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Abstract

Predicting the population-level effects of an infectious disease intervention that incorporate

multiple modes of intervention is complicated by the joint non-linear dynamics of both infec-

tion transmission and the intervention itself. In this paper, we consider the sensitivity of

Dynamic Optimal Control Profiles (DOCPs) for the optimal joint investment in both a con-

tagiousness and susceptibility-based control of HIV to bio-behavioral, economic, and pro-

grammatic assumptions. The DOCP is calculated using recently developed numerical

algorithms that allow controls to be represented by a set of piecewise constant functions

that maintain a constant yearly budget. Our transmission model assumes multiple stages of

HIV infection corresponding to acute and chronic infection and both within- and between-

individual behavioral heterogeneity. We parameterize a baseline scenario from a longitudi-

nal study of sexual behavior in MSM and consider sensitivity of the DOCPs to deviations

from that baseline scenario. In the baseline scenario, the primary determinant of the domi-

nant control were programmatic factors, regardless of budget. In sensitivity analyses, the

qualitative aspects of the optimal control policy were often robust to significant deviation in

assumptions regarding transmission dynamics. In addition, we found several conditions in

which long-term joint investment in both interventions was optimal. Our results suggest that

modeling in the service of decision support for intervention design can improve population-

level effects of a limited set of economic resources. We found that economic and program-

matic factors were as important as the inherent transmission dynamics in determining popu-

lation-level intervention effects. Given our finding that the DOCPs were robust to alternative

biological and behavioral assumptions it may be possible to identify DOCPs even when the

data are not sufficient to identify a transmission model.
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Introduction

Infectious disease intervention effects play out across multiple scales: they protect a person

from transmitting or becoming infected at the individual-level, which has population-level

effects by decreasing the overall force of infection as a result of these individual-effects (i.e.,

herd immunity). Predicting the population-level effectiveness of an intervention is difficult

because population-level effects 1) are heterogeneous between populations, and 2) are hetero-

geneous within populations over time. While individual-level effects can be measured in

appropriate animal models and carefully designed trials [1,2], and subsequent population-level

effects can be predicted using mathematical modeling, intervention feasibility as it relates to

costs and logistics is also important to consider. For example, a hypothetical Human Immuno-

deficiency Virus (HIV) drug with 100% efficacy at clearing infection from an individual may

not be feasible due to prohibitive cost or availability. The joint non-linear dynamics of both

transmission and intervention coupled to budgetary and programmatic factors produce com-

plex patters of intervention effectiveness both within and between populations.

Discovering optimal mixtures of intervention strategies has been identified as a key aspect

of the program science paradigm for public health intervention [3,4]. As interventions are

rolled out, they are funded at specific levels, thereby determining intervention coverage after

accounting for intervention costs. Given two interventions, the relative funding level of each

intervention (and therefore the resulting levels of each intervention’s coverage) defines a spe-

cific control policy. When the control policy can change each year, the multi-year control pol-

icy is defined as the dynamic control policy. There are a very large number of potential

dynamic control policies over a multi-year period, which makes finding optimal control poli-

cies challenging. We recently developed a computational framework for computing Dynamic

Optimal Control Policies (DOCPs) [5] that are defined as the year-to-year relative investment

in alternative prevention strategies that minimize the number of incident cases over a specific

period. Our method makes several important advances in numerical optimal control that we

apply in this paper. First, we represent controls as year-to-year step-functions representing

funding of a specific intervention, which allows the control to be flexible in response to chang-

ing dynamics. We also consider the joint space of the controls over the entire period of interest.

For example, when we calculate the DOCP for 2 controls over a 50-year time frame, we opti-

mize over the full 100-dimentional space (1 parameter for each control for each year). This

allows us to take a very long view of optimal control while still accounting for both the effect of

the control on the system dynamics and the possibility of external changes to the system. We

show in this paper that our method can identify long-term trade-offs in different controls that

would be impossible to identify in short-term analyses. Second, we model the costs of not only

enrolling eligible individuals but also the cost of attempting to enroll people who are ineligible.

By doing so, we naturally penalize interventions that are dependent on enrolling hard to identify

people. Finally, our method obeys a strict, and not necessarily constant, budget in each year.

The methods we have developed and employed in this paper are based on the mathematics

of control theory that has been used to address epidemiological resource allocation problems

since the 1970s [6]. However, much of the research applying control theory to epidemiologic

problems has focused on purely theoretical concerns [7–9], calculated the optimal allocation

strategy for very general settings [10–16], or assumed a strong a priori form to the control

[17]. Studies where the underlying model and choice of parameters were tailored to a specific

setting [18,19] were less frequent than general studies. Our long-term goal is to provide a prag-

matic and rationale bridge between control theoretic methods and infectious disease policy.

We applied our method to a mathematical model of HIV transmission in a hypothetical

population of men who have sex with men (MSM) considering deviations from a baseline
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model along five axes representing different aspects of transmission dynamics. We consider

variable budget levels and alternative policy restrictions. We consider two interventions which

we refer to as controls: a contagiousness control parameterized to have costs similar to a Treat-

ment-as-Prevention (TasP) approach and a susceptibility control parameterized to have costs

similar to a Pre-Exposure Prophylaxis (PrEP).We found that qualitative aspects of DOCPs are

often robust to a range of modeling assumptions and that the optimal allocation of resources is

often determined by assumptions about the deployment of the intervention rather than the

biological and behavioral properties of the transmission system alone.

Materials and methods

Nomenclature

We use the terms study period, analytic horizon, and step size to reflect specific concepts defined

here for clarity. We define study period as the period of time over which the DOCP will be

reported. We define analytic horizon as the period over which the DOCP will be calculated. The

analytic horizon must by definition be longer than or equal to the study period. When the analytic

horizon is not much longer than the study period, artifacts may arise as the algorithm becomes

“shortsighted”. For example, if one control is very effective in the short-term but ineffective in the

long-term, it might be preferred as the end of the analytic horizon is approached. This artifact can

be avoided by having an analytic period much longer than the study period. We define step size as

the time between steps in the step function; the control policy is constant within a given step.

In the analyses that we report in this paper, the study period is 50 years, the analytic horizon

is 70 years, and the step size is 1 year. We selected the analytic horizon such that we believe it is

unlikely that we have any artifacts caused by shortsightedness; at no point is the algorithm cal-

culating the DOCP without looking at least 20 years into the future. We selected a study period

of one year to balance the temporal resolution of the control with the basic reality that policies

cannot be changed instantaneously.

