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Abstract

Background: Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for
understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess
nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described
based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced
Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses.

Methodology & Principal Findings: We developed a new experimental setup so that the NIFT technique can be used to
assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea
lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus.
Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-
limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf
alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The
results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to
phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result,
with a stronger NIFT response to nitrate and ammonium than to phosphate.

Conclusions & Significance: Our extension of the NIFT technique offers an easy and fast method (30–60 min per sample) to
determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral
reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other
marine and freshwater ecosystems.
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Introduction

Eutrophication can lead to highly adverse changes in the

structure and functioning of freshwater and marine ecosystems [1–

3]. Enrichment with nitrogen (N) and phosphorus (P) often relieves

primary producers from nutrient limitation, enhancing the

productivity of micro- and macroalgae. This may result in reduced

water clarity, development of harmful algal blooms, nighttime

oxygen depletion, strong diel fluctuations in pH, and the

smothering of coral reefs and other benthic communities [2,4–

6]. Therefore, a fast and easy method to identify which nutrients

limit the primary production of micro- and macroalgae can be of

considerable value to assess potential effects of future nutrient

enrichments, and may help to increase the effectiveness of nutrient

reduction programs in a wide variety of different water bodies.

Existing methods to assess nutrient limitation in macroalgae and

aquatic plants are based on (1) analysis of ambient nutrient

concentrations [7,8], (2) element ratio analysis of algal tissue [8–

10], and (3) nutrient enrichment assays [8,11–14]. Analysis of

ambient nutrient concentrations in the overlying water can be fast,

but is not sufficiently informative to determine the nutrient status

of benthic organisms. Element ratio analysis of algal tissue and

nutrient enrichment assays may take considerable amounts of time

to identify nutrient limitation in algae, often lasting several hours

or days. Furthermore, especially in nutrient enrichment assays, the

organisms are often studied under artificial conditions, possibly

complicating the interpretation of results. Hence, there is a need

for a fast and informative technique that can be easily applied in

situ. For phytoplankton, such a method exists in the form of

Nutrient-Induced Fluorescence Transient (NIFT) experiments,

where nutrient limitation can be detected within minutes [15].

NIFT experiments are based on the principle that addition of

limiting nutrients induces transient changes in chlorophyll a

fluorescence, which can be detected with a Pulse Amplitude
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Modulation (PAM) fluorometer [15–20]. Enhanced uptake and

assimilation of limiting nutrients increases the demand for ATP

and/or reductants. This relieves pressure on the photosynthetic

electron transport chain, which can alter non-photochemical

quenching, the redox state of the plastoquinone pool, state

transitions between photosystems I and II, and the relative

importance of linear versus cyclic electron transport [21]. These

changes affect the fluorescence signal since the processing of

absorbed light energy by photochemistry, fluorescence and heat

dissipation occurs in competition [22]. Hence, a transient change

in fluorescence upon nutrient addition provides direct evidence for

a change in algal nutrient status. When a non-limiting nutrient or

distilled water is added to a phytoplankton culture, generally no

change in fluorescence is observed [9].

Since the photosynthetic apparatus operates essentially in a

similar way across all oxygen-producing phototrophic organisms,

the NIFT technique should in principle be applicable not only to

phytoplankton but also to macroalgae, seagrasses and other

aquatic plants. However, a major obstacle for application of the

NIFT technique to macroalgae and aquatic plants is that they

cannot be homogeneously resuspended in a cuvette, which is

standard procedure for microalgae [9,15]. The leaf clips

commonly used in PAM fluorometry with macroalgae and

seagrasses are not suitable for NIFT studies, because they either

cannot hold the sampled leaf at exactly the same position or they

interfere with full access of the leaf to the nutrients added during a

NIFT experiment. To address this issue, we developed a special

set-up that we have called the PAM fluoroscope. This set-up uses a

magnetic leaf clip that allows easy and even addition of a nutrient

pulse, while keeping the sample in exactly the same position in

front of the PAM sensor.

In this study, we tested the applicability of the NIFT technique

to macroalgae and sea grasses. We first used laboratory-controlled

conditions to ensure that sea lettuce (Ulva lactuca) became either N

or P starved, and followed its fluorescence after re-supply of the

limiting and non-limiting nutrient to assess its NIFT response.

After successful testing of the method, we collected samples of the

macroalga Lobophora variegata from a degraded and less degraded

coral reef, and assessed by which nutrient it was limited. Similar

experiments were conducted with the seagrass Thalassia testudinum,

growing in a nearby bay.

