time domain, entropy mainly reflects the changes in
time, and these analyses are constantly improving. Approximate entropy (ApEn) is an indicator of the
overall characteristics of the response signal from the point of view of the complexity of the signal.
It is useful for small datasets and is effective for discriminating the signal from random signals [22,23].
Then, this index was replaced by sample entropy (SampEn), introduced by Richman and Moorman [24].
The sample entropy algorithm does not include a comparison to its own data; it is the exact value of
the negative average natural logarithm of the conditional probability and has good consistency [25].
Fuzzy entropy (FuzzyEn) uses the exponential fuzzy similarity measure formula, which is more stable
than the sample entropy algorithm [26]. Permutation entropy (PeEn) is a method for measuring
nonstationary time series irregularities. PeEn considers only the grades of the samples but not their
metrics [27]. PeEn has certain advantages over the other commonly used entropy metrics, including
its simplicity, low computational complexity without further model assumptions, and robustness
in the presence of observations and dynamic noise [27,28]. It has been successfully applied to EEG
analyses and has been reported to be a good biomarker for distinguishing normal elderly individuals
from patients with MCI and AD [29,30]. However, these methods mostly consider features at a single
scale and can reflect only one aspect of the brain signal. Researchers have argued that multiscale
entropy-based approaches better reflect the gradual transition process from coarse-grained entropy to
fine-grained entropy, which can well reflect the complexity of biological signals on different time scales.
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Although they continue to be rigorous and widespread methods used in the analysis of the
frequency domain, linear decomposition methods, such as spectral analysis, have recently been
suggested to lead to a loss of unique information that is orthogonal to average activity [31,32].
Renyi entropy (ReEn) is a generalization of Shannon entropy (ShEn), collision entropy, and minimum
entropy, and it quantifies the diversity, uncertainty, or randomness of the system. Renyi entropy forms
the basis of the concept of generalized dimensionality [33,34]. Tsallis entropy (TsEn) is nonexpansive [35].
For a composite system composed of two independent subsystems, it is not a simple sum of the
entropy of two systems [36,37]. Spectral entropy (SpecEn) was developed to quantify the flatness of a
spectrum [36,38]. SpecEn characterizes the distribution of power spectral density (PSD) by assessing
disorder in the spectrum.

In addition to the entropy method, there are many other methods for assessing complexity, such
as the Hurst exponent (HE), the Lempel-Ziv complexity (LZC), the correlation dimension (D2), and the
fractal dimension (FD). The HE is mainly used to measure the long-term memory and fractal dimension
of a time series [39]. The LZC reconstructs the original time series into a binary sequence [40]. The D2
and the largest Lyapunov exponent (LLE) were the first nonlinear techniques applied to EEG and MEG
signals [41,42]. However, the calculation of D2 and LLE requires the signals to be stationary and long
enough [43,44], which cannot be achieved for physiological data [45,46]. The FD has proven to be
a reliable indicator for identifying healthy and pathological brains, and it can track changes in the
complexity of neuronal dynamics, which might be related to cognitive or perceptual impairments [47].
Higuchi’s fractal dimension (HFD) is a fast computational method for obtaining the FD of a time series
signal [48], even when very few data points are available. In addition, HFD provides a more accurate
way to measure signal complexity [49,50], and it has proven to be an effective way to distinguish
between AD patients and normal subjects.

Table 1 briefly introduces some widely used complexity methods. Although there are a large
number of methods to assess complexity, entropy is the most popular. There are some problems with
these methods, such as missing information, sensitivity to noise, and inaccurate results. The entropy
method is advantageous in that it requires only a small amount of analysis data, possesses a strong
anti-interference ability, and involves a simple algorithm. Different complexity analysis methods have
their own advantages and disadvantages, and in this paper summarize their use in the analysis of
brain signals acquired by different modalities in AD.
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Table 1. Summary of widely used complexity analysis methods.

Complexity Indices Abbreviations Year Description

Time domain
entropy

Approximate entropy ApEn Pincus (1991) [51]
Needs only a small dataset and is effective for
discriminating the signal from random signals. A
higher value indicates more irregularity.

Sample entropy SampEn Richman (2000) [52]
The exact value of the negative average natural
logarithm of the conditional probability. A higher
value indicates less predictable signals.

Permutation entropy PeEn Bandt (2002) [27]
Only considers the grades of the samples but not their
metrics. A higher value indicates a more irregular
signal.

Multiscale entropy MEn Costa (2005) [53] Can be observed at multiple different scales of signal
change.

Fuzzy entropy FuzzyEn Chen (2007) [54] Provides a mechanism for measuring the degree to
which a pattern belongs to a given class.

