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Sodium channels as targets for volatile anesthetics
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The molecular mechanisms of modern inhaled anesthetics are still poorly understood
although they are widely used in clinical settings. Considerable evidence supports effects
on membrane proteins including ligand- and voltage-gated ion channels of excitable cells.
Na+ channels are crucial to action potential initiation and propagation, and represent poten-
tial targets for volatile anesthetic effects on central nervous system depression. Inhibition
of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse
and could therefore contribute to the mechanisms by which volatile anesthetics produce
their characteristic end points: amnesia, unconsciousness, and immobility. Early studies
on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics
at high concentrations. Subsequent studies using native neuronal preparations and het-
erologous expression systems with various mammalian Na+ channel isoforms implicated
inhibition of presynaptic Na+ channels in anesthetic actions at clinical concentrations.
Volatile anesthetics reduce peak Na+ current (INa) and shift the voltage of half-maximal
steady-state inactivation (h ) toward more negative potentials, thus stabilizing the fast-∞
inactivated state. Furthermore recovery from fast-inactivation is slowed, together with
enhanced use-dependent block during pulse train protocols. These effects can depress
presynaptic excitability, depolarization and Ca2+ entry, and ultimately reduce transmitter
release. This reduction in transmitter release is more potent for glutamatergic compared
to GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility
caused by volatile anesthetics has been demonstrated in animal studies, in which intrathe-
cal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency,
whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency.
These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics
is involved in mediating some of their effects.
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BACKGROUND
It has been over 160 years since the use of diethyl ether as a general
anesthetic was publicly demonstrated, yet our mechanistic under-
standing of these vitally important drugs lags far behind that of
most other major drug classes. Most modern inhaled anesthetics
are derivatives of ether, and over the years have been developed to
have improved pharmacokinetics, but they are still plagued by a
lack of specificity with significant cardiovascular and respiratory
side effects. It remains unclear how these drugs produce general
anesthesia, a pharmacologically induced coma characterized by
amnesia, unconsciousness, and immobility in response to painful
stimuli (Hemmings et al., 2005b). Studies into their molecular
mechanisms in the 1960s, which have their origins in the Meyer–
Overton correlation of anesthetic potency with lipophilicity from
1900, led to a lipid-based theory involving a unitary mechanism
of non-specific actions on the lipid bilayer (Meyer, 1899; Overton,
1901).

With technical advances in biochemistry and biophysics, spe-
cific targets were studied and identified. Pioneering studies showed
that anesthetic interactions with proteins themselves, not necessar-
ily involving lipid interactions, could explain anesthetic effects at a

biochemical level (Franks and Lieb, 1994). Animal studies showed
that volatile anesthetics produce their immobilizing effects pri-
marily by actions on the spinal cord (Antognini and Schwartz,
1993; Rampil et al., 1993), whereas unconsciousness and amnesia
involve actions at supra-spinal centers (Eger et al., 2008). Mem-
brane proteins including ion channels have been implicated as
key mediators of the depressive effects of anesthetics on neuronal
function. Many potential targets have been identified, and it has
become clear that anesthetics act at multiple distinct targets in the
central nervous system to produce the various component effects
of the anesthetic state (multi-site hypothesis).

MECHANISMS OF GENERAL ANESTHETIC EFFECTS ON THE
CENTRAL NERVOUS SYSTEM
The idea of general anesthetics acting both on excitatory and
inhibitory synaptic transmission has lead to many studies point-
ing out the complexity of anesthetic mechanisms (Rudolph and
Antkowiak, 2004; Hemmings et al., 2005b; Franks, 2006). Gen-
eral anesthetics, including both volatile and intravenous anesthet-
ics, enhance synaptic inhibition via postsynaptic γ-aminobutyric
acid type A (GABAA) receptor modulation (Nicoll et al., 1975;
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Zimmerman et al., 1994). More recent studies also point out the
importance of extrasynaptic GABAA receptors as a target of anes-
thetics by potentiating tonic inhibitory currents (Orser, 2006;
Rau et al., 2009) and by enhancing the release of GABA by a
presynaptic increase in miniature inhibitory postsynaptic current
(mIPSC) frequency (Nishikawa and MacIver, 2001). Depression
of excitatory transmission by presynaptic effects is another tar-
get of anesthetic action (Perouansky et al., 1995; Maclver et al.,
1996; Ouanonou et al., 1999; Wakasugi et al., 1999). Both volatile
and intravenous anesthetics reduce excitatory postsynaptic poten-
tials (EPSPs) in neurons, an effect most likely due to presynaptic
mechanisms (Weakly, 1969; Richards and White, 1975; Kullmann
et al., 1989; Berg-Johnsen and Langmoen, 1992). Recent evidence
suggests that inhibition of glutamatergic synaptic transmission
through N -methyl-d-aspartate (NMDA)-type glutamate receptor
blockade by inhaled anesthetics might also contribute to depres-
sion of excitatory transmission (Dickinson et al., 2007; Haseneder
et al., 2008).