Materials and Methods

Research Sites
This study was conducted on the island of Curaçao, Southern

Caribbean, at research sites ‘Buoy 0’ (12u79N, 68u589W), ‘Playa

Kalki’ (12u229N, 69u99W), ‘Water Factory’ (12u69N, 68u569W),

and ‘Boka Ascencion’ (12u169N, 69u39W) (Fig. 1). Buoy 0 and

Playa Kalki are both coral reef ecosystems. However, Buoy 0 is a

more degraded reef, with a lower cover by hard corals and higher

cover by macroalgae and turf algae than Playa Kalki. The site

Water Factory is characterized by large beds of sea lettuce in the

intertidal zone. Boka Ascencion is a shallow inner bay with large

beds of turtle grass. Permission to conduct our studies was

provided by the Ministry of Health, Environment and Nature

(GMN) of the government of Curaçao through their permit

(#48584) to the Caribbean Marine Biological Institute (CAR-

MABI) at Willemstad.

Laboratory Incubation of Ulva lactuca
Samples (,2 cm2) of leaves of sea lettuce (Ulva lactuca Linnaeus)

were manually collected from the intertidal zone at the Water

Factory. The sampled leaves were transported to the laboratory

facilities of CARMABI, where all NIFT experiments were

conducted. During transport from reef to laboratory, samples

were kept at a temperature of 27–29uC and shaded using a small

cool box with seawater collected at the sampling location.

To test the presence of a NIFT response under controlled

laboratory conditions, the collected U. lactuca leaves were starved

of either N or P for three weeks. Samples were incubated in

300 ml glass incubators containing filtered seawater (Whatman

Figure 1. Map of Curaçao. Map with research sites Playa Kalki, Boka Ascencion, Buoy 0, and Water Factory on the island of Curaçao, Southern
Caribbean (12u109N, 68u589W). Shading indicates urban areas (dark grey zones) and the commercial harbour (striped area).
doi:10.1371/journal.pone.0068834.g001
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cellulose acetate membrane filters, pore size 0.22 mm, Ø 25 mm)

collected from surface water at Buoy 0. The nutrient concentra-

tions in this seawater were 0.25 mM NO3
2, 0.90 mM NH4

+, and

0.07 mM PO4
32. Each sample received additional FeCl3

(0.16 mM) to ensure that iron did not become a limiting factor.

To prepare P-limited medium, NO3
2 and NH4

+ were added to

the filtered seawater at final concentrations of 5.1 mM and

18.6 mM, respectively. To prepare N-limited medium, PO4
32

was added at a final concentration of 1.4 mM.

Glass incubators with P-limited and N-limited medium were

placed in triplicate inside an aquarium, which was connected to a

water pump that provided continuous water flow to keep the

samples at a similar temperature of 27–29uC as on the reef. The

aquaria were placed outdoors in full sunlight to mimic the natural

high-light environment of U. lactuca. Water from the aquarium

could not mix with the mineral medium in the incubators. Each

incubator received continuous aeration using two Sera Precision

Air 550R Plus membrane pumps (Sera GmbH, Heinsberg,

Germany). Each week, the incubation solution was renewed.

The NIFT responses of N-starved and P-starved U. lactuca leaves to

the addition of NO3
2, NH4

+ and PO4
32 were determined every

other day for 19 days.

Field Samples of Macroalgae and Seagrass
Individual leaves of the encrusting fan-leaf alga (Lobophora

variegata (J.V. Lamouroux) Womersley ex E.C. Oliveira) were

collected from 20 m depth on the coral reefs of research sites Buoy

0 and Playa Kalki by means of SCUBA diving. Leaves of turtle

grass (Thalassia testudinum Banks ex König) were collected from

,1 m depth at Boka Ascencion, and cut into 1 cm2 pieces. All

sampled leaves were manually cleaned of epiphytes and detritus.

The leaves were kept at a temperature of 27–29uC and shaded

during transport to the laboratory using a small cool box

containing ambient seawater. NIFT measurements on the fresh

L. variegata and T. testudinum samples commenced directly after

transportation from the field sites to the laboratory, within 1–2 h

after sampling. For L. variegata, we used 36 leaves per nutrient

treatment from Playa Kalki and 36 leaves per nutrient treatment

from Buoy 0. For T. testudinum, we measured the NIFT response of

20 leaves.

