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Abstract: Non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS) are associated
with chronic kidney disease (CKD). Diet could play a predisposing role in the development of
increased albuminuria in patients with NAFLD and MetS; however, published evidence is still
limited. The aim of this cross-sectional analysis was to assess whether dietary fats are associated with
changes in urinary albumin-to-creatinine ratio (UACR) in 146 patients aged 40–60-years with NAFLD
and MetS. Dietary data were collected by food frequency questionnaire; UACR was measured
in a single first morning void. Sources and types of dietary fats used in the analysis were total
fat, fats from animal and vegetable sources, saturated, monounsaturated, polyunsaturated, and
trans fats. One-way analysis of variance was performed to assess differences in dietary fats intakes
across stages of UACR. The association between dietary fats and UACR was assessed by Pearson’s
correlation coefficient and multivariable linear regression. Patients with increased UACR showed
a worse cardiometabolic profile and higher intakes of animal fat, as compared to patients with
normal levels of albuminuria. Animal fat intake was associated with mean UACR, independent of
potential covariates.

Keywords: dietary intake; animal fat; NAFLD; metabolic syndrome; albuminuria; albumin-to-
creatinine ratio

1. Introduction

Increased albuminuria, defined as urine albumin-to-creatinine ratio (UACR) ≥
30–300 mg/g [1], is a well-established early marker of chronic kidney disease (CKD) and
a risk factor for cardiovascular disease (CVD) and cardiovascular mortality as well as
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all-cause mortality in patients with metabolic syndrome (MetS) [2–5]. Importantly, recent
evidence from population-based studies shows that even within the conventional normal
range, albuminuria is associated with MetS and cardiovascular risk factors in the general
population [3,4,6,7], and that it can independently predict kidney disease progression in
individuals with and without diabetes [8].

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS, and
is also an independent risk factor for CKD, CVD, cardiovascular mortality, and all-cause
mortality [9–12]. Moreover, patients with NAFLD are more likely to have higher levels
of albuminuria as compared to patients without [13–15]. The manifestation of increased
albuminuria in NAFLD can possibly worsen the pathophysiology of CKD and CVD even
further, making this population at particular risk.

Unhealthy lifestyle factors may influence the development of albuminuria; however,
studies are very limited. In general, poor diet quality, sedentary lifestyle, and obesity have
been associated with an increased risk of developing increased albuminuria in participants
with normal renal function [16–19]. On the other hand, weight loss could reduce increased
UACR and proteinuria in patients with T2DM and MetS, possibly helped by improved
insulin sensitivity, blood pressure, and serum lipid profile [20–22].

Studies looking at specific nutrients have mainly focused on proteins and shown that
a high intake might contribute to kidney dysfunction in T2DM patients as well as in the
general population [23–27]. Increased intakes of proteins from animal sources seem to
be more strongly associated with a worse renal outcome as compared with proteins from
plants [19,28]; however, such findings have not always been confirmed, with some studies
arguing that the total quantity of proteins, rather than their source, is more likely to affect
renal health [28,29]. Despite the important role that diet might play in both the prevention
and the possible amelioration of albuminuria, evidence is still limited, and more studies
are needed.

An important gap in research exists about the role of dietary fats on albuminuria
in patients with MetS. In the general population, saturated fats, hence fats from animal
sources, have been associated with high levels of albuminuria [30,31]; however, it is
unknown whether this association exists in patients with MetS and NAFLD.

The aim of this study is to assess the role of dietary fats intakes on albuminuria in
patients with NAFLD and the MetS.

2. Materials and Methods
2.1. Study Design

The present study is a cross-sectional analysis that uses data from an ongoing multi-
center prospective randomized controlled trial on the effects of a customized dietary and
physical activity intervention on changes in liver fat deposits over a period of 24 months.
The study is carried out by the Research group on Community Nutrition and Oxida-
tive Stress of the University of the Balearic Islands and the Department of Food Science
and Physiology of the Faculty of Pharmacy and Nutrition of the University of Navarra,
Spain. Baseline data used in the present analysis were collected between October 2017 and
November 2019.