Transmission model

We represented our model of MSM HIV transmission dynamics (Fig 1 and Table 1) as a set of

ordinary differential equations encompassing 9 states dividing individuals between susceptible

(S), infected (I), virally suppressed due to treatment (T), and protected susceptible due to sus-

ceptibility intervention (P). Individuals can also be high or low-risk (H and L subscripts

respectively) and infected individuals can be acutely or chronically infected (A and C sub-

scripts respectively). We indicate the risk-status as a subscript and state as a capital letter (e.g.,

IAH indicates the set of acutely infected, high-risk individuals). Mixing is assumed to follow the

“preferred” formulation from Jacquez et al22. This general model structure has been used to

study the interaction of acute-stage contagiousness, behavior variability, and the efficacy of

TasP as a public health intervention [5,22,23]. The system of equations is

_SH ¼ aH � ð�H þ rH þ mÞSH þ rLSL þ xP � uzPN

_SL ¼ aL � ð�L þ rL þ mÞSL þ rHðSH þ PÞ

_ICH ¼ dAIAH � ðrH þ mþ dC þ vbÞICH þ rLICL þ yTH � vzTHN

_ICL ¼ dAIAL � ðrL þ mþ dC þ vbÞICL þ rHICH þ yTL � vzTLN

Sensitivity of dynamic HIV prevention strategies
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_IAH ¼ �HSH � ðrH þ mþ dAÞIAH þ rLIAL

_IAL ¼ �LSL � ðrL þ mþ dAÞIAL þ rHIAH

_TH ¼ � ðyþ rH þ mÞTH þ vbICH þ rLTL þ uzTHN

_TL ¼ � ðyþ rL þ mÞTL þ vbICL þ rHTH þ uzTLN

_P ¼ � ðxþ rH þ mÞP þ vzPN

where ϕH and ϕL are the per-capita infection rate for high and low-risk susceptibles respec-

tively. To derive these quantities, we consider the total number of contacts made at a given

time

y ¼ lHNH þ lLNL

where

NH ¼ SH þ ICH þ IAH þ TH þ P

NL ¼ SL þ ICL þ IAL þ TL

N ¼ NH þ NL:

Fig 1. Illustration of the transmission model. The transmission model divides the population into 9 states (Treated High Risk, Treated Low Risk, Chronic High Risk,

Chronic Low Risk, Actue High Risk, Acute Low Risk, Susceptible High Risk, Susceptible Low Risk, and Protected) represented by boxes. Flows between states are

represented as arrows. Symbols represent rate coefficients and model parameters. The term ϕH and ϕL are complex terms involving both sexual mixing and contact rate

terms.

https://doi.org/10.1371/journal.pone.0204741.g001
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Then, the probability that a given random individual has a contact with a high and low-risk

individual at the common mixing site is

ZH ¼
lHNH

y
; ZL ¼

lLNL

y

respectively. Then, the probability of a transmission given a contact at the common site is

s ¼ bA ZH
IAH
NH
þ ZH

IAL
NL

� �

þ bC ZH
ICH
NH
þ ZL

ICL
NL

� �

:

Therefore, the per-capita rate of a high-risk susceptible becoming infected at the common

site is

tH ¼ ð1 � pÞlHs:

Table 1. Transmission model states and parameters.

Parameter/State Description Value Ref

SH Number of high-risk susceptibles state variable

SL Number of low-risk susceptibles state variable

IAH Number of high-risk acute infecteds state variable

IAL Number of low-risk acute infecteds state variable

ICH Number of high-risk chronic infecteds state variable

ICL Number of low-risk chronic infecteds state variable

TH Number of high-risk treated persons state variable

TL Number of low-risk treated persons state variable

P Number of people on PrEP state variable

αH Entry rate into high-risk category 250

αL Entry rate into low-risk category 28

λH High-risk contract rate 7.92 � λL [20]

λL Low-risk contract rate fit

βA Acute probability of transmission varied [21]

βC Chronic probability of transmission 0.01 assumption

ρH Rate from high to low-risk state ρL � 9−1 assumption

ρL Rate from low to high-risk state varied

π Proportion of contacts made at risk-specific site varied

δA Progression from acute to chronic stage 4−1 assumption

δC Progression from chronic-stage to death 116−1 assumption

μ Removal rate (30 � 12)−1 assumption

zG Probability of sampling someone in state G derived see below

ϕH Force of infection for high-risk susceptibles derived see below

ϕL Force of infection for low-risk susceptibles derived see below

vb Baseline rate of treatment fit

x Rate PrEP is stopped varied assumption

y Rate TasP is stopped 0 assumption

u PrEP control rate fit

v TasP control rate fit

https://doi.org/10.1371/journal.pone.0204741.t001
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At the preferred mixing site the per-capita transmission rate for high-risk susceptibles

becoming infected is

cH ¼ plH bA
IAH
NL
þ bC

ICH
NH

� �

:

Therefore ϕH = τH + ψH. The derivation of ϕL proceeds in the same manor but with sub-

scripts corresponding to the low-risk state variables.

The model parameters can be interpreted in the following way: δA is the rate that acutely

infected persons become chronic infected, δC is the rate that chronically infected persons are

removed due to AIDS, βA is the per-act probability of transmission with an acute infected per-

son, βC is the per-act probability of transmission with a chronic infected person, π is the proba-

bility that a contact occurs at the preferred mixing site, λH is the contact rate of high-risk

persons, λL is the contact rate of low-risk persons, x is the rate at which the susceptibility con-

trol fails, y is the rate at which the infectiousness control fails, μ is the general removal rate, ρH
is the rate that high-risk persons become low-risk, and ρL is the rate that low-risk persons

become high-risk.

