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Abstract: This review addresses specific regulatory mechanisms involved in the host immune
response to fungal organisms. We focus on key cells and regulatory pathways involved in these
responses, including a brief overview of their broader function preceding a discussion of their specific
relevance to fungal disease. Important cell types discussed include dendritic cells and regulatory
T cells, with a focus on specific studies relating to their effects on immune responses to fungi.
We highlight the interleukin-10, programmed cell death 1, and cytotoxic T lymphocyte-associated
protein 4 signaling pathways and emphasize interrelationships between these pathways and the
regulatory functions of dendritic cells and regulatory T cells. Throughout our discussion, we identify
selected studies best illustrating the role of these cells and pathways in response to specific fungal
pathogens to provide a contextual understanding of the tightly-controlled network of regulatory
mechanisms critical to determining the outcome of exposure to fungal pathogens. Lastly, we discuss
two unique phenomena relating to immunoregulation, protective tolerance and immune reactivation
inflammatory syndrome. These two clinically-relevant conditions provide perspective as to the range
of immunoregulatory mechanisms active in response to fungi.

Keywords: immunoregulation; fungi; dendritic cell (DC); regulatory T cell (Treg cell); programmed
cell death 1 (PD-1); cytotoxic T lymphocyte-associated protein 4 (CTLA-4); interleukin-10 (IL-10);
protective tolerance; immune reconstitution inflammatory syndrome (IRIS)

1. Introduction

Fungal infections present unique challenges for the host immune system. Some fungi,
such as Candida albicans (C. albicans), exist as commensals and in many cases are beneficial to
the host by limiting overgrowth of other potentially harmful microorganisms [1]. Many fungi
are environmental saprophytes generally harmless to immunocompetent mammalian hosts,
although immunosuppression, long-term antibiotic treatment, and corticosteroid treatment can
result in opportunistic infections with several species including C. albicans, Cryptococcus neoformans
(C. neoformans), Histoplasma capsulatum (H. capsulatum), and Aspergillus fumigatus (A. fumigatus),
amongst others [2]. Nosocomial and environmentally acquired fungal infections within seemingly
healthy individuals are increasingly common [3]; currently unrecognized immune defects may account
for infections in these individuals as has been recently shown for patients with cryptococcal meningitis
discovered to have auto-antibodies against Granulocyte-Macrophage Colony Stimulating Factor [4,5].

Effective host defense against fungal disease is heavily reliant on the adaptive arm of the
immune system, which is strongly influenced by local interactions between antigen presenting
cells, especially dendritic cells (DCs), and subsets of cluster of differentiation (CD) 4 (CD4)+ T cells.
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Sterilizing immunity against fungal pathogens most strongly correlates with the development of
“inflammatory” DCs (or “DC1”), Th1 and Th17 immune responses and the subsequent classical
activation of effector macrophages (or “M1”) (Figure 1, pathway 1) [6–8]. In contrast, many fungal
infections prove difficult to eradicate and provoke “immunomodulatory” DC (or “DC2”), Th2 and
T regulatory (Treg) responses, and local alternative macrophage activation (or “M2”) with resultant
persistent infection (Figure 1, pathway 2) [9–12]. In the absence of either response, as in the case of
HIV-AIDS or potent immunosuppression, progressive disease may develop which is often lethal to
the host.
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Figure 1. Immunity to Fungal Infections. Fungal infection (1) stimulates the arrival of monocytes at
the site of infection (2), which subsequently mature into monocyte-derived dendritic cells (moDCs).
Depending on local environmental host and pathogen factors, these moDCs can develop into either
inflammatory DCs (inf-DCs; 3a) or immunomodulatory DCs (imo-DCs; 3b), which subsequently
direct the immune response. Inf-DCs promote sterilizing immunity characterized by interferon
gamma (IFNγ)-producing Th1 cells, interleukin (IL)-17-producing Th17 cells, and “classically
activated” exudate macrophages (ExMs; 4a). Imo-DCs promote fungal persistence characterized
by IL-10-producing Treg cells, IL-4-, IL-5, and IL-13-producing Th2 cells, and “alternatively-activated”
exudate macrophages (4b).

