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Differential expression (DE) is commonly used to explore molecular
mechanisms of biological conditions. While many studies report
significant results between their groups of interest, the degree to
which results are specific to the question at hand is not generally
assessed, potentially leading to inaccurate interpretation. This could
be particularly problematic for metaanalysis where replicability
across datasets is taken as strong evidence for the existence of a
specific, biologically relevant signal, but which instead may arise
from recurrence of generic processes. To address this, we developed
an approach to predict DE based on an analysis of over 600 studies.
A predictor based on empirical prior probability of DE performs very
well at this task (mean area under the receiver operating character-
istic curve, ∼0.8), indicating that a large fraction of DE hit lists are
nonspecific. In contrast, predictors based on attributes such as gene
function, mutation rates, or network features perform poorly. Genes
associated with sex, the extracellular matrix, the immune system,
and stress responses are prominent within the “DE prior.” In a series
of control studies, we show that these patterns reflect shared biol-
ogy rather than technical artifacts or ascertainment biases. Finally,
we demonstrate the application of the DE prior to data interpreta-
tion in three use cases: (i) breast cancer subtyping, (ii) single-cell
genomics of pancreatic islet cells, and (iii) metaanalysis of lung ade-
nocarcinoma and renal transplant rejection transcriptomics. In all
cases, we find hallmarks of generic DE, highlighting the need for
nuanced interpretation of gene phenotypic associations.
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RNA-sequencing (RNA-seq) and microarray technology are
valuable tools in the modern molecular biology toolkit, en-

abling large-scale analysis of the transcriptional changes associated
with biological conditions of interest. Typically, expression levels for
each gene are compared between sample groups, and the genes that
pass certain statistical cutoffs are selected as the “hit list” for further
interpretation and validation. This type of analysis has been used
as the basis for key insights into the genes that drive physiological
and disease mechanisms, for example, identifying novel circadian
rhythm genes (1), characterizing transcriptional mechanisms of
stem cell differentiation (2), and highlighting the critical role of cell
proliferation-associated genes in predicting cancer metastasis and
survival (3). In most cases, conclusions from differential expression
(DE) studies are drawn using within-experiment data, which means
that claims of specificity are relative to the control groups used for
reference. In this work, we challenge this notion of specificity by
probing whether certain gene expression profiles are generic, with a
high probability of DE across a wide variety of biological conditions.
Our aim is related to previous efforts to identify genes that are

preferentially variable within and across individuals, tissues, or ge-
netic backgrounds (4–8). Each of these studies employed a similar
strategy, controlling for all experimental variables to detect baseline
transcriptional variation among well-matched samples. While each
of these studies highlighted expression variability related to in-
flammation, hormone regulation, tissue composition, and stress
responses, the identified gene lists were often surprisingly small,
even with loosened statistical thresholds. Our present work starts
where this previous research ends, with the hypothesis that many
genes may show frequent DE, regardless of the specific biological

question being addressed. If true, this would have a large impact on
the interpretation of gene expression hit lists, where the appearance
and reproducibility of these genes would now appear to be less
surprising than we might naively expect.
Assessing studies to determine which genes are frequently dif-

ferentially expressed creates a number of challenges, both technical
and conceptual. To ensure uniform DE detection across studies, we
had to reanalyze the data, rather than relying on reports based on
publication-specific methods. This required the development of
a rigorous pipeline for reanalysis of DE, including experimental
annotation, quality control, batch modeling, and, finally, DE esti-
mation. The Gemma database (https://gemma.msl.ubc.ca) contains
thousands of curated and reanalyzed studies, and this resource
allows us to make direct comparisons of DE hit lists, overcoming
technical limitations (9). The major conceptual challenge is that
studies vary in the number of differentially expressed genes that
they observe, due to statistical power as well as biology. This
means that naively creating a prior based on raw frequency of DE
is unlikely to be optimal. Instead, we exploit a trick we have
previously used in machine learning (10) to predict DE hit lists in
the Gemma database, described in more detail below.
The basic premise is that we attempt to “cold read” the output of

individual studies by calculating the ranked list of genes, which is
mathematically optimal for predicting DE as measured by the area
under the receiver operating characteristic curve (AUROC). This
list, referred to as the “DE prior” or “global prior,” can be used to
guess the hit list of any DE study without knowing anything about it.
If the DE prior is highly predictive of most studies, then many
genes—and specifically the ones the prior ranks highly—can be
expected to arise frequently in DE hit lists. Within the same
framework, we can evaluate any predictor, for example, ranking
genes based on GC content, probability of mutation in the general
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population, or their expression level in adult tissues, and see how
it compares.
Our work has three main contributions: (i) a quantitative

definition of DE gene and hit list specificity, (ii) characterization
of the biological processes that drive hit list overlaps, and (iii) a
demonstration of how our approach can be used to interpret gene
sets more broadly. In brief, we find that ranking genes by their
contribution to DE allows us to predict hit lists with high perfor-
mance (mean AUROC, >0.8), consistent with the existence of
generic transcriptional patterns. The most common DE genes are
enriched for important biological functions including sex, the ex-
tracellular matrix (ECM), as well as immune-related and stress
responses. In three use cases, we show that the prior provides rich
insight into gene set properties: validating that housekeeping genes
are rarely DE, and highlighting the differential specificity of
disease-associated genes and cell type markers. We expect that the
simplicity, robustness, and general significance of the DE prior we
have made available (11) will make it a valuable guide for inter-
preting and designing future transcriptomic studies.