Intervention model eligibility and duration

We model two interventions that have either contagiousness or susceptibility effects. The con-

tagiousness intervention costs are parameterized to emulate Treatment-as-Prevention (TasP)

and the susceptibility intervention costs are parameterized to emulate Pre-Exposure Prophy-

laxis (PrEP). We assumed that intervention enrollment occurs at a venue that is enriched for

high-risk individuals (4-fold increased probability of finding high-risk individuals by random

chance compared to the general population). Individuals are selected at random and tested for

HIV infection. High-risk susceptibles are eligible for PrEP and infected but unware individuals

are eligible for TasP. The intervention model accounts for both the probability distribution of

states in the high-risk venue and the differential costs of attempting to enroll different people

in each intervention. We assumed that all at-risk persons are potentially enrollable, no one

refuses to be tested or treated, and individuals are fully compliant once enrolled. We consid-

ered two durations of PrEP administration: either 1 year (“1-Year PrEP”) or for the duration

of the high-risk period (“Unlimited PrEP”). At the end of a high-risk interval we assumed that

PrEP is discontinued.

Intervention model eligibility and duration

We model two interventions that have either contagiousness or susceptibility effects. The con-

tagiousness intervention costs are parameterized to emulate Treatment-as-Prevention (TasP)

and the susceptibility intervention costs are parameterized to emulate Pre-Exposure Prophy-

laxis (PrEP). We assumed that intervention enrollment occurs at a venue that is enriched for

high-risk individuals (4-fold increased probability of finding high-risk individuals by random

chance compared to the general population). Individuals are selected at random and tested for

HIV infection. High-risk susceptibles are eligible for PrEP and infected but unware individuals

are eligible for TasP. The intervention model accounts for both the probability distribution of

states in the high-risk venue and the differential costs of attempting to enroll different people

in each intervention. We assumed that all at-risk persons are potentially enrollable, no one

refuses to be tested or treated, and individuals are fully compliant once enrolled. We consid-

ered two durations of PrEP administration: either 1 year (“1-Year PrEP”) or for the duration

of the high-risk period (“Unlimited PrEP”). At the end of a high-risk interval we assumed that

PrEP is discontinued.
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The cost function takes the form

X

G2G

kðeÞT ðGÞPðGjHREÞNðtÞvðtÞ þ
X

G2G

kðeÞP ðGÞPðGjHREÞNðtÞuðtÞ;

where Γ = {SH,SL,AH,AL,CH,CL,TH,TL,P} is the set of all possible states that a potential enrollee

can be in. This equation states that the per-person cost for attempting to enroll N(t)v(t) and N
(t)u(t) people into TasP and PrEP, respectively, is the per-person cost for that category of per-

son for the TasP and PrEP interventions, kðeÞT ðGÞ and kðeÞP ðGÞ, respectively, times the probability

of finding that type of person at the intervention venue, P(G|HRE)—this term is called zG for

simplicity in the model equations; the term HRE simply refers to the fact that the intervention

is assumed to be taking place in a High-Risk Environment. Because we assume that the inter-

vention attempts to enroll people at random, we can define the term P(G|HRE) as the relative

frequency of each type of person in the high-risk environment. The final relevant term is the

odds ratio of finding a high-risk person in the high-risk environment, which we refer to as rb.
Splitting the set of states into the high-risk set, ΓH = {SH,AH,CH,TH,P}, and the low-risk set,

ΓL = {SL,AL,CL,TL}, we can now write down an explicit form for P(G|HRE):

P GHjHREð Þ ¼
PðHREjGHÞPðGHÞ

PðHREÞ
¼

pH
GH
N

pH
NH
N þ pL

NL
N

¼
rbGH

rbNH þ NL
; 8GH 2 GH;

and

P GLjHREð Þ ¼
PðHREjGLÞPðGLÞ

PðHREÞ
¼

pL
GL
N

pH
NH
N þ pL

NL
N

¼
GL

rbNH þ NL
; 8GL 2 GL:

Finally, to define the cost of attempting to enroll someone we need to define the 18 possible

combinations of the 2 interventions and the 9 possible states that a person can be in. To

account for each possibility we break each case down into the associated costs for each encoun-

ter as a sum of the structural costs and the specific costs of laboratory tests for each case. We

assume that there is a general structural cost of setting up the interview that applies to all

encounters, A = 267 [24], and specific costs associated with a positive rapid test, L1P = 92 [25];

a negative rapid test, L1N = 21[25]; a positive immunoassay, L2P = 69[25]; and a negative

immunoassay, L2N = 10 [25]. Table 2 gives the values of the per enrollment costs and the

assumptions that we used in obtaining those numbers. All costs were adjusted to 2010 USD

Table 2. Cost function parameters. Includes the following costs, structural cost of an interview A = 267, positive

rapid test L1P = 92, negative rapid test L1N = 21, positive immunoassay L2P = 69, and negative immunoassay

L2N = 10.

Target, G PrEP cost – kðeÞP ðGÞ TasP cost – kðeÞT ðGÞ
SH A+L1N+L2N (369) A+L1N (288)

SL A (267) A+L1N (288)

AH A+L1P (359) A+L1P+L2P (482)

AL A+L1P (359) A+L1P+L2P (482)

CH A+L1P (359) A+L1P+L2P (482)

CL A+L1P (359) A+L1P+L2P (482)

TH A (267) A (267)

TL A (267) A (267)

P A (267) A (267)

https://doi.org/10.1371/journal.pone.0204741.t002
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values; the structural costs were assumed to follow general inflation while the medical costs

increased by the medical inflation index.

Integrating in the costs of ongoing treatment, we have the final cost function in terms of the

TasP and PrEP controls

Vðv; uÞ ¼
ZT

0

kTðTHðtÞ þ TLðtÞÞ þ kPPðtÞ þ
X

G2G

kðeÞT ðGÞPðGjHREÞNðtÞuTðtÞ

þ
X

G2G

kðeÞP ðGÞPðGjHREÞNðtÞuPðtÞ dt

where kP = 846 is the monthly cost of PrEP [26] and kT = 1942 is the monthly cost of TasP

[27].

Transmission model parameterization

The baseline model was parameterized according to previous work [20]. In that paper contact

rates were found to be Gamma distributed with mean 1.75 and standard deviation 2.67. We

assumed that 10% of the infection-free population is high-risk and therefore fixed the ratio of

contact rates by

lH
lL
¼

R1
4:88

f ðzÞzdz
R 4:88

0
f ðzÞzdz

¼ 7:92

where f is the density of contact rates and 4.88 is the 90th percentile. The same study found

behavioral intervals lasted on average for 2 years. Therefore, we set rH ¼
1

24
and rL ¼

1

216
giving

a mean duration of 2 and 18 years for high and low-risk periods. The per act probability of

transmission in the chronic stage was assumed to be 0.001 and the ratio of acute to chronic-

stage contagiousness of 15 [21]. To obtain a full parameter set, the values of λL and vb were

selected to give 20% endemic prevalence [28] and 25% viral suppression [29] for each of the

considered parameter sets.