Frequency domain
entropy

Renyi entropy ReEn Renyi (1977) [55]
Forms the basis of the concept of generalized
dimensionality. If the Renyi entropy is high, the signal
has high complexity.

Spectral entropy SpecEn Powell (1979) [56]
Predictability according to an analysis of the spectral
content of a signal. A high value indicates a more
irregular and less predictable signal.

Tsallis entropy TsEn Tsallis (1998) [57] Explores the properties of a probability distribution
from a new mathematical framework.

Others

Hurst exponent HE Hurst (1951) [58] Used to measure the long-term memory and fractal
dimension of a time series.

Lempel-Ziv complexity LZC Lempel (1976) [59]
Reconstructs the original time series into a binary
sequence. A high value indicates a high variation in
the binary signal.

Correlation dimension D2 Grassberger (1983) [60]
The number of independent variables needed to
describe the time series dynamics after the time series
is transferred to chaos theory-based state space.

Fractal dimension FD Higuchi (1988) [61] It complements the chaos theory of the dynamic
system, showing the similarity with the whole.
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2.2. Literature Search

We examined the use of complexity techniques in the brain imaging of AD patients by performing
an overview of these studies. Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) [62] was used to identify studies and narrow the collection for this review. We performed
a search on Web of Science and PubMed using the following group of keywords: (“Complexity
analysis” OR “Nonlinear dynamical analysis” OR “Lempel-Ziv complexity” OR “fractal dimension”
OR “Hurst exponent” OR “entropy” OR “correlation dimension”) AND (“Alzheimer’s disease” OR
“Mild Cognitive Impairment” OR “Subjective Cognitive Impairment”). References from 2000 until 2019
were used for further analysis. As shown in Figure 1, after excluding unqualified studies, this review
narrowed the original count of 382 studies to the final count of 126 studies. Studies were divided into
three categories: EEG (64%), MEG (28%), and fMRI and functional near-infrared spectroscopy (fNIRS)
(7%) (Figure 2A). Various methods have been developed to examine the different types of brain imaging
modalities, so the current status of these studies will also be described in the corresponding sections
below. Unsurprisingly, EEG data are widely used in nonlinear analyses, accounting for 64% of all
identified studies (Figure 2A). The four most commonly used analysis methods in the reviewed articles
were time-domain entropy (TD-En), frequency-domain entropy (FD-En), LZC, and FD. The trends in
the number of different techniques used in these brain imaging studies are shown in Figure 2B.Entropy 2020, 20, x 5 of 21 
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3. Results

3.1. Complexity Analysis of EEG Signals in AD

A large number of nonlinear methods have been applied to analyze the characteristics of brain
activity in patients with AD, and numerous interesting results have been found. Since resting-state
data are not influenced by task-related activation or differences in motivation or performance,
these recordings provide more reliable estimates of brain adaptability [2,63]. Recordings of resting
brain activity and task-related recordings exhibit similar network dynamics [64,65], and resting states
often reflect the contribution of networks with the most metabolic activity [66]. The EEG signal has the
advantage of high time resolution [67], and we found that the signals have been mainly analyzed in
different frequency bands and from electrodes to reflect the variation in different signal values [68].

3.1.1. Complexity Analysis in Entropy

In this section, we review the signal complexity of the resting-state electroencephalogram (rsEEG)
in SCI, MCI, and AD patients compared with normal controls (NCs). Several studies have shown
that multiple complexity methods, such as LZC, entropy complexity, and other complexity features,
differ among SCI, MCI, AD, and control subjects when applied to EEG signals. Hogan et al. [69] found
that the entropy in MCI subjects was low. A recent study reported that in all channels, the complexity
values of the EEG signals from AD patients were shown to be below those from SCI patients. It has
been demonstrated that ApEn [70,71] and SampEn [72,73] in EEG signals are significantly reduced in
MCI and AD patients compared to healthy individuals [74,75]; Garn et al. used different methods [76]
to explore the complexity of EEG signals from AD patients and age-matched control subjects. In
recent years, studies have included LZC, distance-based LZC [77], ApEn, SampEn, multiscale sample
entropy (MSE), and FuzzyEn analyses [78]. Consistent results were found in the EEGs of patients
with AD, including a significant reduction in complexity at electrodes P3, P4, O1, and O2 placed over
the parietal, occipital, and temporal regions compared to healthy individuals. We found that at the
MCI stage, the medial temporal lobe, associated with short-term memory, is affected, and the lateral
temporal lobe and parietal lobe [79] are also affected. In the moderate stage of AD, the frontal lobe is
affected. During the severe stage of AD, the occipital lobe is affected [18]. Multiple entropy methods
have been used to study the brain states that develop in the transition from healthy conditions to AD.
Most of the studies have focused on particular areas in the brain. Figure 3 presents comparative values
of entropy shown over five regions in AD, MCI, and NC subjects. AD and MCI patients had lower
En values in the five regions (EnAD < EnMCI< EnControl), and significant differences were observed
among the frontal, temporal, and central regions. These results suggest that the EEG signals in the
brains of AD and MCI patients had significantly less complexity in the frontal, temporal, and central
regions than those in the NC subjects. Furthermore, AD patients exhibit the lowest complexity and the