Results
Data Processing and Quality Control. Gene expression microarray
and RNA-seq technology have become increasingly common for
untargeted, hypothesis-generating research into the genetic and
transcriptional mechanisms underlying biological conditions of in-
terest. In tandem, efforts to encourage data sharing have led to the
deposition of raw data on public servers (12, 13), which may be

thought of as a digital commons ready to be mined for scientific
insight. However, there are major hurdles to the reuse of these
public data, which include the need for consistent processing, as
well as metadata extraction for downstream statistical analyses (14).
The Gemma system was designed to overcome these issues by
providing consistently processed and annotated expression data (9).
For our assessment, DE was analyzed within Gemma, and then
downloaded as flat files for further analysis in R. Details of the
filtering and analysis process can be found inMethods and in Fig. 1.
In brief, the database initially contained 2,496 human expression
datasets comprising 10,153 individual experimental conditions
across 105 platforms and platform combinations. To avoid com-
plications due to platform-specific effects, we limited our analysis of
Gemma to studies performed on the popular GPL570 (Affymetrix
Human Genome U133 Plus 2.0 Array) platform as it allowed us to
include the largest number of studies with the greatest transcriptome
coverage (∼19,000 genes). All studies with at least one differen-
tially expressed gene [absolute log2 fold change, >2; false-discovery
rate (FDR), <0.05] were included, leaving us with a compendium
of 635 datasets with a total of 27,011 samples and covering a wide
range of biological conditions.
The objective of our analysis was to determine whether some genes

are much more likely to be differentially expressed than others,
and previous work in this area suggests that this is the case (e.g.,
ref. 4). We determined overlaps in DE results (DE hit lists) across
the compendium. We find that nearly all genes are differentially
expressed at least once, with most genes recurring in ∼10 datasets
(Fig. 2A). We also find evidence of common DE, with 229 genes
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occurring in >10% of DE hit lists. The most extreme example is
CXCL8, which is DE in nearly 20% of all datasets (124/635).
CXCL8 (also known as IL8) is a chemokine known to be involved
in attracting neutrophils toward sites of injury or infection (15),
and it has been implicated in many disorders (16–18). Consistent
with this, studies with DE of CXCL8 are not biased toward any
particular area of research and include datasets comparing un-
treated (normal) cell lines and tissue types, as well as datasets
comparing genetically or pharmacologically treated samples, and
disease samples (Dataset S1). This suggests that overlaps in DE
may reflect truly common biological or molecular processes,
rather than biases in the composition of the compendium.
In the following sections, we assess both the overlaps among

studies, as well as their specificity, in more detail: first charac-
terizing the degree to which we can predict DE using knowledge
of overlaps, formalized as the DE prior; then characterizing the
prior’s properties, documenting its robustness and superiority to
even highly targeted priors; and finally demonstrating its appli-
cation across three diverse use cases.

The Global DE Prior Predicts DE Results with High Accuracy. Above,
we described general patterns of overlapping DE between datasets.
In this work, our goal is not only to find whether some genes are
more commonly differentially expressed than others but also to
determine whether differences in gene recurrence can be used to
predict DE hit lists. This approach is useful because it provides a
measure of specificity for each study: If an experiment’s hit list is
well predicted by this generic ranking, it implies that many genes
within that hit list are commonly DE in other studies. We can also
use the same prediction approach to determine whether we can
gain specificity in our predictions by creating subset-specific priors
based on groups of studies that have common features (like those
funded by the National Cancer Institute); or to investigate whether
other gene properties, such as GC content, coding sequence length,
or mutability in the population, might be predictive of DE, sug-
gesting either biological or technical biases that contribute to
common DE of genes.

To measure general redundancy in the compendium, we gener-
ate a global DE prior: This is the ranked list of genes that maxi-
mizes our ability to predict DE hit lists (Methods and Dataset S2).
As described earlier, the global DE prior can be thought of as
performing a “cold reading” of an experiment’s DE results. Just as
a psychic will make predictions that are likely to be true based on
general population statistics, we make predictions about genes
based on the same principle; in our case, we take advantage of
knowledge about a gene’s likelihood of DE before making a guess
about a given experiment’s hit list. We determine how well we re-
cover DE genes for each dataset using the ranking from the
compendium-wide list (leaving out the study to be predicted) and
report performance as the AUROC. This is roughly equivalent to
the probability that we have correctly ranked a differentially
expressed gene above a gene that is not differentially expressed
within that experiment. Thus, 0.5 is random, 1.0 is perfect, and
0.7–0.8 is generally considered high performance.
We find that the global DE prior has remarkably high per-

formance (mean AUROC, 0.83 ± 0.1; Fig. 2B; all scores, Dataset
S1). In other words, given a random experiment, we could use
the global prior to bet on which genes show up in the hit list and
we would expect (on average) to accurately rank ∼80% of DE
genes higher than other genes within each study. As a compar-
ison, we tested the ability of any individual study to predict the
results of all others. This is essentially a test of DE hit list overlap
between all pairs of studies. Here, results were much closer to
the null, with only 3 of the 635 studies showing appreciable
performance (mean AUROC, >0.6), all of which were charac-
terized by a large number of differentially expressed genes
(median, ∼2,300, vs. all studies median, ∼90). Together, these
results show that the prior contains an informative aggregate
signal that is not recapitulated by any individual study.