We defined parameter sets to represent “high” and “low” values—with the baseline parame-

terization (Table 3) being the “center” value—along 5 axes representing modeling aspects that

are either generally unknown or might be variable between populations.

The first set, “behavior”, allows for a variable frequency of high-risk episodes that a person

will experience in their lifetime, which is known to be a strong determinant of HIV

Table 3. Parameter values.

λL λH βA βC μ δA δC ρH ρL π α vb R0 τA
Static Behavior 5.5 43.6 0.015 0.001 1/360 1/4 1/116 0 0 0.5 278 0.00097 4.5 0.43

Baseline 3.2 25.2 0.015 0.001 1/360 1/4 1/116 1/24 1/216 0.5 278 0.00097 1.5 0.58

Volatile Behavior 3.6 28.7 0.015 0.001 1/360 1/4 1/116 1/6 1/54 0.5 278 0.00097 1.3 0.59

Low Acute Contag. 5.3 42.0 0.005 0.001 1/360 1/4 1/116 1/24 1/216 0.5 278 0.00097 1.5 0.31

High Acute Contag. 1.3 10.4 0.05 0.001 1/360 1/4 1/116 1/24 1/216 0.5 278 0.00097 1.6 0.82

Random Mixing 3.0 24.1 0.015 0.001 1/360 1/4 1/116 1/24 1/216 1 278 0.00097 1.8 0.60

Self-Only Mixing 3.5 27.5 0.015 0.001 1/360 1/4 1/116 1/24 1/216 0 278 0.00097 1.4 0.56

Low Prevalence 2.1 16.9 0.015 0.001 1/360 1/4 1/116 1/24 1/216 0.5 278 0.00097 1.02 0.60

High Prevalence 5.5 43.5 0.015 0.001 1/360 1/4 1/116 1/24 1/216 0.5 278 0.00097 2.7 0.55

Low Suppression 3.2 25.6 0.015 0.001 1/360 1/4 1/116 1/24 1/216 0.5 278 0 1.6 0.56

High Suppression 3.2 25.2 0.015 0.001 1/360 1/4 1/116 1/24 1/216 0.5 278 0.00294 1.5 0.61

https://doi.org/10.1371/journal.pone.0204741.t003
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transmission dynamics [22,23,30]. The “static” case assumed that risk-behavior is constant

while the “volatile” case assumed that switching between high and low-risk phases was faster

than in the baseline model. The static case might correspond to a population where a stable

subset of the population has some high-risk behavior (e.g. highly sexually active people), while

the volatile case might correspond to a population where individuals engage in periodic high-

risk behavior (e.g. occasional partying). Sexual behavior is especially important because it is

likely one of the main theoretical differences between populations with respect to HIV trans-

mission and also because it can be used as a criterion for eligibility for certain interventions.

For example, the CDC guidelines for PrEP direct clinicians to discuss various risk behaviors

when considering PrEP for eligible patients [31].

The second set, “acute contagiousness”, allows for the difference in the relative contagious-

ness of the initial acute stage of infection, which is both difficult to estimate and contentious

[21,32]. This factor matters because TasP effectiveness ought to decrease if people are diag-

nosed only in the chronic phase (i.e. TasP cannot prevent infections from acutely infected per-

son) with increasing acute-stage contagiousness. Acute-stage contagiousness is also likely to be

variable between populations due to biological synergy from the coincidence of other STIs

[33].

The third factor is “mixing”, which governs how frequently different infectious types con-

tact one another, is generally very difficult to measure directly but is also known to be a deter-

minant of transmission dynamics and extinction criteria [34]. However, new phylogenetic

methods have proven useful for potentially identifying sexual mixing patterns within popula-

tions [35,36]. In “random mixing” individuals pick partners from the general population at

random (i.e. with no specific preference for their partners risk behavior) while in “self-only

mixing” high-risk person only mix with other high-risk persons and the same for low-risk

persons.

The last two axes consider different levels of prevalence and viral suppression at the start of

the intervention. These factors represent the most basic ways that HIV epidemics are different

between populations. The “low” levels are 1% and 0% for prevalence and viral suppression

respectively while the “high” levels are 50% for both prevalence and viral suppression. The

parameters for all scenarios are given in Table 3 (units are per month).

We assume that once viral suppression is obtained that persons remain suppressed (y = 0),

and that the rate at which PrEP is stopped is x ¼ 1

12
in the “1-year PrEP” parameter set and

x = 0 in the “Unlimited PrEP” case. That is we assume that persons are fully compliant with

both TasP and PrEP and that PrEP ends only when a high-risk interval ends or PrEP runs out.

Outcomes

As outcomes, we have summarized the DOCP for each scenario as the number enrolled into

each intervention program from year to year; that is, we plot the integral of the flow from the

target states to the protected or treated states due to the intervention rather, which is more

interpretable than the raw control. We have also illustrated the annual proportional reduction

in HIV incidence that results from the DOCP compared to no intervention, as well the reduc-

tion that occurs when only a single control policy is funded for the entire course. Note that in

both the single-control and DOCP cases, the optimal control that reduces the cumulative inci-

dence over the analytic horizon is computed. Besides cumulative incidence, we have also calcu-

lated the approximate proportion of transmissions from acutely infected individuals pre-

intervention, τA, and the basic reproduction number, R0, for each parameter set according to

the next-generation matrix method [37] (Table 3).
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Numerical methods for finding dynamic optimal control policies

We previously published numerical algorithms for finding DOCPs using this model as an

example [5]. Briefly, the optimal control policies were computed by using the orthogonal collo-

cation method. This approach consists of parametrizing both the controls and the system tra-

jectory and then determining the missing values of parameters by solving a large system of

nonlinear algebraic equations. Along with system’s equations, the constraints are described by

using the introduced parametrization. The optimal control problem is thus formulated as a

large-scale nonlinear optimization problem which is solved using a sequential quadratic pro-

gramming (SQP) solver. Code implementing these algorithms was written in Matlab [38] and

was used to find DOCPs for this study. Example analysis code is included as a supplement.