Entropy 2020, 22, 239 7 of 22

greatest regularity. As expected, the complexity of the EEG signals gradually decreases with disease
development, especially when comparing NC subjects with patients with AD.

We think that the reduction in the irregularity or complexity of brain signals can be described
by a decrease in the dynamic complexity of the brain [80]. Our review demonstrated that aging
and age-dependent diseases are frequently accompanied by losses in a broad range of physiological
complexity or irregularity. A theory of discontinuous syndrome might explain the changes in AD:
plaques and cell death can lead to the loss of connectivity between cortical neurons, which may
lead to more regular brain signals (as recorded by cortical brain activity), thus destroying effective
communication throughout the brain and producing the range of commonly seen AD symptoms.
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3.1.2. Complexity Analysis in Multiscale Entropy

Entropy-based MSE analyses can measure the probability of sequences generating new information
at different scales and have been applied to cognitive neuroscience. Deng et al. [82] studied changes on a
1–8 scale using multiscale weighted permutation entropy and found that the entropy in AD patients was
decreased in the temporal, top, and right frontal occipital to the top and left occipital regions. Mizuno
et al. [83] and Chai et al. [84] found that in large-scale entropy, AD and MCI patients had higher entropy
than NCs. Studies [85] have shown that the variation in the complexity of EEG signals associated
with cognitive impairment may be inconsistent on different time scales. We normalized the results
of multiscale entropy and obtained the data presented in Figure 4. In the temporal, occipitoparietal,
and right frontal regions, differences were statistically significant between groups. The entropy values
on a 1–20 scale in each region in the AD, MCI, and NC groups are shown in Figure 4. On short scale
factors, the entropy in the NCs was greater than that in the MCI and AD patients. On long scale
factors, the entropy in the AD patients was greater than that in the MCI patients, and the entropy
in the MCI patients was greater than that in NC subjects. A recent study also found that, on short
time scales, compared to the NC group, the AD group and MCI group had lower values of entropy
and showed relative preservation of coarse-grained entropy and selective loss in fine-grained entropy.
This is consistent with studies that have found lower fine-grained entropy in AD patients than in
healthy older adults [86]. Perhaps these changes accompany the development of the disease from
its early stage to its relatively late stage. In this case, it may be a very useful quantitative biomarker
of risk. These multiscale temporal features appear to arise from functional interactions of neural
structural limitations.
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3.1.3. Complexity Analysis in Frequency Entropy

Alqazzaz et al. [87] found that spectral results showed that EEG activity was slower in patients
with AD and MCI. The SpecEn results showed that the frequency distribution of the power spectrum
changed. These findings confirmed results from previous studies: the EEG signals of patients with AD
and MCI gradually slowed down [76,88]. However, the physiological interpretation of all these changes
is uncertain. A more scientific hypothesis is that significant brain cholinergic deficits are the basis of
cognitive symptoms such as memory loss. The loss of neocortical cholinergic innervation in the modified
cortex plays a key role in the EEG signal decreases associated with AD [89]. Similarly, because the
cholinergic system regulates spontaneous cortical activity at low frequencies, this EEG signal decrease
may also be due to the loss of the neurotransmitter acetylcholine, leading to a slowing of neural
oscillations in AD. TsEn showed reductions in signal complexity in vascular dementia patients (AD)
and MCI patients. In particular, the TsEn method has been shown to be a more promising complexity
method for quantifying EEG changes [87,90]. Because of the speed of computation, it can serve as a
theoretical basis for decision support tools in the expert diagnosis of AD [91]. Waser et al. [17] used
the TsEn method to study differences between the EEGs of patients with AD and NCs and found
significant differences in the t7 and t8 channels. There are also a large number of studies that have
used multiple methods to explore complexity in AD. Al-Nuaimi et al. [78] found that for specific EEG
frequency bands and channels, the HFD and LZC values of AD patients were significantly reduced
compared to NCs. Coronel et al. [60] used automutual information (AMI), Shannon entropy, TsEn,
MSE, and SpecEn to analyze the severity of AD, and the results showed that reduced complexity
and AMI, SpecEn, and MSE values were associated with decreased Mini-Mental State Examination
(MMSE) scores.