Biological and Technical Features of the Prior. Previous work has
indicated that gene properties such as transcript length, the number
of annotated functions, gene essentiality, or expression level in
adult tissues can strongly predict the likelihood for that gene to be
studied based on literature mining (19, 20). Other research has
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pointed to biases of length and GC content in expression analysis
(21, 22), or gene multifunctionality effects on gene function pre-
diction and network analysis (10). However, the degree to which
generic gene properties may directly inform their probability of DE
has not been assessed on a global scale.
To address this, we took the same approach that we took above,

curating sets of gene properties, generating a prior for each, and
reporting its ability to predict DE hit lists as the AUROC. Gene
properties spanned four general categories: (i) technical features
such as GC content and length (23); (ii) adult tissue expression
levels sourced from GTEx (24) and lymphoblast cell lines from the
Geuvadis project (25); (iii) functional properties such as mutability
from ExAC (26), or node degree in aggregate coexpression net-
works (27); and (iv) annotation biases using multifunctionality in
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) (10). None of these properties is nearly as pre-
dictive as the DE prior (mean across all categories, 0.55; Fig. 3).
For example, a predictor based on prevalence in the GO (also
known as gene multifunctionality) that predicts gene sets within the
GO very well (mean AUROC, 0.83 ± 0.08) is close to useless at
predicting DE (mean AUROC, 0.57 ± 0.03).
Although no individual predictor performs as well as the DE

prior across all studies, there are a small number of cases where
gene properties perform quite well. For example, we find that
predictors related to expression in females, GC content, and hap-
loinsufficiency are strongly predictive of DE for the subset of hit
lists deriving from comparisons of males and females (Fig. 3 and
Dataset S1). Similarly, we find a small subset of studies that are
preferentially predicted by gene expression levels in whole blood
and in spleen, all of which are related to immune phenotypes.
This modularity, with certain properties predicting only subsets

of studies, suggests that the DE prior is likely weighted toward
genes from multiple functions, which would explain why individual
features are poor predictors of DE hit lists. We thus aimed to
characterize the biological properties of the DE prior in more

detail. To do this, we focused on the genes that are in the top 1% of
the prior (192 most commonly DE genes). We first asked whether
they formed coexpressed gene modules in a high-quality coex-
pression network (27) (Fig. 3). Using a random-walk–based clus-
tering approach (28), we find six clusters, ranging in size from 9 to
58 genes (SI Appendix, Table S1). To determine the robustness of
the clusters, we performed a standard guilt-by-association analysis
(29), which demonstrated that the clusters are strongly predictable
from their coexpression patterns (mean AUROCs, 0.98 ± 0.02). In
essence, all of the genes within each separate cluster are markers
for the same process across their entire range of activity. GO
analysis revealed that five of six clusters have significant functional
enrichment at FDR of <0.05, with two clusters enriched for
immune-related functions, one enriched for terms related to the
ECM, one enriched for transcription factor activity and containing
key stress response genes (FOS, JUN, ATF3, and EGR1/2/3), and
one cluster enriched for cell cycle genes. The only cluster that was
not attributed a GO function consists solely of Y-chromosome
genes (EIF1AY, KDM5D, ZFY, NLGN4Y, DDX3Y, USP9Y,
TXLNGY, TTTY14, and UTY), suggesting an obvious biological
interpretation for their close association in the network. Altogether,
these results support the notion that it is recurrence of biological
processes across datasets, rather than any technical features, that
allow the prior to accurately predict DE hit lists.

Predictions Are Not Improved by Increasing the Specificity of the
Prior. While we demonstrated that the DE prior has very good
performance across studies, and that it is composed of commonly
observed gene functional modules, it is possible that performance
could be improved by taking a more biologically targeted ap-
proach. To address this, we did a series of computational exper-
iments to try to maximally overfit to subsets of studies within the
compendium and find predictors that outperform the DE prior. In
brief, these consisted of (i) assessing studies funded by the same
agency at the National Institutes of Health (NIH); (ii) clustering
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DE hit lists; and (iii) identifying the maximally predictive GO term
for each hit list. Strikingly, across all of these experiments, and despite
the extreme overfitting to potentially “beat” the global DE prior, we
find only one biologically driven grouping where the global prior was
outperformed by a more targeted prior. All others do not outperform
the DE prior. We discuss these experiments in more detail below.
First, we used metadata to group studies based on their funding