2.2. Subjects

The present cross-sectional analysis includes 146 patients with a diagnosis of NAFLD
by liver ultrasound, aged between 40 and 60 years, with a body mass index (BMI) be-
tween 27 and 40 kg/m2, and suffering from the MetS, as presenting at least three of
the main MetS traits as described in the International Diabetes Federation (IDF) con-
sensus [32]: (1) BMI > 30 kg/m2 or increased waist circumference: ≥94 cm in males and
≥80 cm in females; (2) triglycerides (TG) levels ≥ 150 mg/dL (1.7 mmol/L) or specific treat-
ment; (3) reduced HDL cholesterol: <40 mg/dL (1.03 mmol/L) in males and <50 mg/dL
(1.29 mmol/L) in females or specific treatment; (4) raised blood pressure (BP): systolic
BP ≥ 130 or diastolic BP ≥ 85 mm Hg or treatment of previously diagnosed hyperten-
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sion; (5) raised fasting plasma glucose (FPG) ≥ 100 mg/dL (5.6 mmol/L) or previously
diagnosed type 2 diabetes.

Participants were excluded when they had the following exclusion criteria: docu-
mented history of previous cardiovascular disease; documented history of previous liver
disease with the exception of NAFLD; concomitant or previous (within 5 years) malig-
nant tumor; previous surgical procedure for weight loss (bariatric surgery); acute febrile
illness; concomitant urinary tract infection or post renal hematuria; hemochromatosis;
severe/nephrotic-range albuminuria; non-medicated depression and anxiety; chronic
abuse of drugs or alcohol; obesity associated with endocrine disease (except medicated hy-
pothyroidism); treatment with steroids; intense physical exercise; pregnancy; unwillingness
to provide informed consent.

2.3. Ethics

The Ethics Committee of the Balearic Islands (ref. IB 2251/14 PI) and the Ethics
Committee of the University of Navarra (ref. 054/2015mod2) approved this trial, which fol-
lowed the Declaration of Helsinki. All participants were informed of the study and signed
a written consent. This study was recorded at ClinicalTrials.gov (number NCT04442620;
https://clinicaltrials.gov/ct2/show/NCT04442620; accessed on 14 February 2021).

2.4. Anthropometrics and Blood Pressure

Height, body weight, BMI, and waist circumference (WC) were collected by trained
dietitians. Height was measured by the nearest millimeter using a mobile stadiometer
(Seca 213, SECA Deutschland, Hamburg, Germany) with the patient’s head positioned
parallel to the soil (along the horizontal Frankfort plane). Weight was measured using the
Tanita MC780P-MA digital segmental body composition analyzer (Tanita, Tokyo, Japan),
with the patient wearing light clothes (for which 0.6 kg was subtracted from the total), and
bare feet. BMI was calculated by dividing the weight in kg by the square of the height
in cm. WC was measured using a measurement tape with the patient standing upright.
The measurement was taken in duplicate, and the average of the two measurements was
used for analysis. Blood pressure (BP) was measured in the non-dominant arm, with the
patient resting in a seated position, using a validated semi-automatic oscillometer (Omron
HEM-705CP, Hoofddorp, The Netherlands). The measurement was taken in triplicate,
2 min apart, and the average of the three measurements was used for analysis.

2.5. General Data and Medical History

Information on socioeconomics, medical history, use of medication, previous diseases,
and smoking habits were obtained from all participants. As for alcohol consumption,
participants were asked the average weekly consumption of alcoholic beverages and given
the option to answer as either “none”, “<7”, or “≥7”. Those patients who were consuming
more than 7 alcoholic beverages a week were excluded if presenting a recorded history of
alcohol abuse or if considered to present a drinking problem by their primary healthcare
physician. Leisure time physical activity over the previous 12 months was also recorded by
means of the validated Spanish version of the Minnesota Leisure Time. Physical activity
was expressed as metabolic equivalents of tasks per hour (MET/h) [33,34].