It is generally believed that AD leads to a decrease in high-frequency (alpha, beta, and gamma) power
and an increase in low-frequency (delta and theta) power [92]. We averaged the values from five brain
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regions in each frequency band, resulting in the data presented in Figure 5. Figure 5 shows the differences
in the frequency domain among the AD, MCI, and NC groups. On the one hand, the En value in the
delta (δ), theta (θ) and gamma (γ) bands (EnAD > EnMCI> EnControl) significantly increased. On the other
hand, the En value in the alpha (α) band decreased (αEnMCI > αEnControl > αEnAD). Notably, αEnMCI
was significantly higher than αEncontrol. This result may be related to a compensatory mechanism in
patients with MCI during memory load and cognitive performance; for NCs, compensation is not
required, and for AD patients, compensation is no longer possible [93]. The value of βEn was lower in
the AD and MCI patients than in the NCs (βEnAD < βEnMCI < βEnControl).
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It has been reported that different frequency bands reflect different brain dynamics [94]. We found
that in applications for AD detection, the AD group showed lower complexity in different regions and
sub-bands than the control group. This may be because high-frequency oscillations originate from
short-range neural connections [95,96], while low-frequency oscillations include long-range neural
connections [93,97]. Hence, the abnormal neural connectivity in patients with AD may be related to
the abnormal complexity at different frequencies. Both the process of aging and the development of
dementia has been associated with these low-frequency band increases [96]. This is partly due to the
increasing local (rather than distributed) nature of the interactions between neuronal populations [98].

3.1.4. Complexity Analysis in Other Methods

Jeong et al. [99] found that in most EEG channels, AD patients had significantly lower FD values
than NCs. In the detection of dementia, previous studies used the FD of the correlation dimension
and HFD and found that the value of FD was lower in AD patients in the parietal and temporal
regions compared to NCs [16,100]. Amezquita-Sanchez et al. [101] used box dimension (BD), HFD,
Katz’s FD (KFD), and the integrated multiple signal classification and empirical wavelet transform
(MUSIC-EWT) to diagnose MCI and AD patients with an accuracy of 90.3%. Al-Nuaimi et al. [102]
studied HFD in EEGs for AD diagnosis, and they found that HFD is a promising EEG biomarker that
can capture changes in the areas of the brain that are initially affected by AD. McBride et al. [103]
researched complexity based on the LZC method to distinguish patients with early MCI (EMCI), AD,
and NC, and they found that the EEG complexity features of specific bands with regional electrical
activity provided promising results in distinguishing EMCI, AD, and NC. Liu et al. [77] used LZC
and multiscale LZC methods for analysis and found significant differences between groups in the
alpha-band in the parietal and occipital regions. Hornero et al. [74] used LZC to analyze EEGs and
MEGs in patients with AD and found that LZC provides good insight into the characteristics of EEG
background activity and the changes associated with AD. Through these studies, we found that the
HFD and LZC of the EEG are potentially good biomarkers of AD diagnosis, as they are significantly
lower in AD patients than in NCs.
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3.1.5. Identification of AD

In this section, Table 2 shows the sensitivity, specificity, and accuracy in differentiating among AD,
MCI, NC subjects were found with different nonlinear methods used in the EEG.

Table 2. Sensitivity, specificity, and accuracy in differentiating among AD, MCI, and normal control
(NC) subjects were found with different nonlinear methods used in the electroencephalogram (EEG)
database (NR represents that the paper does not give this value accurately).

Research Method Class Sensitivity Specificity Accuracy AUC

Sharma et al. (2019)
[88]

SpecEn + FD
NC vs. MCI 86% 81% 84.1% NR
MCI vs. AD 83% 63% 73.4% NR
NC vs. AD 82% 82% 82% NR

Chai et al. (2019) [84] MSE
NC vs. MCI NR NR NR 73%
NC vs. AD NR NR NR 81%

Fan et al. (2018) [104] MSE NC vs. AD 88.71% 69.09% 79.49% 83%

Houmani et al. (2018)
[105]

EpEn
(epoch-based

entropy)
SCI vs. AD 87.8% 100% 91.6% NR

Simons et al. (2018)
[75]

ApEn NC vs. AD 90.91% 63.64% 77.27% NR
SampEn 90.91% 63.64% 77.27% NR

Al-Nuaimi (2018) [78]