information, with the hypothesis that datasets funded by the same
funding source (e.g., National Cancer Institute) are more likely to be
biologically related than those across funding sources. If this is true, a
prior generated from datasets funded by a single agency should
outperform the global prior. Using data from PubMed, we found
funding information for 307 of 635 datasets. We restricted our
analyses to funders that supported 10 or more studies to ensure
sufficient power for predictions, ultimately including 222 datasets
from nine NIH institutes or other specific funding sources. To
confirm whether the institutes tend to fund experiments targeted
toward different end goals, we took advantage of the controlled
vocabularies used to tag each experiment in Gemma, finding that
studies funded by the National Cancer Institute are strongly enriched
for the disease ontology term “organ system cancer” (DOID
0050686; P < 10−6) and that those funded by the National Institute
of Allergy and Infectious Diseases are enriched for the term “disease
by infectious agent” (DOID 0050117; P < 10−4), for example. De-
spite confirming research focus specificity, we find that the global

DE prior outperforms almost all NIH institute-restricted priors (Fig.
4 A–C; mean global, 0.83 ± 0.1; mean funding agency, 0.73 ± 0.1).
One exception is a subset within the group of studies funded by the
National Institute of General Medical Sciences (NIGMS), all re-
lated to septic shock or traumatic injuries (Fig. 4B and Dataset S1).
This is the sole biological grouping for which a more specific
prior outperformed the global prior, and it can be attributed to
an unusually high similarity in DE genes among these studies.
In all other cases, the strong performance of the DE prior

across funding agencies can readily be understood by visualizing
study-specific enrichment of genes in our six clusters (Fig. 4D).
We see that studies from multiple NIH institutes are enriched
for the six biological processes that comprise the top 1% of the
prior, and that study results can often be enriched for more than
one of these processes. Because prior construction is always
performed via cross-validation (leaving out the study to be pre-
dicted), the robust cross-institute signal captured by the global
DE prior allows it to outperform the less well-powered average
from studies funded by the same NIH institute.
For our next experiment, we aimed to see whether we could

improve performance by clustering DE hit lists to find groups of
studies that are highly similar to one another. Our outcome measure
is the same as in the previous, determining whether cluster-specific
priors outperform the global DE prior. Because each cluster-specific
prior is created from a set of experiments chosen specifically to be
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Institute; NCRR, National Center for Research
Resources; NHLBI, National Heart, Lung and Blood
Institute; NIAID, National Institute of Allergy and
Infectious Diseases; NICHD, National Institute of
Child Health and Human Development; NIDDK, Na-
tional Institute of Diabetes and Digestive and Kidney
Diseases; NIGMS, National Institute of General Med-
ical Sciences; NINDS, National Institute of Neurologi-
cal Disorders and Stroke.
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more similar than the average, at worst, the cluster-priors should
perform as well as the global prior since it can simply be reused
in each cluster. If their performance is not substantially higher than
the DE prior, then the groupings have not successfully discovered
distinct patterns. In fact, we obtain much lower performance for the
cluster-specific priors than we do for the global prior (mean
AUROC, 0.73 ± 0.2; Fig. 4E). This means that the clusters are not
sufficiently distinct. Similar to what was observed for the NIH in-
stitute groupings, this suggests that the use of the smaller number of
experiments for each cluster-specific prior simply results in a less
robust version of the global prior.
As a final attempt to overfit priors for our 635 datasets, we tested

every GO group for its ability to predict DE hit lists. In this case,
each GO group is individually tested for its overlaps with the DE hit
lists of each experiment, and we report the GO group with the
highest performance (maximal overlap) for each study. Despite
overfitting to each dataset by picking only the GO group with the
post hoc highest performance, the mean of the maximal AUROCs
is only 0.61 (Fig. 4F; all scores in Dataset S1), significantly lower
than the average performance of the DE prior (AUROC, 0.83).
Together, these results demonstrate the very high perfor-

mance of the DE prior for predicting hit lists. It is apparently
challenging to improve on its performance, even with the in-
tention of overfitting. Of course, predicting DE genes well on
average does not mean that we know everything there is to know
about the individual experiments, and some DE genes are un-
explained by global features, potentially reflecting distinctive
biology. The improvement of the NIGMS prior over the global
for prediction of sepsis studies is a good example of this, and it
indicates that the inclusion of significantly more data may
eventually allow for improved performance of cluster-specific
priors. However, only comparison with the global prior can es-
tablish that specificity has been achieved. More broadly, the high
performance and robustness of the global prior is useful in its
own right, allowing for the reinterpretation of established and
novel gene sets, explored in the three use cases below.