It is now evident that ligand-gated ion channels are major tar-
gets for general anesthetics (Franks and Lieb, 1994). Both inhibi-
tion of excitatory NMDA receptors and potentiation of inhibitory
GABAA and glycine receptors have come under scrutiny as impor-
tant targets for both intravenous and inhaled anesthetic effects on
synaptic transmission (Franks, 2006). These receptors are found
throughout the central nervous system and are major transducers
of excitatory and inhibitory neurotransmitter signaling.

Second-messenger regulated protein phosphorylation of Na+
channels has been implicated as another possible target of volatile
anesthetics. Halothane increases both purified (Hemmings and
Adamo, 1994) and endogenous (Hemmings and Adamo, 1996)
brain protein kinase C (PKC) activity. Phosphorylation of Na+
channels by PKC and PKA reduces Na+ channel activity by altering
channel kinetics, for example by slowing inactivation, and is there-
fore an important component of neuromodulation (Cantrell and
Catterall, 2001). It is possible that some of the inhibitory effects of
volatile anesthetics on Na+ channel activity are mediated through
PKC phosphorylation.

More recent studies have extended the range of likely anes-
thetic targets to include neuronal nicotinic acetylcholine receptors
(Flood et al., 1997), two pore domain K2P channels and K+ leak
channels (Patel and Honore, 2001; Sirois et al., 2002), and presy-
naptic voltage-gated Na+ channels. This review considers Na+
channels as targets for the effects of volatile anesthetics (inhaled
alkane and ether derivatives).

PRESYNAPTIC Na+ CHANNELS AS ANESTHETIC TARGETS
Na+ channels play a crucial role in cell-to-cell communication, as
they are involved in initiating and propagating action potentials
in excitable cells throughout the nervous system (Hodgkin and
Huxley, 1952). Early reports in the 1970s associated the effects of
volatile anesthetics on lipid bilayer properties to alterations of cer-
tain membrane bound ion channels, in particular voltage-gated
Na+ channels (Figure 1).

These reports were among the first to hypothesize a specific ion
channel (Na+ channels) as a potential target of volatile anesthetics,
though at that time no specific binding site or specific mecha-
nism could be identified. Early studies on the effects of general

FIGURE 1 | Schematic of the effects of anesthetics on cell membrane

and Na+ channels. In the absence of the drug. (A) Na+ channels initiate
and propagate electrical signals, i.e., action potentials. (B) The anesthetic
was believed to affect Na+ channels by partitioning and interacting with the
membrane. This process called lipid fluidification altered the cell membrane
and subsequently distorted the channel protein leading to block of channel
function (Seeman, 1974).

anesthetics on Na+ and K+ currents in the crayfish or squid giant
axon showed inhibition of peak Na+ (I Na) current and effects on
channel recovery, but in these preparations inhibition occurred
at relatively high concentrations (Bean et al., 1981; Haydon and
Simon, 1988). Subsequent studies examined the effects of various
volatile anesthetics on mammalian brain derived Na+ channels
heterologously expressed in mammalian cell lines (Rehberg et al.,
1996). Inhibition of peak I Na due to stabilization of the inac-
tivated state of Na+ channels was evident as a hyperpolarizing
“left-shift” in steady-state (or h∞) inactivation. These experiments
were among the first to demonstrate inhibition of neuronal Na+
channels by volatile anesthetics. The sensitivity of Na+ channels to
clinically relevant concentrations of volatile anesthetics was con-
firmed in various in vitro expression systems and was subsequently
extended to more physiologically relevant neuronal preparations.