ApEn

NC vs. AD

72.73% 81.82% 77.27% 85.95%
SampEn 81.82% 72.73% 77.27% 85.95%

LZC 81.82% 81.82% 81.82% 89.26%
FuzzyEn 81.82% 90.91% 86.36% 86.78%

MSE 90.91% 90.91% 90.91% 93.39%
AMI 100% 81.82% 90.91% 93.39%

HFD 66.67% 100% 80% NR

Al-Qazzaz (2016) [87] TsEn
NC vs. AD

85.71% 84.62% 85% NR

LZC 100% 92.31% 95% NR

Liu et al. (2016) [77] LZC
NC vs. AD

80.0% 78.1% 78.5% 89.21%
MS_LZC

(multiscale_LZC) 86.8% 84.3% 85.7% 91.12%

3.2. Complexity Analysis of MEG in AD and MCI

In this section, we review the signal complexity of the MEGs in MCI and AD patients compared
with NC participants. The temporal resolution of MEG signals can reach the millisecond level,
and the spatial resolution can be less than 2 mm. We found that the research could be generally
divided based on the analysis of different brain regions to identify trends in these values. MEG is
a noninvasive technique that allows recording of the magnetic fields generated by brain neuronal
activity. MEG signals are independent of any reference point and are less affected by extracerebral
tissues than EEG signals [106,107].

3.2.1. Complexity Analysis in Domain Entropy

Gómez et al. [108,109] analyzed MEG complexity based on cross-approximate entropy,
which revealed decreases that indicated better synchronization in AD and MCI patients than in
NC subjects. Using the ApEn, SampEn, and FuzzyEn methods to analyze MEG signals at 148 locations,
it was found that the entropy in AD patients was lower than that in controls, suggesting that this
neurological disorder may be accompanied by a regular increase in MEG activity. Hornero et al. [86]
found that ApEn, SampEn, and MSE values in MEG data were lower in AD patients than in NCs.
Juan P et al. [110] found that all PeEn values in the MCI group were larger than those in the normal
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group. Azami et al. [111] used the FuzzyEn, SampEn, and PeEn methods, and a 148-megabyte channel
was analyzed to quantify the complexity of the signal. The FuzzyEn and SampEn values in AD patients
were lower than those in the controls. AD patients showed significantly lower values than MCI subjects
and NCs in almost all comparisons. Most studies have yielded information about the location of
similar brain regions. Gómez et al. [112] reported MSE profiles that represented the SampEn values of
each coarse-grained time series relative to the scale factor. Azami et al. [113] found that the values of
multiscale dispersion entropy (MDE), multiscale permutation entropy (MPE), and MSE in AD patients
were lower than those in NCs at short scale factors, while at long scale factors, the MDE and MSE
values from AD subject signals had higher values [112]. In contrast, the MPE values at long scale
factors were very similar for AD patients and NCs.

We found that most of the studies were divided based on the analysis of different brain regions
and were analyzed on different scales. At low scale factors, the entropy value in AD patients was
lower than that in NCs. For high scale factors, the values in AD patients were higher than those in
controls. Figure 6 shows data for each region, and we report the average entropy values computed
across the entire 1–20 scale factor range. In terms of the MEG signal, AD patients were reported to be
more regular, less complex and more predictable than the controls, and these results were consistent
with the EEG results [114].
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3.2.2. Complexity Analysis in Frequency Entropy

Nonlinear analysis of frequency has also been reported in MEG-based studies by SpecEn and
ratios. Poza et al. [115] studied the ratio of SpecEn (RSP). In the delta and theta bands, the RSP in
AD patients was significantly higher than that in controls. However, in the beta and gamma bands,
the RSP value was significantly lower in AD patients than in NCs. Regarding the spectral entropies,
the results showed a statistically significant decrease in the value in the MEG signal in AD patients
compared to NCs. Poza et al. [116] found that the spectral crest factor and both spectral turbulence
and wavelet turbulence in AD patients were higher than those in NCs, which indicated that in AD
patients, the oscillating signal was more regular. Bruner et al. [117] found that the SpecEn and TsEn
values in patients with MCI were significantly lower than those in controls in the right lateral region,
indicating a significant decrease in the irregularity of MEG signals in patients with MCI. All studies
have shown that AD patients had slower brain activity than controls, which was reflected in a higher
power in the lower frequency bands and lower power in the higher frequency bands.
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3.2.3. Complexity Analysis in Other Methods

Gómez et al. [118] researched MEG background activity from AD and NC subjects using HFD and
found that the value of HFD was less complex in AD patients, indicating an abnormal type of motility
in AD. Shumbayawonda et al. [119] used LZC to research MEG signals in three groups: NCs, patients
with subjective cognitive decline (SCD), and patients with MCI, and analyses were performed in theta,
alpha, beta, and gamma bands. It was found that the LZC value in MCI patients was significantly
lower than that in the control group and in SCD subjects, and the lower complexity was associated
with smaller hippocampal volume. Another study, combining age with LZC, found that AD patients
and controls showed a tendency of decreased LZC with age [120]. We found that both non-entropy
and entropy methods for assessing complexity achieve the same results, but entropy methods were
more widely used.