To interpret possible differences in NIFT response of L. variegata

sampled from Buoy 0 and Playa Kalki, we briefly compared the

environmental growth conditions at these two research sites. At

both sites, we placed a 100 m horizontal transect line on the coral

reef at 20 m depth. Benthic cover of hard corals and macroalgae

was determined from photographs of 60 randomly placed

quadrates (1.5 m2) distributed along both sides of this transect

line. The photographs were analysed using the computer program

Coral Point Count with Excel Extensions (CPCe) [23]. Further-

more, water samples were taken along the horizontal transect at

10 cm above the reef using a 60 ml syringe (n = 14 at Buoy 0,

n = 17 at Playa Kalki). Water samples were quickly filtered at the

dive site using a 0.22 mm Acrodisc filter and stored in 6 ml

polyethylene vials (PerkinElmer, MA, USA) at 220uC until further

analysis. Concentrations of NO3
2 [24], NH4

+ [25], and PO4
32

[26] were analysed at the Royal Netherlands Institute for Sea

Research (NIOZ), the Netherlands, using continuous flow analysis

via a Quatro auto-analyzer (Seal Analytical, UK).

Nutrient-Induced Fluorescence Transient (NIFT)
Experiments

Changes in variable chlorophyll a fluorescence in response to

different nutrient additions were measured with a Diving-PAM/B

Underwater Fluorometer (Walz Mess- und Regeltechnik, Effel-

trich, Germany) using the experimental set-up shown in Fig. 2.

Individual U. lactuca, L. variegata, and T. testudinum leaves were

placed between two 2 mm thick L round magnetic rings (see

insert in Fig. 2) and attached to a magnetic sensor head to ensure

that the samples were situated exactly 2 mm in front of the PAM

sensor [27]. The sensor head with the attached sample was then

placed inside a Ø 54 mm Petri dish containing 15 ml of either

enriched seawater (laboratory incubations of U. lactuca) or ambient

seawater (field samples of L. variegata and T. testudinum). The use of

the L magnetic rings ensured that the nutrient solution always

reached the entire leaf surface of the sample on both sides.

Before each NIFT experiment, samples were incubated in the

dark for 10 min. Subsequently, at the start of the NIFT

experiment, the weak measuring light of the PAM fluorometer

was switched on to determine (1) the initial fluorescence (F0) and

(2) maximum fluorescence following a saturating light pulse (Fm).

Thereafter, samples were exposed to actinic light (PAR, 400–

700 nm) of 110 mmol photons m22 s21 provided by a LED-56

Microscope Ring Light (AmScope Corp., Irvine, CA), to monitor

(3) steady-state fluorescence (Ft), and (4) maximum fluorescence

following a saturating light pulse (F9m). Ft and F9m were measured

at 30 s intervals (PAM settings: measuring light = 10, gain = 2,

SW = 0.4, SI = 4). After 10 min, a 1.5 ml control solution (with the

same nutrient composition as in the incubation glass for U. lactuca;

with ambient seawater for L. variegata and T. testudinum) was added

to the Petri dish to check whether the addition itself caused a

change in fluorescence. After another 5 min, different nutrient

solutions were added at 5-min intervals to assess changes in the

fluorescence parameters (Ft and F9m) upon nutrient resupply. A

Figure 2. PAM fluoroscope used for NIFT experiments. PAM
fluoroscope, consisting of (1) two L magnetic rings for proper sample
placement in front of PAM sensor; (2) magnetic PAM sensor head; (3)
PAM sensor; (4) adjustable holder for placement of PAM sensor; (5)
adjustable Petri dish holder; (6) LED-light with adjustable light intensity.
doi:10.1371/journal.pone.0068834.g002
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typical NIFT experiment lasted 30 to 60 min in total (including

the 10 min of dark incubation).

Nutrient uptake rates of macroalgae and seagrasses are often

enhanced when nutrients are supplied in combination with water

movement. However, water movement is not desirable during

NIFT experiments, as our observations showed that mild

movement of the leaves was already sufficient to affect the

fluorescence signal. To overcome the limited mass transfer of

nutrients across the boundary layer of leaves incubated in stagnant

water, we therefore applied relatively high nutrient concentrations

in the nutrient additions, ranging from 10 to 250 mM of NO3
2,

NH4
+ and PO4

32. These concentrations are similar to those

applied in earlier microalgal studies [15]. In pilot experiments we

measured NH4 uptake rates and NIFT responses of U. lactuca

under controlled laboratory conditions at 10, 100 and 200 mM

NH4 concentrations (unpublished data, J. den Haan), since it is

known that NH4 can have toxic effects at high concentrations. The

results did not show any unusual NIFT responses. Furthermore,

NH4 uptake rates were not suppressed at the higher NH4 levels,

and were of similar magnitude as in previous studies with

macroalgae [28,29]. This indicates that the added NH4 was not

toxic across this concentration range. Our first NIFT experiments,

with U. lactuca, indicated that a dosage of 100 mM gave the most

reliable results. Hence, we chose 100 mM additions of NO3
2,

NH4
+ and PO4

32 for our subsequent NIFT experiments with L.

variegata and T. testudinum.