Use Case 1: Reexamining PAM50 Genes and Housekeeping Genes with
the DE Prior.One prominent goal of human expression analysis has
been to classify disease samples. Almost two decades ago, it was
observed that breast cancer subtypes were distinguishable by their
mRNA expression patterns (30). Since then, the set of genes re-
quired for classification was increasingly refined (31, 32), and now
a set of 50 genes called “PAM50” for “Prediction Analysis of
Microarray 50,” are available as a commercial kit for clinical use
(33). While our DE prior cannot determine the relationship be-
tween the genes and the outcome (i.e., cancer subtype and, by
extension, prognosis), it can shed light onto the general likelihood
of these genes to be differentially expressed across many different
studies. We plot each gene with respect to its prior probability,
defined by the gene’s rank in the minimum-rank prior (Methods;
0 = not commonly DE; 1 = commonly DE). Notably, we find that
the PAM50 genes are very commonly DE, ranking in the top 10%
of the prior on average (mean rank, 0.90 ± 0.1, for the 48 of
50 genes assessed on GPL570; MIA and PTTG1 are not assayed).
This result does not invalidate the usefulness of PAM50 DE for
prognosis when a breast cancer diagnosis is known. However, it
indicates that DE of these genes is not limited to breast cancer,
which is consistent with the recent finding that the same signature
can be employed to predict prostate cancer subtypes (34).
A contrasting goal in expression analysis has been to identify

genes that are stably expressed across a broad range of condi-
tions [sometimes referred to as housekeeping genes (35, 36)],
with the idea that these genes may be used for data normaliza-
tion (37, 38). Recent work in this area has turned to single-cell
RNA-seq data to identify stably expressed genes (39, 40). If these
genes are stable across conditions, we would expect them to show
infrequent DE. Indeed, we find that all housekeeping sets tested
have low average ranks in the DE prior (Eisenberg microarray,
0.41 ± 0.3; Eisenberg RNA-seq, 0.38 ± 0.2; Lin, 0.42 ± 0.2;
Deeke, 0.35 ± 0.2; Deeke displayed in Fig. 5A; all others in SI

Appendix, Fig. S1). This is very far into the tail of gene set pre-
dictabilities within our DE distribution (bottom 1%). However,
there is quite a bit of variability in the prior probability of DE
among these putative housekeepers, which is perhaps to be
expected given previous evaluations (39). In line with this, very few
genes overlap among all of the housekeeping sets (6 of 4,513 to-
tal), although we find an encouraging trend toward decreasing
prior probability of DE as the replicability of the gene’s status as a
housekeeper increases (SI Appendix, Fig. S1). One striking ex-
ception to this trend is RPS24, a gene that encodes a component
of the 40S ribosome and is included in all four lists. We find that
this gene is very commonly differentially expressed (DE prior
rank, 0.96), which undermines its utility for normalization. This
may be a consequence of the distinct biology that some ribosomal
proteins exhibit [e.g., response to stress (41)] and reflected by
RPS24’s disease association to Diamond–Blackfan anemia (42).

Use Case 2: Interpreting Marker Genes from Single-Cell RNA-Seq.
Ideally, the DE prior should inform the interpretation of dif-
ferentially expressed genes. One potential limitation is that bia-
ses in the composition of the database, which comprises many
disease-associated studies, might mean that the prior will not be
capable of characterizing studies of “normal” variability, such as
those of DE between cell types. We evaluated this by looking at
the performance for a type of experiment not represented in
Gemma, specifically DE from five single-cell RNA-seq experi-
ments between alpha and beta cells of the pancreas (43–47). As
previously, we define DE genes within each experiment as those
with FDR of <0.05 and log2 fold change >2 (details in Methods).
We find that the prior has high performance in predicting DE
between alpha and beta cells, with a mean AUROC of 0.78 ±
0.03 (SI Appendix, Fig. S2), comparable to the average perfor-
mance across our original compendium. Along with our previous
assessments of data subsetting, both by funding source and by
DE profiles, this confirms that the prior is not unduly biased
toward disease-associated studies.
We next looked at the prior probability for each putative

marker gene. At the low end of prior probability are a number of
interesting genes. For example, among the 19 genes differentially
expressed in four of five studies, the gene with the lowest prior
probability of DE is PDX1 (DE prior rank, 0.19). PDX1 is a
transcriptional activator required for pancreatic beta cell func-
tion, with highly restricted expression in adult tissues (48). For
this reason, PDX1 is likely to be a more tissue-specific marker
than other genes such as DLK1 (five of five studies; prior, 0.98),
which is a good beta cell marker but also has functions outside of
the pancreas, notably in adipogenesis (49).

Use Case 3: Interpreting DE Hit Lists from Metaanalysis. In our final
use case, we used the prior to inform the interpretation of DE hit
lists from metaanalysis, with the hypothesis that metaanalysis will
preferentially identify generic DE genes because of differential
prior probability. We reanalyzed previously published lung ade-
nocarcinoma (50–62) and renal transplant rejection datasets
(63–75), comprising 13 experiments for each, and over 2,600 sam-
ples (SI Appendix, Table S2). Previous metaanalyses of these data-
sets identified expression changes related to immune activation
and angiogenesis (68, 76), hinting that they would be well pre-
dicted by the DE prior. Accordingly, we found evidence sup-
porting our hypothesis that highly recurrent genes tend to have
high global DE prior probability (Fig. 5 C and D).
We noted that there were very few recurrent DE genes among