The objective of this review is to identify and discuss key immune cells and immunoregulatory
signaling pathways that critically contribute to the outcome of fungal infections. Although there
are numerous immunoregulatory mechanisms currently under investigation, we highlight those
that are particularly well-researched and may yield promising novel therapeutics. We specifically
focus on DCs and regulatory T cells given their capacity to orchestrate and influence the
function of numerous effector T cell and macrophage subsets. We also identify three pathways:
Interleukin-10 (IL-10) signaling, the programmed cell death protein-1 (PD-1) signaling pathway,
and the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) signaling pathway, as examples of
important immunoregulatory mechanisms and checkpoints that modulate adaptive immune responses
(Figure 2). Lastly, we discuss two unique and opposing phenomena that demonstrate the range of
possible regulatory conditions (or lack thereof) that can arise when the immune system interacts
with fungi. Protective tolerance represents a containment strategy implemented by the host to
“cohabitate” with a pathogenic fungus rather than risk extensive damage due to attempts at sterilizing
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immunity. In contrast, immune reconstitution inflammatory syndrome (IRIS) is a condition that may
occur when anti-fungal immunity is rapidly restored, resulting in an over-exuberant inflammatory
response detrimental to the host. Collectively, our coverage of these topics highlights the diversity and
interrelatedness of immunoregulatory mechanisms that influence the outcome of fungal infection.
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Figure 2. Immunoregulatory Pathways. The development of immunomodulatory DCs leads
to regulatory signaling via the IL-10, programmed cell death protein (PD)-1, and cytotoxic T
lymphocyte-associated protein (CTLA)-4 pathways. These pathways in turn promote the development
of Treg cells (as well as Th2 cells) and inhibit the development of Th1 and Th17 cells. The balance
of these immunoregulatory pathways may determine whether persistent infection results in
chronic immune-mediated tissue destruction (as occurs in Allergic Bronchopulmonary Mycosis) or
Protective Tolerance.

2. Immunoregulatory Cells

2.1. Dendritic Cells

As a link between innate and adaptive immunity, dendritic cells (DCs) have an inherent role
in regulating immunity through their ability to influence initial T cell responses [6] to a wide
array of antigenic stimuli including those originating from fungi and other pathogens, tissue grafts,
and cancerous cells. Factors broadly influencing the outcome of DC: T cell interactions include the
origin of the antigen and the antigenic load; evidence suggests a low antigenic load contributes to
Th2 immunity whereas a high antigenic load promotes Th1 responses [13]. The outcome of these
interactions is further influenced by the specific subset and microenvironmental location of the DCs
participating in the response. Dendritic cells most relevant to fungal infection include plasmacytoid
DCs (pDCs) that reside in secondary lymphoid organs (including lymph nodes) and circulate in the
blood, conventional DCs (cDCs), subsets of dermal DCs (dDCs), and monocyte-derived DCs (moDCs)
that migrate to sites of infection from bone marrow via the blood.

Our understanding of the potential regulatory capabilities of plasmacytoid DCs (pDCs) is evolving.
Plasmacytoid DCs have a well-defined role in mediating antiviral immunity [14,15], can induce Treg
cells [16,17] and regulate both Treg cells and Th17 cells at mucosal surfaces [18]. In the process,
pDCs can modulate the balance between CD4+ and CD8+ T cell responses to certain viral and bacterial
infections [18] and can mediate tolerance to tissue grafts [19]. Evidence suggests pDCs may similarly
regulate innate and adaptive immune responses to fungal pathogens. Specifically, Ramirez-Ortiz and
colleagues demonstrated that pDCs recognize and inhibit the growth of A. fumigatus in vitro [20];
their additional in vivo studies demonstrate that pDCs accumulate in the lungs of A. fumigatus-infected
mice and that pDC depletion enhances fungal growth [21]. This finding, combined with evidence
suggesting a role in regulating T cell differentiation and activity [22], suggests that pDCs modulate
immunity to fungi, especially at mucosal surfaces.

Conventional DCs (cDCs) include populations of tissue-resident DCs likely to first encounter
fungal pathogens at mucosal surfaces including the skin. Two dominant subsets can be identified in
most peripheral tissues: CD103+CD11b− cDCs (CD103+ cDCs) expressing the transcription factor Batf3
and CD103−CD11b+ cDCs (CD11b+ cDCs) expressing the transcription factor interferon regulatory
factor (IRF)4. Although best known for their immunostimulatory properties, both subsets have
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immunoregulatory activity under certain circumstances. CD103+ cDCs can induce peripheral tolerance
to self-antigens by inducing apoptosis in self-reactive T cells [23] and generally participate in regulatory
activity by secreting the immunomodulatory cytokine transforming growth factor beta (TGFβ) during
steady-state conditions [24], helping to maintain tolerance during times of health. CD11b+ cDCs can
regulate autoimmune responses including those active in rheumatoid arthritis [25] and autoimmune
diabetes [26]. Dermal dendritic cells (dDCs) residing in the skin include CD103+ cDCs, CD11b+