2.6. Total Energy and Dietary Fats Intake

Total energy expressed as Kcal per day (Kcal/d), total fat, fats from animal and veg-
etable sources, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyun-
saturated fatty acids (PUFA), and trans fatty acids (TFA), expressed as grams per day (g/d),
were derived from the analysis of a validated Food Frequency Questionnaire consisting
of 148 food and drink items (148 items-FFQ) [35], which assesses dietary intakes over the
previous 12 months.

https://clinicaltrials.gov/ct2/show/NCT04442620
https://clinicaltrials.gov/ct2/show/NCT04442620
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2.7. Blood Collection and Analysis

Venous blood samples from all participants were collected after a 12 h night-time
fast in one EDTA sample tube for plasma and one citrate sample tube for serum and
centrifugated at 3000 rpm for 10 min. Samples were analyzed for fasting glycemia, glycated
hemoglobin (HbA1c), bilirubin, aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), gamma-glutamyl transferase (GGT), uric acid, urea, creatinine, albumin,
total cholesterol, high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and
C-reactive protein (CRP) on the Abbott ARCHITECT c16000 (Abbott Laboratories, Abbott
Park, IL, USA), employing specific commercial kits. Low-density lipoprotein cholesterol
(HDL-C) was calculated by using the Friedewald Formula [36]. Serum fasting insulin was
assayed on the Cobas e411 automated analyzer (Roche, Switzerland), or on the Triturus
autoanalyzer (Grifols, Barcelona, Spain), depending on the recruiting center, using either an
enzyme-based electrochemiluminescence assay or an enzyme-linked immunosorbent assay
kit. A single spot urine specimen collected in the early morning was requested to each par-
ticipant to measure urinary albumin and creatinine excretion. Urine albumin concentration
was determined by immunoturbidimetric assay and urine creatinine by a modified Jaffe
method on an Abbott ARCHI-TECT c16000. Urine albumin-to-creatinine ratio (UACR)
was expressed as mg/g. Normal albuminuria was defined as UACR < 10 mg/g, mildly
increased albuminuria was defined as UACR ≥ 10–29 mg/g, and moderately increased
albuminuria was defined as ≥30–300 mg/g.

Insulin resistance index was calculated using the Homeostatic Model Assessment for
Insulin Resistance (HOMA-IR) formula by Matthews et al. [37]; estimated GFR (eGFR)
was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)
formulas [38] and expressed as mL/min/1.73 m2.

2.8. Statistical Analyses

Statistical analyses were carried out using the SPSS statistical software package version
25.0 (SPSS Inc., Chicago, IL, USA). Continuous variables were expressed as means ± stan-
dard deviation (SD), and categorical variables were expressed as frequencies. Assumption
of normality for continuous variables was assessed with the Shapiro–Wilk test and visual
inspection of histograms and normal probability plots.

One-way analysis of variance (ANOVA) (equal variance) or Welch’s t-test (unequal
variance) for continuous variables and χ2 test for categorical variables, were used to
compare unadjusted means and frequencies of clinical characteristics and dietary intakes
of patients stratified by UACR status (normal, mildly, and moderately increased). The
Bonferroni test was used for post hoc analyses.

Linear associations between variables were evaluated by Pearson’s correlation coeffi-
cient. Covariates with a level of significance (p) below 0.05 (two-tailed) were entered in
multiple linear regression models to investigate their association with UACR.

Multivariable regression analyses were carried out separately according to type of
fat exposure (source of fat: animal and vegetable; type of fat: MUFA, PUFA, SFA, and
TFA), adjusted for energy intakes (Kcal/d). Significant models were then further adjusted
for gender (male/female), age (years, continuous variable), smoking (yes/no), alcohol
consumption over 20 g/d (yes/no), and physical activity (MET/h, continuous variable).

All p-values were two-sided, with p < 0.05.