The fluorescence measurements were used to calculate the

quantum yield of photosystem II (WPSII) according to [30]:

wPSII~(F0m-Ft)=F0m ð1Þ

The quantum yield of photosystem II expresses the fraction of

photons absorbed by photosystem II that is used for photosyn-

thetic electron transport. It can thus be interpreted as a measure of

photosynthetic efficiency, and is widely used as an index for the

physiological status of phototrophic organisms [9,19,22,31,32].

Non-photochemical quenching (NPQ) was calculated as [22]:

NPQ~(Fm-F0m)=F0m ð2Þ

NPQ is a measure of the photoprotective capacity of

phototrophic organisms to dissipate excess energy as heat [22,33].

What is a true NIFT response?
NIFT responses to nutrient addition can sometimes be difficult

to interpret, for instance when changes in fluorescence are

relatively small or when the control treatment without added

nutrient also induces a change in fluorescence [9,18,19]. We

therefore developed two simple metrics to assess the NIFT

response. The first metric (Q1) compares the maximum instanta-

neous rate of change in maximum fluorescence (dF9m/dt) induced

by the nutrient addition versus that induced by the control solution

(Fig. 3):

Q1~D
(dF 0

m=dt)nutrient
(dF 0

m=dt)control
D ð3Þ

The second metric (Q2) compares the total change in maximum

fluorescence (DF9m) induced within 5 min after the nutrient

addition versus that induced by the control solution (Fig. 3):

Q2~D
(DF 0

m)nutrient
(DF 0

m)control
D ð4Þ

We judged the NIFT response as real, if the response to nutrient

addition was at least twice as large as the response to the control

solution (i.e., Q1$2 and/or Q2$2). These criteria are of course

somewhat arbitrary. We could have focused on changes in Ft or

WPSII (instead of F9m), or we could have set the threshold values of

Q1 and Q2 at another value (instead of 2). However, in 95% of the

NIFT experiments with L. variegata (n = 108), assessment of the

NIFT responses based on these criteria matched our intuitive

judgment, which indicated that these criteria provided a useful

guideline.

Results

Laboratory Incubations of Nutrient-limited Ulva lactuca
Fig. 4A shows a typical NIFT response to NO3

2 addition of an

U. lactuca sample that had been N starved for 11 days. F9m was at

its maximum at the first saturating light pulse (i.e., F9m = Fm at

t = 0), since the sample had previously been dark adapted for 10

minutes. Hence, all PSII reaction centers were ready to carry out

photochemistry, while heat dissipation (NPQ) was not yet

operational (Eq. 2). After this first light pulse, actinic light was

turned on. As a consequence, F9m initially decreased while NPQ

increased, indicating that the heat dissipation mechanism was

operational from the second light pulse (at t = 0.5 min) onwards.

After 20 light pulses (t = 10 min), a control solution with the same

nutrient composition as in the incubation glass was added, which

did not result in a change in any of the fluorescence variables (Ft,

F9m, WPSII and NPQ). In contrast, after addition of 10 mM NO3
2

(t = 15 min) and 100 mM NO3
2 (t = 20 min), F9m and WPSII

increased, whereas NPQ decreased. The addition of 250 mM

NO3
2 after 25 min did not result in a response in any of the

variables.

Addition of NH4
+ to N-starved U. lactuca led to similar results as

NO3
2 addition, with an increase of F9m and reduction of NPQ

(Fig. 4B). In contrast, addition of PO4
32 to N-starved U. lactuca did

not yield a NIFT response in 90% of the cases (n = 10) (Fig. 4C).

Conversely, P-starved U. lactuca did not respond to the addition of

NO3
2 and NH4

+ (n = 8) (Fig. 4D,E), but showed a clear NIFT

response to PO4
32 addition (Fig. 4F).

Effect of Starvation Period on the NIFT Response
To assess whether the duration of the starvation period affected

the results, we investigated the NIFT response during three

different time intervals of nutrient starvation (days 1–5, 6–10, and

11–15). We focused on the NIFT response of N-starved U. lactuca

to NO3
2 and NH4

+ addition, and P-starved U. lactuca to PO4
32

addition, using the same sequence of nutrient additions (10, 100

and 250 mM) as in Fig. 4. In some cases, we did not find a NIFT

response at the highest nutrient dosage of 250 mM (see, e.g.,

Fig. 4A), presumably because the uptake systems were already

nutrient-saturated from the earlier addition of 100 mM. Hence, we

decided that if the F9m of U. lactuca responded to at least one of the

three nutrient dosages, this was marked as a positive NIFT

response, indicating that U. lactuca was indeed N or P limited.