Electrophysiological recordings performed in isolated rat neu-
rohypophysial nerve terminals, an experimentally accessible nerve
terminal preparation, showed that clinically relevant concentra-
tions of isoflurane inhibited peak I Na in nerve terminals in a
concentration- and voltage-dependent manner (Ouyang et al.,
2003; Figure 2A, upper panel). Similar to heterologous expres-
sion systems, a left-shift in the voltage-dependence of steady-state
inactivation demonstrated stabilization of the fast-inactivated
state. These results support the hypothesis that volatile anesthet-
ics depress excitatory synaptic transmission by inhibiting presy-
naptic voltage-gated Na+ channels. In addition, in the rat neu-
rohypophysial nerve terminal preparation, isoflurane inhibited
action potential amplitude and increased action potential half-
width (Ouyang and Hemmings, 2005; Figure 2A, lower panel).
The underlying current mediating the fast and rising depolarizing
phase of the action potential is carried by tetrodotoxin (TTX)-
sensitive Na+ channels, which were inhibited by isoflurane using a
voltage-stimulus based on an averaged action potential. The effects
of non-immobilizers (structurally similar compounds without
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anesthetic properties) in rat dorsal root ganglion neurons showed
that compound F3, an anesthetic fluorinated cyclobutane, inhib-
ited Na+ channels similar to the effects of conventional volatile
anesthetics, but the non-anesthetic (non-immobilizer) fluorinated
cyclobutane F6 had only minimal effects (Ratnakumari et al., 2000;
Figure 4A). These findings support the role of Na+ channels as
molecular targets for volatile anesthetic action.

Studies investigating subtype-specific effects of volatile anes-
thetics revealed small, but potentially significant, differences in
isoflurane potency with IC50 values ranging from 0.45 to 0.7 mM
(at V h −70 mV) on Nav1.2, Nav1.4, Nav1.5 expressed in Chinese
hamster ovary cells (Ouyang and Hemmings, 2007). Despite the
small potency differences, there were differences between isoforms
in recovery from fast-inactivation tested by a double-pulse pro-
tocol. The effect of isoflurane on channel recovery was greatest
in Nav1.2, a major brain isoform (Figure 2B). Another study in
which subtypes Nav1.2, Nav1.4, Nav1.6, and TTX-resistant Nav1.8
were expressed (with and without β1 subunit co-expression) in
Xenopus oocytes also revealed that Nav1.2, Nav1.4, Nav1.6 were
sensitive to isoflurane, whereas the TTX-resistant subtype Nav1.8,
which is highly expressed in dorsal root ganglion nociceptive neu-
rons, was insensitive (Shiraishi and Harris, 2004). Nerve terminals

of nociceptive sensory neurons are the (main) origin of neuro-
pathic and inflammatory pain signals (Dib-Hajj et al., 2010), but
the pro- or anti-nociceptive effects of volatile anesthetics are not
clearly defined. It is evident that these nociceptive neurons carry
a distinct selection of Na+ channel subtypes related to pain sig-
naling (e.g., Nav1.7, Nav1.8, Nav1.9; see review Dib-Hajj et al.,
2010). Subsequently, Nav1.8 expressed in mammalian neuronal
cells revealed concentration- and voltage-dependent inhibition of
Nav1.8 by clinically relevant concentrations of isoflurane similar
to other subtypes (Herold et al., 2009; Figure 3A, upper panel).
This demonstrates the importance of choosing a suitable expres-
sion system for pharmacological studies of ion channels. In this
case the neuronal cell line ND7/23, a hybrid cell line between
rat dorsal root ganglion neurons and mouse neuroblastoma cells,
may have provided auxiliary β-subunits or other neuron-specific
signaling pathways that are important for inhibition by anesthet-
ics. A comparative study showing the effects of several different
volatile anesthetics on heterologously expressed Na+ channels in
mammalian cells revealed that desflurane, a highly fluorinated
inhaled anesthetic, had the strongest effect on peak I Na inhibi-
tion, but all agents in this class were effective at clinically relevant
concentrations (Ouyang et al., 2009; Figure 3B). In contrast, the

FIGURE 2 | Volatile anesthetics inhibit Na+ channels in various

expression systems. [(A), upper panel] Electrophysiological recordings of
isolated rat neurohypophysial nerve terminals show a reversible block of Na+

currents and [(A), lower panel] action potentials evoked by small current
injections at clinically relevant concentrations of isoflurane (Ouyang et al.,
2003; Ouyang and Hemmings, 2005). (B) Effects of isoflurane on channel
recovery from fast-inactivation of three different Na+ channel isoforms

heterologously expressed in mammalian cells. Recovery was assessed using
a two-pulse protocol with a 30-ms conditioning pulse followed by a variable
recovery interval of up to 30 ms, and then a 5-ms test pulse to peak activation
voltages. The time course of channel recovery from fast-inactivation was well
fitted by a monoexponential function [(B), left panels]. Representative current
traces for a holding potential (V h) of −100 mV are shown for all three subtypes
[(B), right panels; Ouyang and Hemmings, 2007].
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FIGURE 3 | [(A), upper panel] Concentration-dependent inhibition of
tetrodotoxin-resistant (TTX-r) Nav1.8 by isoflurane. Current traces of
TTX-r Nav1.8 are shown in the absence or presence of two isoflurane
concentrations. Normalized peak INa values for TTX-r Nav1.8 were fitted
to the Hill equation to yield IC50 values and Hill slopes (Herold et al.,
2009). [(A), lower panel] Effects of isoflurane on NaChBac expressed in
HEK293 cells. Families of current traces are shown at two different
holding potentials (V h) in the absence or presence of isoflurane.