3.2.4. Identification of AD

In this section, Table 3 shows the sensitivity, specificity, and accuracy in differentiating among AD,
MCI, NC subjects were found with different nonlinear methods used in the MEG.

Table 3. Sensitivity, specificity, and accuracy in differentiating among AD, MCI, and NC subjects
were found with different nonlinear methods used in the magnetoencephalogram (MEG) database
(NR represents that the paper does not give this value accurately).

Research Method Class Sensitivity Specificity Accuracy AUC

Azami et al. (2016) [121] MFE (multiscale
fuzzy entropy) NC vs. AD NR NR 78.22% NR

Juan P. et al. (2016) [110] PeEn MCI vs. AD NR NR 98.4% NR

Escuderoa et al. (2015)
[122] MSE NC vs. AD 94.4% 46.2% NR 67%

Gómez et al. (2014) [109] SampEn NC vs. AD 80.00% 61.90% 70.73% NR
LZC 80.00% 76.19% 78.05% NR

Bruña et al. (2012) [117]

ShEn NC vs. AD NR NR 69.4% 79.0%
NC vs. MCI NR NR 65.9% 64.1%
MCI vs. AD NR NR 64.8% 69.1%

TsEn NC vs. AD NR NR 75.8% 85.6%
NC vs. MCI NR NR 61.4% 60.7%
MCI vs. AD NR NR 66.7% 75.6%

ReEn NC vs. AD NR NR 83.9% 89.0%
NC vs. MCI NR NR 63.6% 65.2%
MCI vs. AD NR NR 72.2% 78.5%

Poza et al. (2012) [123] SampEn NC vs. AD 88.9% 57.7% 75.8% 80.6%

Gómez et al. (2010) [124]

SampEn 77.78% 50.00% 66.13% 71.26%
ApEn 75.00% 53.85% 66.13% 73.82%
HFD 72.22% 73.08% 72.58% 79.11%
LZC 80.56% 61.54% 72.58% 78.63%
ShEn 91.67% 57.69% 77.42% 79.27%

Hornero et al. [74]
ApEn

NC vs. AD
75.0% 66.7% 70.7% NR

AMI 75.0% 90.5% 82.9% NR
LZC 85.0% 85.7% 85.4% NR

Gómez et al. (2007) [112] SampEn
NC vs. AD

80% 76.2% NR 84%
MSE 75% 100% NR 87.8%

Poza et al. (2008) [125] ShEn
NC vs. AD

85.0% 81.0% 82.9% NR
ReEn 90.0% 85.7% 87.8% NR

Hornero et al. (2008) [126]
ApEn

NC vs. AD
50.0% 52.4% 51.2% NR

LZC 65.0% 76.2% 70.7% NR
SpecEn 70.0% 76.2% 73.2% NR
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3.3. Complexity Analysis of fMRI and fNIRS Signals in AD and MCI

The fMRI uses magnetic array imaging [127,128], while fNIRS uses hemoglobin in blood vessels
to scatter near-infrared light [129,130]. In this section, we review signal complexity from fMRI and
fNIRS in MCI and AD patients compared with NCs. A few studies have reported that biomarkers from
fMRI and fNIRS signals, such as LZC, entropy, and other complexity characteristics, differ between
MCI, AD, and NC subjects.

The fMRI signals have been used to detect functional abnormalities associated with
neuropsychiatric and neurological disorders. Maxim et al. [131] applied the HE method to fMRI
signals, and they found that the values of signals in the white matter were lower than those in the gray
matter. Liu et al. reported that the complexity in certain brain regions (e.g., anterior cingulate gyrus
and left cuneus) was reduced in a study of resting-state fMRI (rs-fMRI) signal complexity in familial
AD patients [132]. Wang et al. [15] found significantly decreased PeEn values in the AD patient group
compared with the MCI group and the normal group. Compared with the NC group, the complexity
in the left wedge in the MCI group was also reduced. The complexity differences among the groups
were mainly observed in the temporal, occipital, and frontal lobes. We found that AD patients had
reduced mean whole-brain complexity in the gray matter and white matter compared to EMCI and
NC subjects. At the regional level, five clusters showed significant differences in En, as illustrated in
Figure 7. Niu et al. [133] extracted the average MSEs of the whole brain, gray matter, white matter,
and cerebrospinal fluid using corresponding masks on all time scales. Only the gray matter showed a
trend toward an entropy difference between the groups at scale factor six. Significant differences were
found between the groups at scale factors two, four, five, and six, as shown in Figure 8. A significant
difference was found in the right thalamus at scale factor two. A significant difference was found in
the left superior frontal gyrus at scale factor four. Two significant differences were found in the right
lingual gyrus and right insula at scale factor five. Five significant differences were found in the right
superior temporal gyrus, left middle temporal gyrus, right olfactory cortex, left inferior occipital gyrus,
and right supramarginal gyrus (SMG.R) at scale factor six. Grieder et al. [134] found that the AD group
showed a lower global default mode network (DMN)-MSE than the NC group. A scientific explanation
has been found for the reduced complexity of fMRI and fNIRS signals in AD. High regional functional
homogeneity leads to lower complexity, so more differentially affected brain regions are found at high
scale factors. Nerve cells are associated with complex dynamic processing in brain neural networks,
and neuronal cell death leads to the loss of connectivity to local neural networks. It may be the death
of neurons and the lack of neurotransmitters that lead to reduced irregularity in AD patients.Entropy 2020, 20, x 13 of 21 
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4. Discussion