Between days 1–5, approximately 50% of the N-starved U. lactuca

showed a positive NIFT response to NO3
2 and NH4

+ addition,

while 33% of the P-starved U. lactuca responded to PO4
32

addition. This indicated that the samples were already nutrient

limited from the start of the experiments. The percentage of
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positive NIFT responses increased up to 60–70% for both N-

starved and P-starved leaves of U. lactuca after 6–10 days of

nutrient starvation. After 11–15 days, the percentage of positive

NIFT responses decreased slightly to 47–60%. This coincided with

a reduction of WPSII to 0.2–0.3 after 15 days of nutrient starvation.

For comparison, a healthy nutrient-replete U. lactuca leaf has a

WPSII of 0.6–0.7.

Field Samples of the Macroalga Lobophora variegata
We investigated the NIFT response of L. variegata leaves

collected from the research sites Playa Kalki and Buoy 0. Playa

Kalki is a coral reef ecosystem with ,25% cover by hard corals

and ,50% cover by algae (including L. variegata) (Table 1). In

contrast, Buoy 0 is a more degraded reef ecosystem with only 10%

cover by hard corals and almost 60% algal cover. L. variegata was

nearly twice as abundant at Buoy 0 as at Playa Kalki (Table 1).

Concentrations of dissolved NO3
2 and PO4

32 were significantly

higher at Buoy 0 than at Playa Kalki, while the NH4
+

concentration was not significantly different between the two sites

(Table 1). The N:P ratio seemed slightly higher at Buoy 0 (16.5:1)

than at Playa Kalki (14.4:1), indicating that the growth conditions

might be relatively more P limited and less N limited at Buoy 0

than at Playa Kalki, but the difference was not significant (Table 1).

Typical NIFT responses of L. variegata to the addition of 100 mM

of NO3
2, NH4

+, and PO4
32 are illustrated in Fig. 5A, B and C,

respectively. Interestingly, L. variegata showed positive NIFT

responses to both N and P additions, although a significantly

larger percentage of samples responded to PO4
32 addition (84%)

than to NO3
2 and NH4

+ addition (38%) (Fig. 6; Two Proportion

Z-test; Z = 4.5, df = 106, P,0.001). This indicates that L. variegata

was co-limited by N and P, but with a stronger limitation by P

than by N. Moreover, the data suggest that the nutrient limitation

pattern was slightly different between the two research sites. That

is, although differences between the two sites were only marginally

significant, L. variegata seemed more strongly limited by PO4
32

(Two Proportion Z-test; Z = 1.90; df = 70; P = 0.05) and less

strongly limited by NO3
2 (Two Proportion Z-test: Z =21.79;

df = 70; P = 0.07) at Buoy 0 than at Playa Kalki (Fig. 6).

When combining all positive NIFT responses of L. variegata,

NO3
2 addition resulted in an increase in F9m and decrease of

NPQ in 87% of all positive NIFT responses. In 13% of the positive

NIFT responses, F9m decreased while NPQ increased upon NO3
2

addition. Similar results were obtained for NH4
+ addition, where

72% of the positive NIFT responses showed an increase in F9m,

and 28% a decrease. Interestingly, the NIFT response of L.

variegata to PO4
32 addition showed the opposite pattern, with a

decreasing F9m and increasing NPQ in 94% of all positive NIFT

responses. An example is shown in Fig. 5C. Conversely, F9m
increased while NPQ decreased in only 6% of the positive NIFT

responses to PO4
32 addition.

Figure 3. How to determine a NIFT response? Schematic overview of the two criteria used to assess the presence or absence of a NIFT response
upon nutrient addition during two possible NIFT reactions. The first criterion compares the rate of change in maximum fluorescence induced by
nutrient addition ((dF9m/dt)nutrient) versus that induced by the control solution ((dF9m/dt)control). The second criterion compares the total change in
maximum fluorescence induced by nutrient addition ((DF9m)nutrient) versus that induced by the control solution ((DF9m)control).
doi:10.1371/journal.pone.0068834.g003
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In a series of extra NIFT experiments we added 100 mM of

NO3
2, NH4

+ and PO4
32 in randomized order at 5 min intervals

to the same L. variegata sample. This showed that the first nutrient

added did not affect the response to the consecutive addition

(P = 0.93; Two Proportion Z-test for data Buoy 0 and Playa Kalki

combined, n = 61). This can shorten the duration of NIFT

experiments substantially. Earlier we investigated each nutrient

separately in NIFT experiments of 20 min per nutrient (Fig. 5).