the transplant rejection studies, even though we reduced our fold
change threshold for DE gene calling (fold >1.3 rather than 2).
Consistent with the lack of signal associated with transplant re-
jection, the three genes found in four or more datasets are all
very commonly differentially expressed (DE prior rank, >0.99);
even a group of studies without any specific overlap in condition
(i.e., a random sample of studies) could expect to see recurrence
of such high-prior genes. Notably, these genes are all ligands of
the CXCR3 receptor and are induced by interferon signaling to
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recruit T cells to sites of injury or infection (77), and all are
included in our interferon and chemokine signaling related
cluster. The association of these genes with renal transplant re-
jection is thus highly probable, but their specificity to the phe-
notype is not.
In the lung adenocarcinoma metaanalysis, we also see a re-

lationship between recurrence and prior probability, with most
genes that recur in more than one-half of the DE hit lists having a
DE prior probability of >0.9. One notable exception is the RAGE
receptor gene (also known as AGER), a known biomarker of lung
cancer (78), which is recurrently differentially expressed in 12 of
13 datasets but has lower global prior probability of DE (DE prior
rank, 0.78). These results suggest that RAGE should be inter-
preted differently than other genes of similar recurrence: it should
be considered more likely to be specific to the phenotype than, for
example, the beta-hemoglobin gene (HBB), which also recurs in
12 datasets but has a global DE prior rank of >0.999.

Discussion
In expression analysis, it is common to claim a condition-specific
association for a gene, for example, to define a novel tissue-
specific marker, or to associate a gene with a particular per-
turbation. However, these claims are limited by the specificity
of the comparisons made within each study. In this work, we
reexamined condition specificity by assessing gene overlaps

between more than 600 expression studies. We discover that hu-
man DE experiments are highly predictable, suggesting limited
specificity of a major fraction of DE hit lists. Underlying their
predictability is the fact that the same gene modules are con-
sistently repurposed across conditions. These modules include
the immune response and inflammation, the ECM, cell cycling,
stress responses, and sex. Our results have major implications
for interpreting DE hit lists from metaanalysis, which are very
likely to report generic (high-DE prior) genes, as well as for
other well-characterized gene sets, such as disease biomarkers,
or housekeeping genes.
The characterization of previously published housekeeping

gene sets is a useful and revealing test case for the global DE
prior. The four gene sets we tested were initially identified by the
stability of their expression levels, meaning that all four were
designed to act as references for data normalization. In line with
this, we found that their average ranks within the global prior are
extremely low, particularly with respect to the distribution for
our 635 DE hit lists. This confirmed that most of these possible
housekeeping genes are rarely differentially expressed and sup-
ports their potential for data normalization. RPS24 is a clear
outlier with respect to the other housekeepers that are common
to all sets, and we would predict that it would be dangerous to
use it for normalization (79). This example demonstrates how
the prior can provide valuable context for the interpretation of
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Fig. 5. Reinterpreting gene sets with the DE prior. (A) PAM50 genes and housekeepers are plotted with respect to their rank in the DE prior, and each
point represents a single gene (0, never differentially expressed; 1, frequently differentially expressed). As expected, PAM50 genes have high DE prior
ranks (mean, 0.9), whereas housekeepers are not frequently DE and have low DE prior ranks (mean, 0.35). (B) Alpha and beta cell markers derived from
single-cell RNA-seq are plotted with respect to their DE prior rank, and their recurrence among five independent hit lists. Increasing recurrence is asso-
ciated with higher DE ranks. Differences in prior ranks between highly recurrent genes suggests differential condition specificity. (C ) DE genes from
metaanalysis of 13 renal transplant rejection studies are plotted with respect to their DE prior rank and their recurrence. The only genes that recur among
most studies are all very frequently DE (high DE prior ranks), and thus unlikely to be specifically associated with renal transplant rejection. (D) DE genes
from metaanalysis of 13 lung adenocarcinoma studies are plotted with respect to their DE prior rank and their recurrence. RAGE, a known biomarker, has a
relatively low DE prior rank.
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gene candidates, in this case by interrogating the assumption of
gene stability.
As described, the housekeepers provide insight into the in-

terpretation of low-ranking genes in the DE prior. Housekeepers
have low ranks due to their stable expression across conditions,
but a gene’s low rank may also arise due to its lack of expression,
or because it is DE in rarely targeted conditions. How are we to
interpret high-ranking genes? We believe these are usefully un-
derstood through the lens of our two targeted metaanalyses. In
the case of renal transplant rejection, very few genes were found
to recur across hit lists, and the top candidates from this meta-
analysis are all frequently DE. The small number of hits we
observe, even after lowering the effect size threshold, suggests
that these studies are too heterogeneous to converge on specific,
shared DE genes. Upon combining them, only generic signals
emerge. In contrast, our lung adenocarcinoma metaanalysis was
much more successful, identifying many specific (low-DE prior)
and plausible candidates. Our interpretation is that lung adeno-
carcinoma is a more homogeneous category than kidney rejection
(at least for the datasets we analyzed), allowing for greater as-
certainment of specific hits both within and across studies. In lung
adenocarcinoma, the recurrent DE genes varied with respect to
their prior probability of DE, suggesting differences in the degree
to which they may be considered specific to the phenotype. A gene
like RAGE, which is highly recurrent but of lower prior probability
than other recurrent genes, is more likely to be specifically related
to the disorder than genes that are DE in many more conditions.
We emphasize that, despite being generically differentially