Results

The allocation of limited resources between PrEP and TasP produces large differences in pop-

ulation effectiveness. Fig 2 (left) shows the DOCP for the baseline scenario as a function of

both the annual budget and the duration of PrEP. Fig 2 (right) shows the proportional reduc-

tion in incidence in the baseline scenario under three dynamic control policies: the DOCP,

Fig 2. Dynamic optimal control policies and intervention effects in the baseline scenario. The left panel gives the optimal number of individuals annually enrolled in

TasP (red) and PrEP (blue) for 1, 3, and 5 million dollars per year (low, medium, and high budgets respectively) and two different PrEP policies, “Unlimited PrEP” for

PrEP provided for the entire duration of a high-risk period or “1-Year PrEP” for PrEP provided for 1 year. The right panel gives the multiplicative-scale reduction in

annual incidence for the dynamic optimal (black dots), PrEP-only (blue), and TasP-only (red) control policies.

https://doi.org/10.1371/journal.pone.0204741.g002
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TasP-only, and PrEP-only. The difference between the allocations that we considered (the

DOCP, TasP-only, and PrEP-only) were generally large. For example, in the high budget sce-

nario (5 million dollars per year) the difference in the optimal policies in terms of the number

of cases prevented over the 50-year study period was 11,201 and 8,596 in the unlimited PrEP

and 1-year PrEP scenarios respectively. However, when the DOCP was heterogeneous (i.e.

involving both PrEP and TasP) the difference between the DOCP and the next best optimal

homogenous control was generally much smaller. For example, the heterogeneous DOCP in

the unlimited-PrEP, high-budget, scenario prevents only 562 more cases over the 50-year

period than the only-PrEP allocation.

Homogeneous TasP or PrEP have different patterns of effectiveness over time. While

TasP’s effectiveness is initially relatively low, it gradually increases in future years. In contrast,

PrEP’s effectiveness rises rapidly, but soon after gradually declines; this is observed even when

PrEP’s duration is unlimited. Because of its rapid rise in effectiveness, PrEP is almost always

superior to TasP in the short term. However, because PrEP effectiveness eventually diminishes

while TasP’s effectiveness is still increasing, this superiority is often temporary. This temporary

superiority can persist for decades when PrEP is ultimately less effective than TasP (Fig 2, right

panel, “1-Year- PrEP” column). PrEP effectiveness diminishes over time because the fraction

of high-risk persons that are on PrEP rises rapidly, then begins to decline as new high-risk sus-

ceptible begging to enter the model. Fig 3 shows the number of people enrolled into PrEP and

TasP and the number of potential targets for those interventions. In the Fig 3 the “Only-PrEP”

row shows that the number of high-risk susceptible increases faster than the number of people

on PrEP after a PrEP-only program is initiated. Over time, the fraction of the high-risk suscep-

tibles that are protected declines, leading to worse outcomes.

The annual number of persons enrolled into each intervention characterizes the DOCP

(Fig 2-left). In these baseline scenarios we find homogenous DOCPs—that is, the DOCP sug-

gests allocation for only one control—in all but one situation. Where the DOCP is homoge-

nous, PrEP duration determines which intervention is optimal. However, in the high budget,

“Unlimited-PrEP” situation there is an interesting trade-off. An initial mixed investment in

both TasP and PrEP moving to PrEP-only can temper some of diminishing effectiveness of a

PrEP-only intervention by increasing the number of treated persons in the period where the

effectiveness of PrEP starts to diminish. This is due to the fact that we implicitly model the

potential diminishing effectiveness of fixed-budget interventions.

When either PrEP or TasP has a large effect on transmission dynamics, cost-per-enrollee

changes, altering the number of people that can be enrolled given a fixed budget. When the

PrEP-only control is most effective (Fig 2: “Unlimited PrEP” and “Medium Budget”) the inter-

vention both decreases the number of possible enrollees by enrolling them on PrEP, but also

increases the number of possible enrollees by blocking future transmissions from the persons

on PrEP, in this case, these effects nearly balance out leading to constant enrollment. However,

when TasP is most effective (Fig 2: “1Year PrEP” and “High Budget”) the intervention has the

opposite effect, increasing the cost of future enrollment by reducing the intervention’s possible

enrollees though both direct enrollment and blocking secondary transmissions leading to

fewer people enrolled each year. Thus, if TasP-based intervention is chosen by policy makers,

and steady enrollment numbers are desired, the annual budget must be increased yearly to off-

set the increased cost of enrollment.

Fig 3. Number of possible enrollees and number enrolled on TasP and PrEP over time for the high-budget baseline scenario. Each panel shows the number

of possible enrollees for each intervention, high-risk susceptibles (SH) for PrEP and chronic infecteds (CH + CL) for TasP in solid red and blue lines respectively;

and the number on each intervention in dashed red and blue lines for PrEP and TasP respectively. The vertical facets define the intervention allocation, the top

row (“Optimal”) refers to the DOCP; in the 1-year PrEP case the optimal and only-TasP allocations are the same.

https://doi.org/10.1371/journal.pone.0204741.g003
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Sensitivity Analysis

Where PrEP was only administered for one year, the resulting DOCP was TasP-only over a

wide range of scenarios, with only the high acute-stage contagiousness scenario deviating from

this pattern (Fig 4). This consistency shows that the qualitative aspect of the DOCP may be

robust even when the model is non-identifiable. On the other hand, the quantitative aspects of

the DOCP (annual enrollment and annual reduction in incidence) are highly sensitive to the

model formulation.

In contrast, when PrEP was assumed to be taken for the full duration of a high-risk behav-

ioral episode (Fig 5), we observed the qualitative aspect of the DOCP to be highly sensitive to

the model formulation; this relationship holds regardless of the budget (S1, S2, S3 and S4 Figs).

The “Static Behavior” panel in Fig 5 illustrates an interesting DOCP that we only observe in

this one case. Here the heterogeneous DOCP is unambiguously superior to either of the

homogenous controls as it is equal or superior both in the short-term and long-term. This is

likely due to the fact that in the static behavior setting, PrEP is assumed to be taken indefinitely

due to the assumption of lifelong high-risk behavior. Thus, in this one setting, the dynamics of

PrEP and TasP are qualitatively similar because both are assumed to be lifelong. Identifying

scenarios and real populations where similar conditions exist may provide new prevention

opportunities by simply rearranging the relative resource allocation between prevention

modalities rather than increasing resources.