Figure 4. NIFT responses of nutrient-starved Ulva lactuca. Examples of the NIFT response of a N-starved U. lactuca leaf to (A) NO3
2 addition, (B)

NH4
+ addition, and (C) PO4

32 addition, and a P-starved U. lactuca leaf to (D) NO3
2 addition, (E) NH4

+ addition, and (F) PO4
32 addition. The graphs

show the time courses of steady-state fluorescence, Ft (+); maximum fluorescence, F9m (6); the quantum yield of photosystem II, WPSII (); and non-
photochemical quenching, NPQ (#). Vertical dashed lines indicate the timing of the control addition (0 mM) and three consecutive nutrient additions
(10, 100 and 250 mM).
doi:10.1371/journal.pone.0068834.g004
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Each of these experiments was preceded by 10 min of dark

adaptation. Hence, studying NO3
2, NH4

+ and PO4
32 in three

separate NIFT experiments took at least 90 min. Now all three

nutrients can be investigated in one run of 10 min dark adaptation

plus 30 min of NIFT measurements, reducing the total duration of

the experiment to only 40 min.

Field Samples of the Seagrass Thalassia testudinum
Fig. 7 shows a typical NIFT response of T. testudinum to the

sequential addition of 100 mM PO4
32, NO3

2 and NH4
+ at 5 min

intervals. In total, 4 of the 20 T. testudinum samples collected from

research site Boka Ascencion responded to NO3
2 and/or NH4

+

addition (as in Fig. 7), while 1 sample responded only to PO4
32

addition. In all these cases, F9m increased while NPQ decreased

upon nutrient addition.

Discussion

Evaluation of the NIFT Technique
Previous studies have shown that nutrient-induced fluorescent

transients (NIFTs) provide an easy and fast means to determine

which nutrients limit phytoplankton productivity [15–20]. Build-

ing upon this existing experience, we aimed to investigate whether

NIFT measurements can also assess nutrient limitation in

macroalgae and seagrasses. A key ingredient in our approach is

the use of a special device that we have called the PAM

fluoroscope, which enables exposure of algal thalli and leaves to a

series of nutrient additions while keeping these leaves at exactly the

same position in front of the PAM sensor. Controlled laboratory

experiments with N-starved and P-starved sea lettuce (U. lactuca)

showed that addition of the limiting nutrient resulted in

characteristic changes in chlorophyll a fluorescence (F9m), while

addition of a non-limiting nutrient did not affect the fluorescence

signal. Furthermore, we showed that the NIFT technique could

detect nutrient limitation of the macroalga L. variegata and the

seagrass T. testudinum directly after they were collected from the

field. Hence, our results demonstrate that the NIFT technique can

be successfully applied to macroalgae and seagrass, important

representatives of the benthic primary producers inhabiting many

coastal waters, coral reefs and shallow lakes.

Surprisingly, even during controlled nutrient starvation in the

laboratory, the percentage of positive NIFT responses in U. lactuca

never exceeded 70%. That is, even under stringent limitation,

approximately one third of the U. lactuca leaves did not show a

NIFT response. This contrasts with phytoplankton studies, where

laboratory experiments have shown positive NIFT responses in up

to 100% of the assays [19]. In our field samples, the maximum

percentage of positive NIFT responses was 92% for L. variegata but

only 25% for T. testudinum. The low percentage of positive NIFT

responses for T. testudinum may indicate that either this species is

not very responsive to NIFT measurements, or that it was not

strongly nutrient limited at its sampling site in the bay of Boka

Ascencion. In contrast to macroalgae, seagrasses like T. testudinum

can also extract nutrients from the sediment through their root

system [34,35]. Hence, they may be less subjected to nutrient

limitation than macroalgae that acquire their nutrients only from

the surrounding water column. Further studies comparing nutrient

limitation in macroalgae and seagrasses will be required to

investigate this hypothesis in more detail. All in all, these results

indicate that studies of nutrient limitation in macroalgae and

seagrasses using the NIFT technique should always sample a

sufficient number of leaves (say, at least 10–20 leaves) to obtain

reliable results.

The Nature of the NIFT Response
A somewhat naive but straightforward explanation for nutrient-

induced changes in fluorescence would be that enhanced nutrient

assimilation increases the demand for ATP and NADPH. This

relieves pressure on photosynthetic electron transport, and, hence,

one would expect a decrease in chlorophyll fluorescence.

However, our results show that fluorescence can either increase

or decrease upon nutrient addition, depending on the nutrient

being added and the species being studied. For instance, we found

that maximum fluorescence (F9m) of U. lactuca, L. variegata, and T.

testudinum increased upon NO3
2 addition, while non-photochem-

ical quenching (NPQ) decreased. Similar variation in the NIFT

response has also been observed in previous studies with

microalgae [15]. An increase in chlorophyll fluorescence and

drop in NPQ upon NO3
2 addition was reported for the

unicellular green alga Dunaliella tertiolecta [36], but another green

alga, Chlorella emersonii, showed the opposite response [37]. NO3
2

uptake and assimilation requires both ATP and NADPH. Shelly

et al. [15] therefore hypothesized that the rise in fluorescence and

drop in NPQ might be explained by state transitions between PSI

and PSII. State transitions are rapid physiological adaptation

mechanisms that adjust the way absorbed light is distributed

between the two photosystems. A state transition from State 2 to

State 1 will increase the contribution of PSII, and hence linear

electron transport to produce both ATP and the required

reduction equivalents [15]. Since nearly all chlorophyll fluores-

Table 1. Comparison of environmental characteristics at the research sites Buoy 0 and Playa Kalki.