3. Results

Of the 146 patients with ultrasound proven NAFLD and MetS included in the analysis,
58 were women (39.7%), 24 (16.4%) were current smokers, and 25 (17.1%) were consuming
more than 20 g of alcohol a day. Mean ± SD age was 52 ± 7, and mean BMI was 33.71 ± 3.72;
102 (69.9%) patients presented normal levels, 24 (16.4%) mildly increased levels, and 20
(13.7%) increased levels of albuminuria. The prevalence of T2DM was 21.2% (n = 31), and
of high BP was 34.9% (n = 51).
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Characteristics of the study cohort as stratified by UACR status are displayed in
Table 1. As compared to patients with normal levels of albuminuria, patients with UACR
30–300 mg/g presented a higher diastolic BP, and higher levels of fasting glucose, HbA1c,
and HOMA-IR than patients with normal albuminuria. They were also more likely to
be male and present higher serum creatine levels than patient with mildly increased
albuminuria. Finally, patients with mildly increased albuminuria presented a higher eGFR
than those with normal albuminuria. There were no significant differences across UACR
status for age, smoking status, alcohol consumption, waist and hip circumferences, body
weight, BMI, systolic BP, heart rate, total-cholesterol, HDL-C and LDL-C, TG, prevalence of
T2DM, high BP, physical activity levels (expressed as MET/h), and use of medications.

Table 1. Differences in patients’ characteristics across stages of UACR.

UACR < 10 mg/g UACR ≥ 10–29 mg/g UACR 30–300 mg/g p * Post Hoc
n 102 24 20

Age (y) 52.58 ± 8.03 51.17 ± 6.10 52.80 ± 6.07 0.690
Gender [n (%)] 0.010

Females 41 (40.2) 14 (58.3) 3 (15.0) b > c
Males 61 (59.8) 10 (41.7) 17 (85.0) c > b

Alcohol (≥20g/d) [n (%)] 20 (19.6) 3 (12.5) 2 (10.0) 0.450
Currently smoking [n (%)] 18 (17.6) 3 (12.5) 3 (15.0) 0.820
Waist circumference (cm) 111.02 ± 8.74 112.08 ± 9.61 115.79 ± 10.21 0.100

Weight (kg) 94.21 ± 13.04 94.84 ± 14.62 100.62 ± 15.75 0.160
BMI (kg/m2) 33.27 ± 3.58 34.58 ± 3.35 34.82 ± 4.47 0.110

Systolic BP (mm Hg) 133.56 ± 13.68 135.90 ± 15.13 141.06 ± 16.97 0.100
Diastolic BP (mm Hg) 83.88 ± 8.60 86.15 ± 9.78 89.73 ± 10.47 0.030 c > a

Physical activity (MET/h) 20.36 ± 19.48 18.28 ± 19.55 14.06 ± 14.35 0.400
Fasting glucose (mg/dL) 109.03 ± 25.49 123.83 ± 57.87 148.35 ± 83.04 0.001 c > a

HbA1c (%) 5.93 ± 0.85 6.19 ± 1.46 6.99 ± 2.54 0.005 c > a
HOMA-IR 5.20 ± 3.10 6.80 ± 3.64 9.61 ± 9.53 0.040 c > a

Total cholesterol (mg/dL) 197.73 ± 44.30 196.63 ± 33.24 195.35 ± 36.36 0.970
HDL cholesterol (mg/dL) 44.74 ± 11.01 43.59 ± 7.14 42.31 ± 10.34 0.600
LDL cholesterol (mg/dL) 118.72 ± 35.90 114.74 ± 27.16 106.34 ± 31.28 0.340

Triglycerides (mg/dL) 175.43 ± 125.54 191.50 ± 115.09 239.20 ± 149.50 0.130
AST (U/L) 25.81 ± 13.28 23.83 ± 9.87 30.06 ± 15.52 0.300
ALT (U/L) 35.85 ± 30.98 35.67 ± 25.40 44.85 ± 34.22 0.470
GGT (U/L) 50.37 ± 63.77 49.29 ± 22.29 49.05 ± 30.88 0.990