cDCs, and also Langerin+ dDCs [27]. The location of dDCs in the skin makes them prone to frequent
exposure to fungi. In a murine model of cutaneous C. albicans exposure, CD103+ dDCs generate
IL-12 and promote Th1 cell differentiation whereas CD11b+ DCs generate high amounts of IL-1β
and to a lesser extent IL-6 and IL-12 [28]. In contrast, Langerin+ dDCs demonstrated the most
robust immunoregulatory role by blunting Th17 responses [28]. In this model, DC responses are
further modulated by fungal morphology [29], thus demonstrating highly selective immunoregulatory
properties for different subsets of dDCs in response to differing forms of the same fungal pathogen.

Monocyte-derived DCs (moDC) are important modulators of ongoing immune responses within
infected microenvironments. In the lung, these cells are derived from newly recruited C-C chemokine
receptor type 2 (CCR2)+ Lymphocyte antigen C (Ly6C)high bone marrow monocytes. In our studies
using murine models of protective immunity against cryptococcal lung infection in Bagg Albino
(BALB/c) mice, we have demonstrated that moDCs are proinflammatory and promote potent Th1
and Th17 responses [30–32] (refer to Figure 1, pathway 1). Mice lacking CCR2 display impaired
accumulation of moDCs, develop signs of Th2-type immunity [31], and fail to clear the fungus
from the lungs [33]; similar findings have been observed for CCR2-deficient mice infected with
H. capsulatum [34]. Depletion of CCR2+ Ly6Chigh monocytes in a murine model of A. fumigatus
infection resulted in reduced fungal transport to draining lymph nodes, diminished CD4+ T cell
priming, and inhibited fungal clearance [35], further implicating monocyte-derived dendritic cells as
critical regulators of immunity. However, despite the proinflammatory potential of moDCs, in vitro
studies have shown that human and murine monocytes and DCs express high amounts of the
immunomodulatory cytokine IL-10 in response to C. neoformans antigens [36–38] (and unpublished
results). This finding likely has significant in vivo relevance as evidenced by studies using a murine
model of persistent pulmonary C. neoformans infection in C57BL/6 mice; in these studies which
utilized infected IL-10−/− mice or C57BL/6 mice treated with antibody-mediated blockade of IL-10
signaling, IL-10 and the development of immunomodulatory moDCs (or “imo-DCs”; refer to Figure 1,
pathway 2) were clearly implicated in the suppression of Th1 and Th17 responses, reductions in
macrophage activation, and impairments in fungal clearance [9,39]. In addition to IL-10 production,
moDCs also upregulate Programmed cell death protein ligands 1 and 2 (PD-L1 and PD-L2) in response
to cryptococcal mannoprotein in vitro and in response to persistent cryptococcal infections in vivo
(unpublished observations); further discussion of the IL-10 and PD-1 signaling pathways can be found
later in this review. Collectively, these data contribute to an emerging paradigm identifying moDCs as
highly adaptable cells (i.e., “plastic”), which can promote either proinflammatory or immunoregulatory
responses within infected or injured peripheral tissues depending on the collective context of local
microenvironmental cues. Determining what factors promote inflammatory or immunomodulatory
DC phenotypes represents an area of intense investigation beyond the scope of this review.

As outlined in this section, by bridging innate and adaptive immune responses, DCs are thus
critically positioned to regulate immunity against fungal pathogens. In the following sections,
we will further highlight specific immunoregulatory mechanisms influenced by DCs including the
development of regulatory T cells and the modulatory effects mediated by the IL-10, PD-1, and CTLA-4
signaling pathways.