Isoflurane significantly inhibited INa from a V h of either −80 or −100 mV
(Ouyang et al., 2007). (B) Inhibition of Nav1.4 by equipotent
concentrations of various inhaled anesthetics. Peak INa were recorded
from a holding potential of –80 mV by 25-ms test steps as shown in the
inset. The effects of clinically equipotent concentrations of halothane,
isoflurane, sevoflurane, enflurane, and desflurane are shown in these
representative traces. Desflurane had the greatest effect of peak INa

reduction.

intravenous anesthetic propofol inhibits Na+ channels only at
supratherapeutic concentrations (Rehberg and Duch, 1999).

The prototypical halogenated ether isoflurane also inhibits
the prokaryotic voltage-gated Na+ channel of Bacillus halodurans
(NaChBac; Ouyang et al., 2007; Figure 3A, lower panel). This was
the first prokaryotic channel shown to be inhibited by an anes-
thetic, and demonstrates impressive evolutionary conservation of
the mechanism responsible for this pharmacological effect. As with
mammalian channels, inhibition of peak I Na was concentration-
and voltage-dependent, and was associated with a positive shift
in the voltage-dependence of activation and a negative shift in the
voltage-dependence of steady-state fast-inactivation. Furthermore
use-dependent block occurred due to slowed recovery from inac-
tivation. Despite the evolutionary difference between prokaryotic
and eukaryotic voltage-gated Na+ channels, the mechanisms by
which volatile anesthetics act on the channel seem remarkably
similar.

Aromatic compounds such as fluorobenzene, hexafluoroben-
zene, and 1,2-difluorobenzene have been shown to inhibit Nav1.2a
expressed in Xenopus oocytes. Inhibition of peak I Na as well
as a shift in the V1/2 of fast-inactivation occurs in an agent-
dependent manner (Horishita et al., 2008). The exact mechanism

of the differential effects of these structurally different compounds
has yet to be elucidated. Differences also exist in the potency of
volatile anesthetic inhibition of specific Na+ channel subtypes
(Ouyang et al., 2009), but again the mechanisms for these dif-
ferences have to be studied in more detail. Such differences might
underlie region-specific presynaptic effects of volatile anesthetics
on neurotransmitter release (Westphalen et al., 2010, 2011).

Na+ CHANNEL INHIBITION LEADS TO INHIBITION OF
NEUROTRANSMITTER RELEASE BY ANESTHETICS
A physiological consequence of presynaptic Na+ channel inhibi-
tion is depression of presynaptic action potential generation and
conduction. Considerable evidence indicates that volatile anes-
thetics inhibit neurotransmitter release, and that this is due in
part to inhibition of presynaptic Na+ channels. Volatile anesthet-
ics preferentially inhibit 4-aminopyridine (4AP)-evoked release
of glutamate compared to GABA from isolated rat cortical nerve
terminals (Westphalen and Hemmings, 2006). Action potential-
evoked depolarization and release can be pharmacologically mim-
icked by 4AP, a K+ channel blocker, while Na+ channel indepen-
dent release can be elicited by depolarization with elevated extra-
cellular K+ (Tibbs et al., 1989). Using this approach, 4AP-evoked
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FIGURE 4 | Volatile anesthetics inhibit neurotransmitter release in

nerve terminals. (A) Effects of the anesthetic compound F3 and the
non-immobilizer F6 on 4-aminopyridine- (4AP) evoked glutamate release
from cortical synaptosomes. The anesthetic cyclobutane F3 significantly
inhibits glutamate release, whereas the non-anesthetic (non-immobilizer)
cyclobutane F6 shown no inhibitory effect (Ratnakumari et al., 2000). (B)

Isoflurane inhibition of 4AP-evoked glutamate release from rat cortical
nerve terminals in the absence or presence of tetrodotoxin (TTX, 1 μM).
The potency of isoflurane inhibition is much greater in the absence of the
Na+ channel blocker TTX indicating a strong involvement of Na+ channels
in inhibition of neurotransmitter release by volatile anesthetics
(Westphalen et al., 2011).