Serum creatinine (mg/dL) 0.84 ± 0.15 0.77 ± 0.14 0.92 ± 0.19 0.005 c > b
eGFR (ml/min/1.73m2) 85.99 ± 19.28 97.50 ± 14.47 83.78 ± 23.09 0.010 b > a

HBP [n (%)] 36 (35.3) 6 (25.0) 9 (45.0) 0.380
T2DM [n (%)] 21 (20.6) 5 (20.8) 5 (25.0) 0.910

Use of hypoglycemic agents (any) [n
(%)] 20 (19.6) 4 (16.7) 5 (25.0) 0.783

Oral hypoglycemic agents alone 19 (18.6) 3 (12.5) 4 (20.0) 0.750
Insulin and oral hypoglycemic agents 1 (1.0) 1 (4.2) 1 (5.0) 0.372
Antihypertensive agents (any) [n (%)] 36 (35.3) 6 (25.0) 9 (45.0) 0.379

Diuretic 9 (8.8) 3 (12.5) 4 (20.0) 0.331
β-Blocker 6 (5.9) 0 (0.0) 2 (10.0) 0.331

Calcium-channel blockers 5 (4.9) 0 (0.0) 3 (15.0) 0.084
ACEi/ARBs 31 (30.4) 6 (25.0) 9 (45.0) 0.330

Lipid-lowering agents (any) [n (%)] 29 (28.4) 4 (16.7) 5 (25.0) 0.494
Statin alone 20 (19.6) 4 (16.7) 3 (15.0) 0.861

Fibrate alone 7 (6.9) 0 (0.0) 1 (5.0) 0.411
Statin and fibrate 2 (2.0) 0 (0.0) 1 (5.0) 0.504

Abbreviations: ACEi: angiotensin converting enzyme inhibitors; ALT: alanine aminotransferase; AST: aspartate aminotransferase; ARBs:
angiotensin II receptor blockers; BMI: body mass index; BP: blood pressure; eGFR: estimated glomerular filtration rate; GGT: gamma-
glutamyl transferase; HbA1c: glycated hemoglobin; HBP: high blood pressure; HDL cholesterol: high-density lipoprotein cholesterol;
HOMA-IR: Homeostatic Model Assessment for Insulin Resistance; LDL cholesterol: low-density lipoprotein cholesterol; METs: metabolic
equivalents; T2DM: type 2 diabetes mellitus; UACR: urine albumin-to-creatinine ratio. Data are presented as mean ± standard deviation
or counts (%). * p obtained by one-way ANOVA (equal variance) or Welch’s t-test (unequal variance) for continuous variables and χ2

test for categorical variables. Post hoc test by Bonferroni: a = UACR < 10 mg/g group; b = UACR ≥ 10–29 mg/g group; c = UACR ≥
30–300 mg/g group.
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In terms of total energy and dietary fats intakes, as displayed in Table 2, patients with
moderately increased albuminuria presented higher intakes of animal fat than those with
normal albuminuria. No other significant differences were found across the three groups.

Table 2. Difference in fat intakes across stages of UACR.

Mean Daily Intakes UACR < 10 mg/g UACR ≥ 10–29 mg/g UACR ≥ 30–300 mg/g p * Post Hoc
n 102 24 20

Total Energy (Kcal) 2458.92 ± 840.92 2334.95 ± 533.24 2720.89 ± 978.34 0.300
Total fat (g) 103.75 ± 37.69 106.88 ± 39.37 116.77 ± 39.03 0.400

Animal fat (g) 49.35 ± 21.51 47.49 ± 20.30 66.70 ± 31.80 0.030 c > a
Vegetable fat (g) 59.79 ± 27.14 65.36 ± 30.76 72.98 ± 32.67 0.280

MUFA (g) 49.76 ± 19.68 53.40 ± 19.86 55.55 ± 18.10 0.420
PUFA (g) 16.68 ± 6.37 17.68 ± 12.10 17.48 ± 7.96 0.820
SFA (g) 28.82 ± 12.28 28.63 ± 10.63 35.03 ± 14.00 0.120
TFA (g) 0.75 ± 0.47 0.90 ± 0.64 0.97 ± 0.51 0.130