Buoy 0 Playa Kalki U-value n1, n2 Significance

Coral cover (%) 10.068.3 24.5614.7 2987.5 60, 60 P,0.001

Algal cover (%) 58.8616.9 48.1614.7 1140.0 60, 60 P,0.001

Cover by Lobophora variegata (%) 20.3615.4 11.8611.2 1171.5 60, 60 P,0.001

Nitrate (mM) 0.26160.08 0.18660.23 57.0 14, 17 P=0.014

Ammonium (mM) 0.53960.39 0.42260.16 122.0 14, 17 P=0.905

Phosphate (mM) 0.05360.01 0.04260.02 55.0 14, 17 P=0.011

N:P ratio (molar) 16.5: 1 14.4: 1 125.5 14, 17 P=0.799

Comparison of coral cover (6 s.d.), total algal cover (including macroalgae, turf algae and benthic cyanobacteria), cover by the macroalga L. variegata, dissolved nutrient
concentrations and N:P ratios at the coral reef ecosystems of Buoy 0 and Playa Kalki. The data were collected at 20 m depth. Differences between the two research sites
were tested with the Mann-Whitney U Test using a significance level of P,0.05; n1 and n2 indicate the samples sizes at Buoy 0 and Playa Kalki, respectively. Significant P-
values are indicated in bold.
doi:10.1371/journal.pone.0068834.t001

Fast Detection of Nutrient Limitation

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e68834



cence comes from PSII, such a state transition would increase the

fluorescence signal.

Addition of NH4
+ to N-limited Dunaliella tertiolecta and Chlorella

emersonii resulted in an initial rise in fluorescence, which

subsequently dropped sharply, before recovering to a new steady

state [19,36,37]. Conversely, NH4
+ addition to N-limited cultures

of the green alga Monoraphidium minutum (formerly known as

Selenastrum minutum) and the cyanobacterium Oscillatoria sp. showed

an initial drop in fluorescence, followed by an increase towards a

new steady state [16,19]. Such initial oscillations in fluorescence

signal were not observed in our experiments with U. lactuca, L.

variegata, and T. testudinum, where the fluorescence increased

monotonically upon NH4
+ addition.

Upon PO4
32 addition, a drop in fluorescence is described as the

most common NIFT response in P-limited microalgae [15]. The

mechanism of a NIFT response to PO4
32 addition has been

studied in P-limited D. tertiolecta [20]. The drop in fluorescence

appeared to be caused by (1) a state transition from State 1 to State

2, which leads to higher cyclic electron flow around PSI to meet

the higher ATP demand for P uptake, and (2) increased non-

photochemical quenching by an enhanced xanthophyll cycle

activity, which dissipates excess light energy as a protective

mechanism to avoid photodamage to the photosynthetic machin-

ery [20]. Yet, we observed a drop in fluorescence upon PO4
32

addition only in L. variegata, while U. lactuca and T. testudinum

showed a rise in fluorescence upon PO4
32 addition. Clearly, the

exact underlying mechanisms explaining the variation in NIFT

response between different species and nutrient additions are yet to

be further determined [15].

Earlier studies with microalgae indicated that the magnitude of

the NIFT response increases with the severity of nutrient limitation

[19,36]. For instance, Holland et al. [19] sampled natural

phytoplankton populations from several Australian waters, and

did not observe any positive NIFT responses on the day of

collection. Positive NIFT responses appeared only after the

samples had been exposed to several days of nutrient starvation

under controlled laboratory conditions. This contrasts with our

findings, where U. lactuca, L. variegata and to a somewhat lesser

extent also T. testudinum all showed positive NIFT responses on the

day of collection. Moreover, freshly collected U. lactuca showed

relatively mild changes in the percentage of positive NIFT

responses during the subsequent two weeks of nutrient starvation

in controlled laboratory incubations. This indicates that U. lactuca,

and probably also the other two species that we investigated, were

already strongly nutrient limited prior to sampling, i.e., in their

natural habitat.