release is significantly more sensitive to inhibition by volatile anes-
thetics as compared to KCl-evoked release, supporting a role for
blockade of presynaptic Na+ channels in the inhibitory effects of
the anesthetics (Schlame and Hemmings, 1995; Westphalen and
Hemmings, 2003). Interestingly, inhibition of glutamate release
occurs with about 50% greater potency than inhibition of GABA
release, consistent with pharmacologically relevant transmitter-
specific specializations in neurotransmitter release regulation, per-
haps involving differential coupling to Na+ channels (Westphalen
et al., 2010; Figure 4B). There is also evidence that volatile anes-
thetics inhibit neurotransmitter release in a brain region-specific
manner (Westphalen et al., 2011), which suggests diversity in
presynaptic Na+ channel subtype expression and/or coupling to
release (Westphalen et al., 2010).

Further experiments have examined the effects of volatile anes-
thetics on synaptic vesicle exocytosis, detected using fluorescence
imaging, in cultured rat hippocampal neurons. This preparation
allows electrical stimulation of release, and showed concentration-
dependent and reversible inhibition of action potential-evoked
exocytosis by isoflurane. Involvement of presynaptic Na+ chan-
nels is supported by the observation that exocytosis, evoked by
depolarization with elevated extracellular K+ (which is insensitive
to TTX), was relatively insensitive to isoflurane (Hemmings et al.,
2005a). Isoflurane has also shown to inhibit excitatory postsynap-
tic currents (EPSCs) in the rat calyx of Held due to inhibition
of neurotransmitter release caused by a reduction of presynap-
tic action potential amplitude (Wu et al., 2004). These effects of
volatile anesthetics on synaptic transmission result primarily from
inhibition of action potential-evoked synaptic vesicle exocytosis,
most likely as a result of Na+ channel blockade upstream of Ca2+
entry and exocytosis.

In vivo studies on rodents have implicated spinal Na+ chan-
nels in immobilization, a major component of general anesthesia.
Intravenous infusion of lidocaine, a classical local anesthetic, or
intrathecal administration of riluzole, another potent Na+ channel
inhibitor, significantly increases the potency of volatile anesthetics

as immobilizers (Xing et al., 2003; Zhang et al., 2007). The role of
Na+ channels in volatile anesthetic-mediated immobility is fur-
ther supported by the observation that intrathecal infusion of the
Na+ channel activator veratridine, a plant neurotoxin that binds
to site 2 and stabilizes the open state (Ulbricht, 1998), reduces
the potency of isoflurane (Zhang et al., 2008), while intrathecal
infusion of TTX increases the potency of isoflurane, and reverses
the effect of veratridine (Zhang et al., 2010). Taken together, these
results indicate that inhibition of spinal voltage-gated Na+ chan-
nels by inhaled anesthetics is likely an important mechanism in
anesthetic immobility.

NON-ANESTHETIC EFFECTS OF VOLATILE ANESTHETICS
A major side effect of volatile anesthetics is cardiovascular depres-
sion. Multiple ion channel types expressed in cardiomyocytes
contribute to action potential conduction and myocardial contrac-
tility. Inhibition of L-type Ca2+ currents or voltage-gated transient
and sustained outward K+ currents by volatile anesthetics can lead
to reduced contractility and delayed repolarization with mismatch
of action potential duration (Huneke et al., 2004). In cardiac Na+
channels (Nav1.5), volatile anesthetics at clinically relevant con-
centrations inhibit peak I Na and affect steady-state fast- as well
as slow-inactivation (Stadnicka et al., 1999; Ouyang and Hem-
mings, 2007). This can, in combination with other cardiodepres-
sant drugs, slow conduction and lead to tachyarrhythmias. Na+
channels have also been implicated as potential targets for neuro-
protection by volatile anesthetics (Hemmings, 2004). The possible
role of voltage-gated Na+ channels and other beneficial and detri-
mental side effects of volatile anesthetics in brain and other organs
cannot be excluded.

CONCLUSION
Both electrophysiological and functional studies indicate that
presynaptic voltage-gated Na+ channels are inhibited by clin-
ically used concentrations of volatile anesthetics. This leads to
reductions in evoked neurotransmitter release that is both brain
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region and neurotransmitter selective. The selective inhibition
of glutamate release underlies a reduction in excitatory synaptic
transmission with resultant nervous system depression. Detailed
information regarding the presynaptic localization, function, and
regulation of specific Na+ channel subtypes is currently lack-
ing. Further studies are necessary to identify the roles of specific
presynaptic Na+ channel subtypes in mediating neurotransmitter

release and its inhibition by volatile anesthetics and other Na+
channel inhibitors.
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