Discussion

We found that qualitative aspects of the DOCP (being either TasP-only, PrEP-only, or a com-

bination of TasP and PrEP) were largely determined by the duration of PrEP administration.

Budget level had no influence qualitatively, though, unsurprisingly, higher budget levels

resulted in greater incidence reductions. Although both of these results are not surprising per

se, they illustrate that programmatic factors such as duration of PrEP administration can

strongly influence the effectiveness of intervention strategies. The importance of this observa-

tion is amplified by the fact that DOCPs were found to be qualitatively robust to a wide range

of model formulations across the behavioral and biological spectrum. These behavioral and

biological factors have been the focus of many studies of the transmission dynamics of HIV

and prevention effectiveness; however, we hypothesize that, when addressing the question of

how to optimally allocate limited resources, programmatic and cost-related variables may be

as or more important as the behavioral characteristics of different populations. Future studies

should focus on disentangling these effects in the context of ongoing intervention efforts.

DOCPs were also strongly influenced by the analytic horizon, in other words, how far into

the future do we consider when we predict the effects of the current intervention. Initially we

noticed that in most scenarios the DOCP shifted from homogeneous TasP to heterogeneous

PrEP and TasP near the end of the study period regardless of the length of the study period.

For example, if optimizing over a 25-year period, the DOCP would shift to PrEP in years 20–

25. However, with the same parameterization optimizing over a 50-year period, the shift to

PrEP would occur in years 45–50. This effect turned out to be due to the changing analytic

horizon. When the algorithm searches for the DOCP over a 50-year window, the horizon in

Fig 4. Sensitivity of dynamic optimal control policies and intervention effects to model formulation for the “1-Year PrEP” scenario given an annual

budget of 5 million dollars. The optimal number of annual enrollment into PrEP (red) and TasP (blue) interventions is plotted on the left while the

multiplicative-scale annual reduction in annual incidence for the optimal (black dots), PrEP-only (blue), and TasP-only (red) interventions is plotted on the

right. Each row represents a sensitivity axis where the baseline parameter set, (Fig 2), can be thought of as being between the two extremes of each axis.

Parameter sets are described in the materials and methods section.

https://doi.org/10.1371/journal.pone.0204741.g004
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year 1 extends 49 years into the future, however by year 40, the horizon only extends 10 years

into the future. That is, by definition, as you approach the end of the study period, the algo-

rithm favors short-term solutions. We addressed this by optimizing over a longer period and

discarding the end of the optimization (S5 Fig). It’s tempting to think that this is the univer-

sally “correct” solution, but the analytic horizon is another model parameter that needs to be

defined a priori. For example, if an institution believes that an efficacious and inexpensive vac-

cine will be released in 10 years, then perhaps current intervention strategies should only be

optimized over this 10-year period, a relatively short horizon which would then favor interven-

tions that are more effective in the short-term like PrEP.

Our study comes to a different conclusion than a recent study that argued that the acute-

stage transmission rate is not a determinant of the long-run effectiveness of TasP [39];

although the generality of this conclusion is debated [40]. We found that increased acute-stage

contagiousness greatly reduced the effectiveness of TasP over a 50-year intervention period. In

fact, the preference for PrEP in scenarios with very high acute-stage contagiousness are due to

the reduced effectiveness of TasP rather than increased effectiveness of PrEP. This discrepancy

is likely due to the fact we assume that the infection is endemic at the start of the intervention.

When the endemic risk is fixed as it is in our model, increases in the acute-stage contagious-

ness must be offset by a reduction in the overall sexual activity level, however these changes

nearly balance each other out (Table 3) giving very similar values of the basic reproduction

number in the acute-stage contagiousness dimension.

We showed that our algorithms are capable of finding complex DOCPs (involving alloca-

tion of multiple intervention resources over time) in a high dimensional parameter space—the

main analyses involved optimizing over 150-dimensional space of highly co-dependent

parameters. Presently our algorithms are tailored to analyzing this specific model with TasP

and PrEP controls, however, we are working to generalize our approach to a more general

class of deterministic transmission models and interventions. Given the complexity of these

problems the algorithms will require additional basic research and development before they

can be thought of as a generalized method.

We believe that modeling interventions for decision support is a local endeavor that

requires explicit modeling of actual interventions. Understanding how population and indi-

vidual-level parameters change the effects of interventions over time is difficult. However, lay-

ering on the economic and programmatic factors that are required to fully specify an

intervention model makes intuitive analysis a near impossibility. We have demonstrated how

methods from control theory can be applied to practical epidemiologic questions focused on

intervention design and decisions support.

Supporting information

S1 Fig. Sensitivity of Dynamic optimal control policies and intervention effects to model

formulation for the “1-Year PrEP scenario given an annual budget of 1 million dollars.

The optimal number of annual enrollment into PrEP and TasP interventions is plotted on the

left while the multiplicative-scale annual reduction in incidence is plotted on the right. Param-

eter sets are described in the materials and methods section.

(TIFF)

Fig 5. Sensitivity of dynamic optimal control policies and intervention effects to model formulation for the “Unlimited PrEP” scenario given an annual

budget of 5 million dollars. The optimal number of annual enrollment into PrEP (red) and TasP (blue) interventions is plotted on the left while the

multiplicative-scale annual reduction in annual incidence for the optimal (black dots), PrEP-only (blue), and TasP-only (red) interventions is plotted on the

right. Each row represents a sensitivity axis where the baseline parameter set, (Fig 2), can be thought of as being between the two extremes of each axis.

Parameter sets are described in the materials and methods section.

https://doi.org/10.1371/journal.pone.0204741.g005
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S2 Fig. Sensitivity of Dynamic optimal control policies and intervention effects to model

formulation for the “Unlimited PrEP” scenario given an annual budget of 1 million dol-

lars. The optimal number of annual enrollment into PrEP and TasP interventions is plotted

on the left while the multiplicative-scale annual reduction in incidence is plotted on the right.

Parameter sets are described in the materials and methods section.

(TIFF)

S3 Fig. Sensitivity of Dynamic optimal control policies and intervention effects to model

formulation for the “1-Year PrEP” scenario given an annual budget of 3 million dollars.

The optimal number of annual enrollment into PrEP and TasP interventions is plotted on the

left while the multiplicative-scale annual reduction in incidence is plotted on the right. Param-

eter sets are described in the materials and methods section.