expressed, high-prior genes are biologically important, with roles
in many critical processes. Their high rank simply indicates the
poor degree to which they can specifically be associated with a
particular phenotype. The high ranks of the PAM50 genes are
useful to consider here. These genes have proven clinical and
prognostic significance for breast cancer, yet they are clearly not
only of significance for this condition. This is true of all high-
ranking genes. Moreover, in keeping with their biological sig-
nificance, the high-ranking genes will be familiar to many biol-
ogists, and their presence in the DE prior will come as no
surprise. The value of our DE prior is its ability to meaning-
fully calibrate a degree of surprise. Knowing which genes are of
high prior empowers rapid and objective prioritization of gene
hit lists for further study, whether that might mean an emphasis
on well-studied pathways or the evaluation of more unusual
gene associations.
Moving forward, we anticipate that the prior will be most

usefully exploited to design experiments that address the role of
generic functions: either controlling for the processes that are of
high prior probability explicitly or targeting them in more detail.
Because of their high recurrence, simply reporting that these pro-
cesses are associated with a phenotype should not be considered
particularly novel or informative. Instead, it will be important to
understand the detailed interplay of high prior functions within
systems of interest. Studies of single-cell transcriptomics are
perhaps the most obvious method for doing this, as they allow
for expression to be dissected into cell type-specific signals, al-
ready helping to deconvolve immune responses within the tumor
microenvironment, for example (80). Building on our knowledge
from many experiments offers a route toward progressive refine-
ment of expression studies, improving our understanding of mo-
lecular mechanisms in both health and disease.

Methods
Data Availability. The DE prior is available for download from GitHub (https://
github.com/maggiecrow/DEprior) (11) and may also be found in Dataset S2.
Dataset S1 contains all study metadata from Gemma, and associated prior
AUROCs supporting Figs. 1, 2, and 4. Additional supplementary materials
may be found on GitHub.

Gemma, Gene Sets, and R. Data preprocessing and DE analyses were per-
formed using the Gemma web server (9). In brief, Gemma imports data series
from Gene Expression Omnibus (GEO) (GSE*) along with sample annotations

if they are available (GDS*). Annotations are supplemented with manual
curation of both samples and experiments using ontologies with fixed vo-
cabularies to assist with data retrieval (e.g., Disease Ontology, Cell Line
Ontology). To facilitate cross-platform comparisons, probe sets from each
expression platform (GPL*) are reannotated at the sequence level as de-
scribed (81). Quality control checks are performed to remove outliers and
adjust for possible batch effects, and DE analysis is computed using linear
modeling approaches followed by multiple hypothesis test correction as
described (82, 83). R (84) was used for all other analyses. Means ± SDs are
reported throughout, unless otherwise specified.

Human GO and gene annotations were downloaded from the GO Con-
sortium in February 2017. For platform-specific analyses, GO was subset
to genes assayed within a given platform. For all tests, only GO terms with
20–1,000 annotated genes were used. Other gene functional annotations
were curated as in ref. 85 and are available on GitHub (https://github.com/
sarbal/EffectSize). PAM50 genes were sourced from ref. 86. Housekeep-
ing genes from bulk microarray (35), and the two single-cell gene sets
(39, 40), were downloaded from the personal website of Johann Gagnon-
Bartsch, Department of Statistics, University of Michigan, Ann Arbor, MI, in
December 2018 (www-personal.umich.edu/∼johanngb/ruv/). Housekeeping
genes from bulk RNA-seq (36) were downloaded in December
2018 from https://www.tau.ac.il/∼elieis/HKG/.

DE Prior. Priors were calculated as described (10) using the calculate_multifunc
function in the EGAD package (29). In brief, this involves scoring each gene
as a function of both the number of gene sets it appears in (e.g., DE hit
lists), as well as the size of each gene set. This can be expressed mathe-
matically as follows:

Gene i   score =
X

gene
sets

1
Npos *Nneg

,

where each gene set has an Npos (number of genes within it) and an Nneg
(number of genes outside it). A given gene’s score is then calculated as the
sum, over all sets of which that gene is a member, of the reciprocal of the
product of Npos and Nneg for each gene set. Genes are then ranked by their
score. We specifically call this “multifunctionality” when the gene sets are
derived from the GO as in ref. 10 and use the term “DE prior” for gene sets
empirically derived from expression data. We use leave-one-out cross-
validation to avoid overfitting DE priors, repeating the calculation for
each DE hit list to be predicted. To generate a stable ranked list for char-
acterization, we assign each gene its minimum rank from the cross-validated
priors. This “minimum-rank” prior has slightly higher performance on av-
erage than the fully cross-validated version (AUROC 0.87 vs. 0.83; SI Ap-
pendix, Fig. S3). As noted, it is used for the evaluation of external gene sets,
such as PAM50, and is the basis of the clustering and enrichment analysis
described in Fig. 3.