Co-limitation by Nitrogen and Phosphorus
Our results indicate that at least part of the natural population

of L. variegata was co-limited by nitrogen and phosphorus. Previous

NIFT studies with phytoplankton grown under controlled nutrient

conditions have shown that addition of the limiting nutrient

produces a positive NIFT response, whereas addition of non-

limiting nutrients generally does not cause a change in fluores-

cence [9]. The same pattern was observed in our laboratory

incubations with the macroalga U. lactuca, where addition of

nitrogen to N-starved leaves and addition of phosphorus to P-

starved leaves resulted in a positive NIFT response, while addition

of non-limiting nutrients did not affect the fluorescence signal.

Hence, the observation that freshly collected leaves of L. variegata

showed positive NIFT responses to both nitrogen and phosphorus

addition points at co-limitation by these two nutrients. Co-

limitation by N and P is consistent with the low concentrations of

dissolved inorganic nitrogen and phosphorus, at a N:P ratio close

to the Redfield ratio of 16:1, measured in ambient seawater at

both research stations Playa Kalki and Buoy 0 (Table 1).

Interestingly, the NIFT data even picked up a subtle difference

in N:P ratios between the two research sites, as L. variegata was

somewhat more P limited and less N limited at Buoy 0 than at

Playa Kalki.

Figure 5. NIFT responses of Lobophora variegata collected from
the reef. Examples of the NIFT response to (A) NO3

2 addition of a L.
variegata leaf collected at Playa Kalki, (B) NH4

+ addition of a L. variegata
leaf collected at Buoy 0, and (C) PO4

32 addition of a L. variegata leaf
collected at Buoy 0. The graphs show the time courses of steady-state
fluorescence, Ft (+); maximum fluorescence, F9m (6); the quantum yield
of photosystem II, WPSII (); and non-photochemical quenching, NPQ (#).
Vertical dashed lines indicate the timing of the control addition (0 mM)
and different nutrient additions (all at 100 mM).
doi:10.1371/journal.pone.0068834.g005
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Co-limitation by N and P has also been observed for several

macroalgal species of the Great Barrier Reef, Australia, including

Sargassum baccularia, Hydroclathrus clathratus, Turbinaria ornata, and

Padina tenuis [38–40], where the addition of short-term N and P

pulses resulted in increased primary production and/or incorpo-

ration of these nutrients into their thalli as temporary storage to

sustain growth during periods of low nutrient availability. Since

co-limitation has not been investigated in earlier NIFT studies

[15], our study seems to be the first to demonstrate that co-

limitation by two nutrients can be detected with NIFT measure-

ments.

Figure 6. Nutrient limitation of Lobophora variegata at two different research sites. Percentage of positive NIFT responses of L. variegata
leaves, collected from Playa Kalki and Buoy 0, to addition of 100 mM of NO3

2, NH4
+ and PO4

32. Differences between the two research sites were
tested with the Two Proportion Z-test. NS is not significant at P$0.10; n = 36 per research site and nutrient treatment.
doi:10.1371/journal.pone.0068834.g006

Figure 7. Typical NIFT response of Thalassia testudinum. Example of the NIFT response of a T. testudinum leaf collected at Boka Ascension. The
graph shows the time courses of steady-state fluorescence, Ft (+); maximum fluorescence, F9m (6); the quantum yield of photosystem II, WPSII (); and
non-photochemical quenching, NPQ (#). Vertical dashed lines indicate the timing of the control addition (0 mM) and the sequential addition of
different nutrients (all at 100 mM).
doi:10.1371/journal.pone.0068834.g007
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Perspectives for Application
Our results show that the NIFT technique can be successfully

applied to macroalgae and seagrass. The method is relatively fast

and straightforward, and provides important information on the

nutrients limiting the photosynthetic rates of primary producers.

For instance, the macroalga L. variegata is one of the key algal

species involved in large-scale shifts from coral to macroalgal

dominance in coral reef ecosystems across the globe, including the

Caribbean Sea [41,42] and the Great Barrier Reef [43,44]. Our

finding that L. variegata is co-limited by nitrogen and phosphorus

on the coral reefs of Curaçao, and reaches higher abundances in

more nutrient-rich waters near urbanized areas (Table 1), indicates

that eutrophication of these coastal waters is likely to enhance the

capacity of this algal species to overgrow coral reefs. Further

expansion of L. variegata and other algal species involved in the

degradation of coral reef ecosystems may be curtailed by

reductions in nitrogen and phosphorus loads from terrestrial

sources, for instance by more extensive wastewater treatment.

These results illustrate that use of the NIFT response to assess the

nutrient status of primary producers can serve as a valuable tool in

coastal management. While we worked on macroalgae and

seagrass in tropical marine ecosystems, we foresee a wider

application of this method to other benthic algae and submersed

aquatic plants in other marine and freshwater habitats.
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