(TIFF)

S4 Fig. Sensitivity of Dynamic optimal control policies and intervention effects to model

formulation for the “Unlimited PrEP” scenario given an annual budget of 3 million dol-

lars. The optimal number of annual enrollment into PrEP and TasP interventions is plotted

on the left while the multiplicative-scale annual reduction in incidence is plotted on the right.

Parameter sets are described in the materials and methods section.

(TIFF)

S5 Fig. Burn-out period for Baseline parameter set. This figure shows the full 75-year opti-

mization period for all budget levels in the “1-Year PrEP” scenario. The effect of the interven-

tion horizon on the DOCP is illustrated as the intervention moves closer to the left-hand

boundary the horizon gets successively shorter preferring shorter-term solutions.

(TIFF)

S1 File. MATLAB code used to compute DOCPs.
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16. Sélley F, Besenyei Á, Kiss IZ, Simon PL. Dynamic Control of Modern, Network-Based Epidemic Mod-

els. SIAM J Appl Dyn Syst. 2015; 14: 168–187. https://doi.org/10.1137/130947039

17. Shattock AJ, Kerr CC, Stuart RM, Masaki E, Fraser N, Benedikt C, et al. In the interests of time: improv-

ing HIV allocative efficiency modelling via optimal time-varying allocations. J Int AIDS Soc. 2016; 19.

https://doi.org/10.7448/IAS.19.1.20627 PMID: 26928810

18. Brown VL, Jane White KA. The role of optimal control in assessing the most cost-effective implementa-

tion of a vaccination programme: HPV as a case study. Math Biosci. 2011; 231: 126–134. https://doi.

org/10.1016/j.mbs.2011.02.009 PMID: 21377481

19. Clarke J, White KAJ, Turner K. Approximating optimal controls for networks when there are combina-

tions of population-level and targeted measures available: chlamydia infection as a case-study. Bull

Math Biol. 2013; 75: 1747–1777. https://doi.org/10.1007/s11538-013-9867-9 PMID: 23812958

20. Romero-Severson EO, Volz E, Koopman JS, Leitner T, Ionides EL. Dynamic Variation in Sexual Con-

tact Rates in a Cohort of HIV-Negative Gay Men. Am J Epidemiol. 2015; 182: 255–262. https://doi.org/

10.1093/aje/kwv044 PMID: 25995288

21. Bellan SE, Dushoff J, Galvani AP, Meyers LA. Reassessment of HIV-1 Acute Phase Infectivity:

Accounting for Heterogeneity and Study Design with Simulated Cohorts. PLoS Med. 2015; 12:

e1001801. https://doi.org/10.1371/journal.pmed.1001801 PMID: 25781323

22. Zhang X, Zhong L, Romero-Severson E, Alam SJ, Henry CJ, Volz EM, et al. Episodic HIV Risk Behavior

Can Greatly Amplify HIV Prevalence and the Fraction of Transmissions from Acute HIV Infection. Stat

Commun Infect Dis. 2012; 4: 44–55. https://doi.org/10.1515/1948-4690.1041 PMID: 24058722

Sensitivity of dynamic HIV prevention strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0204741 October 18, 2018 18 / 19

https://doi.org/10.1080/10543400600719236
http://www.ncbi.nlm.nih.gov/pubmed/16892904
https://doi.org/10.1093/infdis/jix086
http://www.ncbi.nlm.nih.gov/pubmed/28199679
https://doi.org/10.1136/sti.2010.047555
http://www.ncbi.nlm.nih.gov/pubmed/21126962
https://doi.org/10.1136/sextrans-2011-050389
https://doi.org/10.1136/sextrans-2011-050389
http://www.ncbi.nlm.nih.gov/pubmed/22363021
https://doi.org/10.1093/imammb/dqx015
http://www.ncbi.nlm.nih.gov/pubmed/29106566
https://doi.org/10.2307/1426183
https://doi.org/10.1016/j.jedc.2003.08.001
https://doi.org/10.3934/mbe.2013.10.1691
http://www.ncbi.nlm.nih.gov/pubmed/24245629
https://doi.org/10.1002/oca.678
https://doi.org/10.1098/rsif.2008.0402
http://www.ncbi.nlm.nih.gov/pubmed/19324686
https://doi.org/10.3934/mbe.2014.11.761
https://doi.org/10.1007/s00285-010-0341-0
http://www.ncbi.nlm.nih.gov/pubmed/20407775
https://doi.org/10.1016/j.mbs.2015.03.002
https://doi.org/10.1016/j.mbs.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25771436
https://doi.org/10.1137/130947039
https://doi.org/10.7448/IAS.19.1.20627
http://www.ncbi.nlm.nih.gov/pubmed/26928810
https://doi.org/10.1016/j.mbs.2011.02.009
https://doi.org/10.1016/j.mbs.2011.02.009
http://www.ncbi.nlm.nih.gov/pubmed/21377481
https://doi.org/10.1007/s11538-013-9867-9
http://www.ncbi.nlm.nih.gov/pubmed/23812958
https://doi.org/10.1093/aje/kwv044
https://doi.org/10.1093/aje/kwv044
http://www.ncbi.nlm.nih.gov/pubmed/25995288
https://doi.org/10.1371/journal.pmed.1001801
http://www.ncbi.nlm.nih.gov/pubmed/25781323
https://doi.org/10.1515/1948-4690.1041
http://www.ncbi.nlm.nih.gov/pubmed/24058722
https://doi.org/10.1371/journal.pone.0204741


23. Henry CJ, Koopman JS. Strong influence of behavioral dynamics on the ability of testing and treating

HIV to stop transmission. Sci Rep. 2015; 5: 9467. https://doi.org/10.1038/srep09467 PMID: 25902018

24. Blank S, Gallagher K, Washburn K, Rogers M. Reaching Out to Boys at Bars: Utilizing Community Part-

nerships to Employ a Wellness Strategy for Syphilis Control Among Men Who Have Sex With Men in

New York City: Sex Transm Dis. 2005; 32: S65–S72. https://doi.org/10.1097/01.olq.0000175401.