Filtering Gemma to Define the Compendium. In Gemma, experiments com-
monly have multiple conditions in their study design. For example, a single
GEO series may contain multiple condition comparisons, such as age, sex,
treatment, or tissue type, and these would all be assessed separately as
parameters in a single linear model. To avoid weighting the DE prior toward
studies with many experimental factors, we subset the database to include
only a single condition contrast per GEO accession, chosen based on the
maximum total number of samples. Where there were ties, the first listed
conditionwas taken to be the exemplar. For each experiment, DE results were
thresholded to only include genes with an absolute log2 fold change >2 and
those with FDR of <0.05. This left us with a vector of 0s and 1s that indicated
whether or not a gene was differentially expressed within each study, and
these were used as our “gene sets” for calculating the DE prior, as defined
above. These strict inclusion criteria were imposed to minimize the inclusion
of false positives among DE hit lists, as it has previously been shown that, at
the same FDR threshold, genes of larger effect size are more replicable
across studies (87). Reducing the threshold to include all genes with log2 fold
change of >j1j at FDR < 0.05 would have increased the total number of
datasets in the compendium from 635 to 719 while slightly decreasing the
performance of the prior (AUROC, 0.79 ± 0.1).

Gene Properties as Priors. To explore properties of genes that contribute to
high performance more broadly, we took advantage of previous efforts from
the J.G. laboratory to compile functional annotation data from a wide va-
riety of sources (85) and used these as priors for predicting DE hit lists. This
consisted of ranking each annotation vector using tied ranks, and then using
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these as the “optimallist” for the auc_multifunc function from the EGAD
package (29) to calculate AUROCs for each DE hit list. AUROCs for each
prior and study may be found on GitHub (https://github.com/maggiecrow/
DEPrior).

Characterizing Top Genes. To determine whether top 1% genes might be
regulated as modules, we assessed their coexpression in a large aggregate
network generated from 75 expression studies as described previously (27). In
brief, the network is a dense weighted network in which each individual
study is rank-standardized across all gene–gene correlations and then those
matrices are averaged across all studies. Node degrees are calculated con-
ventionally as the summation of weights for a gene to all other gene pairs.
The aggregate network (30,491 × 30,491 genes) was subset to genes that
make up the top 1% of the prior (186 of 192 could be identified), and a
nearest-neighbor graph was built using the nng function in the cccd package
(88), using 1-coexpression as the distance metric and setting k = 10. The
nearest-neighbor graph was then clustered using the Walktrap algorithm
(28) as implemented in the igraph package (89). Cluster robustness was
assessed using the neighbor_voting function within the EGAD package (29),
performing threefold cross-validation on the subnetwork (186 × 186 genes)
and specifying AUROC as the output metric. Finally, clusters were evaluated
for GO enrichment using the hypergeometric test.

Data Subsetting by Funding Information and Clustering. To find funding in-
formation for studies, we used the RISmed package (90), querying for Agency
based on PubMed identifiers included in Gemma. Funding sources that had
supported 10 or more experiments were included for further analysis (222 of
635). Priors for studies funded by the same source were defined using leave-
one-out cross-validation, as described. To directly compare with global prior
performance (Fig. 4 A and B), we recalculated the DE prior using only the
subset of studies included for the funding agency analysis. To plot the
heatmap in Fig. 4D, we performed functional enrichment for all 222 studies
using GO terms with 20–1,000 genes (∼4,000 terms) as well as our six clusters.
Clusters were marked as enriched within studies where they ranked in the
top 1% of all gene sets by P value.

Clusters of similar DE hit lists were defined by first performing hierarchi-
cal clustering of Euclidean distances with average linkage, then using the

cutreeDynamicmethod (22) with the following parameter settings: deepsplit= 2,
minClusterSize = 10, and pamRespectsDendro = FALSE. This resulted in
155 clusters, 88 of which contained two or more studies and were used for
further analysis. Cluster-specific priors were defined using leave-one-out cross-
validation as described.

Reanalysis of Single-Cell Pancreas RNA-Seq, Kidney Transplant Rejection, and
Lung Adenocarcinoma Data. Five single-cell datasets from human pancreas
(43–47) were downloaded from the laboratory website of M. Hemberg,
Wellcome Sanger Institute, Hinxton, UK (https://hemberg-lab.github.io/
scRNA.seq.datasets/human/pancreas/), in July 2016. DE was performed be-
tween samples labeled as alpha cells and beta cells using the Wilcoxon rank
sum test in R (wilcox.test), and fold changes were calculated as log2(mean
(alpha) + 1) − log2(mean(beta) + 1) on standardized counts. Since only one
gene met the thresholds in the Baron dataset, we included all genes with the
minimum P value in the DE hit list.

Processed and parsed kidney transplant rejection data and lung adeno-
carcinoma data were kindly provided by Purvesh Khatri, Stanford University,
Stanford, CA, and Timothy Sweeney, Inflammatix, Burlingame, CA, as RDS
files (87), and limma (91) was used for DE analysis. We defined DE genes
within each experiment as those with FDR of <0.05 and log2 fold change
of >2 in the case of lung adenocarcinoma and >1.3 in the case of transplant
rejection. Six of these experiments were included in our original com-
pendium, so in addition to plotting the DE prior ranks for all genes (Fig.
5), we also recalculated priors after excluding the overlapping studies for
each phenotype (SI Appendix, Fig. S4), which yielded comparable results.
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