Complexity methods applied to brain imaging data such as EEG, MEG and fMRI provide useful
information for the diagnosis of AD using abnormal brain activity signals. This review combines
previous findings with a larger overview and a further characterization of multiple modes for a better
understanding of the functional lesion in AD. For the complexity of the single-channel time series,
the development process of AD is clear and independent of the method used. The decline in AD
may be due to plaques and cell death leading to loss of connectivity between cortical neurons, which
may lead to more regular brain signals, thus destroying effective communication throughout the
brain [135,136]. Furthermore, for each part of the brain, the trend is not consistent [137]. This may be
related to the compensatory mechanisms that exist in the brain: when the synaptic structure slows
down less, new synapses can be established to fill the gap, to change the connection pathway and
establish connections with other regions or to increase the degree of added work, thus compensating
for the altered brain function compensate, which indicates that the complexity of the AD brain
changes [138,139]. The pattern of changes in this complexity is a good reflection of the pathological
progression of AD and shows that complexity can be used as a biomarker to measure AD.

Complexity methods are suitable for the study of nonlinear brain changes and are sensitive to
neurological changes associated with AD patients compared with normal subjects. The entropy method
accounts for a large proportion of the complexity methods used. Better performance was exhibited at
high scales, and when more brain regions were included in the analysis, the trends were more obvious.
The exploration of test–retest reliability and improvements in entropy algorithms will provide great
guidance for future applications. As the brain is a complex system in time and space, we can also
study network entropy and spatio-temporal entropy in the future. While fMRI has a spatial resolution
on the order of millimeters, only a small number of studies have applied complexity to fMRI data to
date. Although the time resolution is not very high, it also reacts well and has been used to identify
downward trends in different brain regions. It is also important to note that the potential utilization of
the high spatial resolution in fMRI and fNIRS data can provide more in-depth information for AD
brain dysfunction.

Complexity analysis of different types of brain imaging data in AD patients has yielded consistent
results. The results showed consistent changes in that the signals in the brains of AD patients are
slower, more regular, less complex, and less well organized than those of NCs. The reduction in the
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irregularity and complexity of brain signals in AD is the main finding obtained, and the occipital,
frontal, parietal, and temporal areas are the most affected regions. We found that complexity can capture
changes in areas of the brain that are initially affected by AD and accurately respond to its pathological
mechanism. Complexity is a promising biomarker in reflecting the pathological mechanism of AD,
and entropy is the more widely used of the numerous complexity indicators described in this review.
For which entropy index is the best, more research is needed in the future to prove it. In general,
different modalities for the same groups with large amounts of data were analyzed by choosing
methods with high reliability and accuracy, the results of which will aid in truly understanding the
functional lesion in AD. The results of the articles in this review can advance research on quantifying
the complexity indexes of different subjects until clinical application is realized.
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131. Maxim, V.; Şendur, L.; Fadili, J.; Suckling, J.; Gould, R.; Howard, R.; Bullmore, E. Fractional Gaussian noise,
functional MRI and Alzheimer’s disease. Neuroimage 2005, 25, 141–158. [CrossRef] [PubMed]

132. Liu, F.; Guo, W.; Liu, L.; Long, Z.; Ma, C.; Xue, Z.; Wang, Y.; Li, J.; Hu, M.; Zhang, J. Abnormal amplitude
low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: A
resting-state fMRI study. J. Affect. Disord. 2013, 146, 401–406. [CrossRef] [PubMed]