Abbreviations: MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; SFA: saturated fatty acids; TFA: trans fatty acids;
UACR: urine albumin-to-creatinine ratio. Data are presented as mean ± standard deviation. * p obtained by one-way ANOVA (equal
variance) or Welch’s t-test (unequal variance). Post hoc test by Bonferroni: a = UACR < 10 mg/g group; c = UACR ≥ 30–300 mg/g group.

As shown in Table 3 and Figure 1, Pearson’s correlation analysis suggested that UACR
was significantly correlated with total energy, total fat, fat from animal sources, fat from
vegetables sources, PUFA, SFA, and TFA (all p > 0.05). Multivariable regression analyses
showed that animal fat was the only significant predictor of UACR increase, indepen-
dently of total caloric intake (SβC (standardized β-coefficient) = 0.41, p = 0.013; R2 = 0.159,
p = 0.001). When the model was adjusted for gender, age, smoking status, alcohol consump-
tion, physical activity, and treatment with angiotensin converting enzyme inhibitors (ACEi)
or angiotensin II receptor blockers (ARBs), animal fat remained significantly associated
with increased UACR (SβC = 0.43, p = 0.013; R2 = 0.202, p = 0.020).

Table 3. Correlation and multivariable analyses of the relationship between UACR (mg/g) and energy and dietary fats.

Correlation Analysis Multivariable Analysis (1) Multivariable Analysis (2)
r p SβC p SβC p

Total energy (Kcal/d) 0.21 0.012 −0.11 0.61 0.03 0.88

Total fat (g/d) 0.20 0.017
Animal fat (g/d) 0.39 <0.001 0.41 0.013

Vegetable fat (g/d) 0.24 0.018 0.15 0.31

MUFA (g/d) 0.12 0.16
PUFA (g/d) 0.18 0.04 0.04 0.68
SFA (g/d) 0.25 0.003 0.16 0.47
TFA (g/d) 0.20 0.02 0.06 0.65

Abbreviations: MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; SFA: saturated fatty acids; TFA: trans fatty acids;
SβC: standardized β-coefficient. (1): multivariable model including energy, fat from animal sources and fat from vegetable sources as
predictors, R2 = 0.159, p = 0.001; (2): multivariable model including energy, PUFA, SFA, and TFA as predictors, R2 = 0.064, p = 0.061.
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Figure 1. Pearson’s correlation analysis between UACR and dietary fats (all p < 0.05). Abbreviations:
PUFA: polyunsaturated fatty acids; SFA: saturated fatty acids; TFA: trans fatty acids; UACR: urine
albumin-to-creatinine ratio.

4. Discussion

In the current study, dietary fat from animal sources was significantly associated with
increased UACR. The association was independent of mean caloric intake, gender, age,
smoking, alcohol consumption, physical activity, and use of ACEi or ARBs. Consistently,
consumption of animal fat was higher in patients with moderately increased albuminuria
compared to those with normal albuminuria.

In genetic and non-genetic animal models of MetS, consumption of a high-fat diet of
mainly animal sources significantly altered the kidney structure and function, inducing
increased albuminuria, renal injury, and inflammation, when compared to rats fed a low-fat
diet [39–41]. Moreover, when quantity of feeding and fat was restricted, further alterations
at kidney level were prevented [39]. On the other hand, consumption of unsaturated fats
from vegetable sources improved albuminuria, inflammation, and extracellular matrix
synthesis in diabetic rats as compared to placebo [42]. At renal level, it was observed
that a diet rich in animal fat accelerated renal lipogenesis and suppressed renal lipolysis,
with a subsequent accumulation of fat (mainly triglycerides) in both the glomerular and
proximal tubules [39,40,43]. In an abnormally metabolic state, excess lipid accumulation
in the kidney led to the disruption of the structural integrity of the glomerulus [39,40],
induced macrophage infiltration, impaired sodium handling, and increased expression
of renin and angiotensinogen [39] and promoted mitochondrial disfunction and, thus,
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increased oxidative stress and inflammation [43]. In humans, whether lipid accumulation
in the kidney is always an etiological factor in the development of glomerular hypertrophy
is unknown; however, renal biopsy tissues from patients with T2DM and obesity-related
glomerulopathy showed increased lipid deposits in mesangial cells, podocytes, and proxi-
mal tubular cells, and most importantly, the extent of the accumulation was proportional
to UACR, renal injury, inflammation, and metabolic state [44,45].