37527.de PMID: 16205296

25. Hutchinson AB, Farnham PG, Sansom SL, Yaylali E, Mermin JH. Cost-Effectiveness of Frequent HIV

Testing of High-Risk Populations in the United States. J Acquir Immune Defic Syndr 1999. 2016; 71:

323–330. https://doi.org/10.1097/QAI.0000000000000838 PMID: 26361172

26. Juusola JL, Brandeau ML, Owens DK, Bendavid E. The cost-effectiveness of preexposure prophylaxis

for HIV prevention in the United States in men who have sex with men. Ann Intern Med. 2012; 156:

541–550. https://doi.org/10.7326/0003-4819-156-8-201204170-00001 PMID: 22508731

27. Gebo KA, Fleishman JA, Conviser R, Hellinger J, Hellinger FJ, Josephs JS, et al. Contemporary costs

of HIV healthcare in the HAART era. AIDS Lond Engl. 2010; 24: 2705–2715. https://doi.org/10.1097/

QAD.0b013e32833f3c14 PMID: 20859193

28. Prevalence and Awareness of HIV Infection Among Men Who Have Sex with Men—21 Cities, US 2008.

Morbidity and Mortality Weekly Report. 2010 59: 1201–1227. PMID: 20864920

29. Rosenberg ES, Millett GA, Sullivan PS, Del Rio C, Curran JW. Modeling disparities in HIV infection

between black and white men who have sex with men in the United States using the HIV care contin-

uum. Lancet HIV. 2014; 1: e112–e118. https://doi.org/10.1016/S2352-3018(14)00011-3 PMID:

25530987

30. Romero-Severson EO, Alam SJ, Volz E, Koopman J. Acute-stage transmission of HIV: effect of volatile

contact rates. Epidemiol Camb Mass. 2013; 24: 516–521. https://doi.org/10.1097/EDE.

0b013e318294802e PMID: 23689754

31. US Public Health Service. Preexposure Prophylaxis for the Prevention of HIV Infection in the United

States—2014.

32. Pinkerton SD. Probability of HIV Transmission During Acute Infection in Rakai, Uganda. AIDS Behav.

2007; 12: 677–684. https://doi.org/10.1007/s10461-007-9329-1 PMID: 18064559

33. Wald A, Link K. Risk of Human Immunodeficiency Virus Infection in Herpes Simplex Virus Type 2–-

Seropositive Persons: A Meta-analysis. J Infect Dis. 2002; 185: 45–52. https://doi.org/10.1086/338231

PMID: 11756980

34. Jacquez JA, Simon CP, Koopman J, Sattenspiel L, Perry T. Modeling and analyzing HIV transmission:

the effect of contact patterns. Math Biosci. 1988; 92: 119–199. https://doi.org/10.1016/0025-5564(88)

90031-4

35. Le Vu S, Ratmann O, Delpech V, Brown AE, Gill ON, Tostevin A, et al. Comparison of cluster-based

and source-attribution methods for estimating transmission risk using large HIV sequence databases.

Epidemics. 2018; 23: 1–10. https://doi.org/10.1016/j.epidem.2017.10.001 PMID: 29089285

36. Romero-Severson EO, Bulla I, Leitner T. Phylogenetically resolving epidemiologic linkage. Proc Natl

Acad Sci U S A. 2016; 113: 2690–2695. https://doi.org/10.1073/pnas.1522930113 PMID: 26903617

37. Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduc-

tion ratio R 0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990; 28:

365–382. PMID: 2117040

38. MATLAB and Optimization Toolbox Release 2014b. Natick, Massachusetts, United States: The Math-

Works, Inc.;

39. Eaton JW, Hallett TB. Why the proportion of transmission during early-stage HIV infection does not pre-

dict the long-term impact of treatment on HIV incidence. Proc Natl Acad Sci U S A. 2014; 111: 16202–

16207. https://doi.org/10.1073/pnas.1323007111 PMID: 25313068

40. Powers KA, Kretzschmar ME, Miller WC, Cohen MS. Impact of early-stage HIV transmission on treat-

ment as prevention. Proc Natl Acad Sci. 2014; 111: 15867–15868. https://doi.org/10.1073/pnas.

1418496111 PMID: 25368195

Sensitivity of dynamic HIV prevention strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0204741 October 18, 2018 19 / 19

https://doi.org/10.1038/srep09467
http://www.ncbi.nlm.nih.gov/pubmed/25902018
https://doi.org/10.1097/01.olq.0000175401.37527.de
https://doi.org/10.1097/01.olq.0000175401.37527.de
http://www.ncbi.nlm.nih.gov/pubmed/16205296
https://doi.org/10.1097/QAI.0000000000000838
http://www.ncbi.nlm.nih.gov/pubmed/26361172
https://doi.org/10.7326/0003-4819-156-8-201204170-00001
http://www.ncbi.nlm.nih.gov/pubmed/22508731
https://doi.org/10.1097/QAD.0b013e32833f3c14
https://doi.org/10.1097/QAD.0b013e32833f3c14
http://www.ncbi.nlm.nih.gov/pubmed/20859193
http://www.ncbi.nlm.nih.gov/pubmed/20864920
https://doi.org/10.1016/S2352-3018(14)00011-3
http://www.ncbi.nlm.nih.gov/pubmed/25530987
https://doi.org/10.1097/EDE.0b013e318294802e
https://doi.org/10.1097/EDE.0b013e318294802e
http://www.ncbi.nlm.nih.gov/pubmed/23689754
https://doi.org/10.1007/s10461-007-9329-1
http://www.ncbi.nlm.nih.gov/pubmed/18064559
https://doi.org/10.1086/338231
http://www.ncbi.nlm.nih.gov/pubmed/11756980
https://doi.org/10.1016/0025-5564(88)90031-4
https://doi.org/10.1016/0025-5564(88)90031-4
https://doi.org/10.1016/j.epidem.2017.10.001
http://www.ncbi.nlm.nih.gov/pubmed/29089285
https://doi.org/10.1073/pnas.1522930113
http://www.ncbi.nlm.nih.gov/pubmed/26903617
http://www.ncbi.nlm.nih.gov/pubmed/2117040
https://doi.org/10.1073/pnas.1323007111
http://www.ncbi.nlm.nih.gov/pubmed/25313068
https://doi.org/10.1073/pnas.1418496111
https://doi.org/10.1073/pnas.1418496111
http://www.ncbi.nlm.nih.gov/pubmed/25368195
https://doi.org/10.1371/journal.pone.0204741