133. Niu, Y.; Wang, B.; Zhou, M.; Xue, J.; Shapour, H.; Cao, R.; Cui, X.; Wu, J.; Xiang, J. Dynamic Complexity
of Spontaneous Bold Activity in Alzheimer’s Disease and Mild Cognitive Impairment Using Multiscale
Entropy analysis. Front. Neurosci. 2018, 12, 677. [CrossRef] [PubMed]

134. Perpetuini, D.; Bucco, R.; Zito, M.; Merla, A. Study of memory deficit in Alzheimer’s disease by means of
complexity analysis of fNIRS signal. Neurophotonics 2017, 5, 011010. [CrossRef]

135. Coleman, P.; Federoff, H.; Kurlan, R. A focus on the synapse for neuroprotection in Alzheimer disease and
other dementias. Neurology 2004, 63, 1155–1162. [CrossRef]

136. Babiloni, C.; Del Percio, C.; Bordet, R.; Bourriez, J.-L.; Bentivoglio, M.; Payoux, P.; Derambure, P.;
Dix, S.; Infarinato, F.; Lizio, R. Effects of acetylcholinesterase inhibitors and memantine on resting-state
electroencephalographic rhythms in Alzheimer’s disease patients. Clin. Neurophysiol. 2013, 124, 837–850.
[CrossRef]

137. Hasegawa, M.; Morishima-Kawashima, M.; Takio, K.; Suzuki, M.; Titani, K.A.; Ihara, Y. Protein sequence and
mass spectrometric analyses of tau in the Alzheimer’s disease brain. J. Biol. Chem. 1992, 267, 17047–17054.

http://dx.doi.org/10.1016/j.medengphy.2008.06.010
http://www.ncbi.nlm.nih.gov/pubmed/18676171
http://dx.doi.org/10.1016/j.clinph.2019.11.023
http://www.ncbi.nlm.nih.gov/pubmed/31884374
http://dx.doi.org/10.1097/WAD.0b013e3181c727f7
http://www.ncbi.nlm.nih.gov/pubmed/20505435
http://dx.doi.org/10.1016/j.brainresbull.2015.05.001
http://dx.doi.org/10.1260/2040-2295.3.2.299
http://dx.doi.org/10.2174/1874120701004010223
http://dx.doi.org/10.1007/s10439-007-9402-y
http://dx.doi.org/10.1109/TBME.2008.919872
http://dx.doi.org/10.1523/JNEUROSCI.16-13-04207.1996
http://dx.doi.org/10.1109/MEMB.2006.1657788
http://www.ncbi.nlm.nih.gov/pubmed/16898659
http://dx.doi.org/10.1016/j.neuroimage.2012.03.049
http://www.ncbi.nlm.nih.gov/pubmed/22510258
http://dx.doi.org/10.1016/j.neuroimage.2004.10.044
http://www.ncbi.nlm.nih.gov/pubmed/15734351
http://dx.doi.org/10.1016/j.jad.2012.10.001
http://www.ncbi.nlm.nih.gov/pubmed/23116810
http://dx.doi.org/10.3389/fnins.2018.00677
http://www.ncbi.nlm.nih.gov/pubmed/30327587
http://dx.doi.org/10.1117/1.NPh.5.1.011010
http://dx.doi.org/10.1212/01.WNL.0000140626.48118.0A
http://dx.doi.org/10.1016/j.clinph.2012.09.017


Entropy 2020, 22, 239 22 of 22

138. Bondi, M.W.; Houston, W.S.; Eyler, L.T.; Brown, G.G. fMRI evidence of compensatory mechanisms in older
adults at genetic risk for Alzheimer disease. Neurology 2005, 64, 501–508. [CrossRef]

139. Beaunieux, H.; Eustache, F.; Busson, P.; De La Sayette, V.; Viader, F.; Desgranges, B. Cognitive procedural
learning in early Alzheimer’s disease: Impaired processes and compensatory mechanisms. J. Neuropsychol.
2012, 6, 31–42. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1212/01.WNL.0000150885.00929.7E
http://dx.doi.org/10.1111/j.1748-6653.2011.02002.x
http://www.ncbi.nlm.nih.gov/pubmed/22257534
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	The Analysis of Complexity 
	Literature Search 

	Results 
	Complexity Analysis of EEG Signals in AD 
	Complexity Analysis in Entropy 
	Complexity Analysis in Multiscale Entropy 
	Complexity Analysis in Frequency Entropy 
	Complexity Analysis in Other Methods 
	Identification of AD 

	Complexity Analysis of MEG in AD and MCI 
	Complexity Analysis in Domain Entropy 
	Complexity Analysis in Frequency Entropy 
	Complexity Analysis in Other Methods 
	Identification of AD 

	Complexity Analysis of fMRI and fNIRS Signals in AD and MCI 

	Discussion 
	References