Population-based studies observe an association between fat intake, and especially
saturated fat, and albuminuria. Specifically, a study on women between the age of 30
and 55 found an odds ratio (OR) of 1.72 (95% confidence interval (CI): 1.12–2.64) when
comparing the lowest with the highest quartile of animal fat intake, and an OR of 1.51
(95% CI: 1.01–2.26) when consuming two or more servings/week of red meat for the risk
of increased albuminuria [30]. Another cross-sectional study investigating the association
between animal fat and early kidney disease in 19,256 participants aged 45 years and older
found that saturated fat intake was the only type of fat significantly associated with the
presence of high albuminuria (for quintile 5 compared with quintile 1, OR: 1.33; 95% CI:
1.07–1.66) [31]. To the best of our knowledge, no other published data are available on the
relation between animal fat intake and albuminuria in the general adult population, and
no studies are available in subjects with MetS and NAFLD. Nevertheless, all together, these
consistent observations corroborate the hypothesis that dietary fat from animal sources
may play a role in the development of albuminuria, and possibly more so when important
risk factors such as MetS and NAFLD are already present.

Unfortunately, our data on animal fat could not differentiate between fat from meat
and fat from fish. Some studies on protein sources suggest that fish proteins do not affect
albuminuria as much as proteins from meat and meat products [28,46], and the same could
be true for fat. Several studies on omega-3 polyunsaturated FA supplementation report
beneficial effects on urinary albumin excretion and kidney function in patients with and
without diabetes [47–50], possibly by decreasing inflammation and endothelial dysfunction,
as well as reducing hypertension and dyslipidemia [51].

Of note, about one third of patients were receiving renin–angiotensin system inhibitor
therapy, and it could be speculated that in those patients the detrimental effect of increased
animal fat consumption on UACR could be curbed by the renoprotective properties of the
therapy [52]. Nevertheless, in multivariate analysis, the relationship between animal fat
intake and UACR was independent of ACEi or ABRs therapy.

5. Strengths and Limitations

The main limitation of the study is that it was not designed to specifically look at
predictors of UACR. Hence, patients were not included according to different stages of
UACR, and the vast majority presented levels within the normal range. In fact, only 20 cases
presented increased albuminuria. This could explain the weak association, although
significant, between UACR and dietary fats. Another limitation is the limited number of
patients: a bigger sample could give a more confident answer to the possible relationship
between type of fat and the development of increased albuminuria.

6. Conclusions

In the current study of patients with MetS and NAFLD, but free of CVD and CKD,
consumption of fat from animal sources was associated with increasing levels of albu-
minuria, independently of mean energy intake and other possible confounding factors.
Increased albuminuria is a risk factor for both CKD and CVD, which in turn, weigh heavily
on the economic resources of households, health systems, and society [53]. Despite the
study’s limitation, these results point out that something as simple as dietary choices could
indirectly contribute to the burden.

Patients with MetS and NAFLD are exposed to an increased incidence of a variety
of clinical conditions, which could worsen to serious health implications as they manifest
and coexist. Besides early screening and appropriate care, it is also fundamental to raise
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awareness about the effects of dietary choices in the development of chronic diseases. Large
intervention studies with prospective dietary measures are needed to elucidate the role of
diet in the possible modification of renal vascular dysfunction as an early CVD predictor in
patients with metabolic syndrome.
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