2.2. Regulatory T Cells

Regulatory T cells (Treg cells), broadly defined as CD4+CD25+ T cells expressing the transcription
factor forkhead box protein 3 (FoxP3), were named to reflect their capacity to down-regulate immune
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responses to a wide variety of self and foreign antigens [40–45], as well as promote homeostasis [46]
and transplantation tolerance [47]. While acknowledging the complexity of this field in terms of the
numerous subsets and functions of Treg cells, in this review, our generalized use of the term Treg cell
includes subsets of both natural Treg cells (nTreg) that develop in the thymus and primarily serve to
prevent autoimmune reactions [48–50], and induced Treg cells (iTreg), which develop in the periphery
in response to persistent antigen exposure [51]. Treg cells exert their regulatory effects largely through
production of IL-10 and TGFβ, although contact-dependent mechanisms are also present [48,52–54].
There are many proposed subsets of Treg cells with unique functions and phenotypes; such information
is beyond the scope of this discussion and we refer the reader to several excellent reviews on the
subject [48–50,55,56]. As alluded to in the preceding section, we also highlight evidence that DCs
prominently influence the development of numerous subsets of Treg cells, including both the natural
and induced varieties [57].

There is abundant evidence suggesting a functional role for Treg cells in the context of fungal
disease with numerous reports suggesting that Treg cells enhance protective immunity [58–64]
whereas in other models, Treg cells promote fungal dissemination and immunopathology [65–67].
Studies performed in mice infected with C. albicans have proven particularly informative as numbers of
Treg cells markedly increase in infected mice (relative to uninfected control mice) [65,68,69]. These Treg
cells were shown to modulate immune responses of the organism by inhibiting Th1 and Th2 activity
while promoting Th17 responses [58,65,67–69]. The enhancement of Th17 cell abundance was in part
attributable to Treg cell consumption of IL-2 [58,65] consistent with the previously defined capacity
of Treg cells to scavenge IL-2 via their high affinity IL-2 receptor [70]. In contrast, other studies have
suggested an inhibitory effect of Treg cells on Th17 activity using the same infectious agent [71],
suggesting substantial phenotypic and functional plasticity; Treg cell phenotypes are likely influenced
by local tissue microenvironments as Th17 responses were inhibited in a gastro-intestinal model of
C. albicans infection whereas they were enhanced in a disseminated infection model [58,71].

Molecules modulating Treg cell development and trafficking have been shown to impact the
involvement of Treg cells in fungal immunity. Specifically, Toll Like Receptor 2 (TLR2) promotes
Treg cell development during C. albicans infection, as evidenced by the reduction in Treg cells and
lower levels of the immunoregulatory cytokine IL-10 observed in infected TLR2−/− mice that display
increased resistance to disseminated candidiasis [59]. In support of TLR2 as a critical mediator of
Treg activity, the absence of TLR2 in a mouse model of chronic pulmonary Paracoccidioides brasiliensis
(P. brasiliensis) infection leads to impaired Treg cell expansion and skewing of adaptive immunity
toward a Th17 phenotype [66]. CCR5 plays a role in Treg cell migration to sites of P. brasiliensis
infection in the lung, as loss of CCR5 results in impaired Treg accumulation and subsequently
enhanced effector responses concomitant with improved granuloma formation and enhanced control
of disseminated disease; adoptive transfer of Treg cells from infected wild type (WT) mice into the
lungs of infected CCR5−/− mice leads to enhanced disease [60]. A similar effect is seen in the context
of H. capsulatum infection, as a reduction in Treg cell abundance in CCR5−/− mice leads to improved
fungal clearance following initiation of adaptive immunity [63]. Thus, Treg cell function is influenced
by both local fungal sensing receptors (including TLRs) and the ability of Treg cells to migrate to sites
of fungal infection.

Recent reports suggest a beneficial role for Treg cells in response to persistent pulmonary
C. neoformans infection in C57BL/6 mice, which is characterized by strong Th2 responses that contribute
to chronic allergy-mediated lung damage comparable to that observed in patients with allergic
bronchopulmonary mycosis [8]. In a study by Schultze et al., the authors depleted Treg cells in
mice with cryptococcal infection using DEREG (DEpletion of REGulatory T cells) mice and showed
that depletion of Treg cells exacerbated Th2 responses as evidenced by increased mucus production,
enhanced eosinophilia, and increased IgE production [61]. Critically, fungal burden in the lungs of
DEREG mice was elevated as compared to that seen in infected WT C57BL/6 mice, demonstrating that
suppression of Th2 responses enhanced protective immunity. Using C. neoformans peptide-specific
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major histocompatibility complex (MHC) II tetramers, Wiesner and colleagues further demonstrated
that Treg cells accumulating in the lungs of infected mice are overwhelmingly specific for C. neoformans
antigens, and this study provided additional evidence that Treg cells suppress detrimental Th2
immunity in response to infection [62]. The importance of maintaining balanced Treg cell capabilities
was also demonstrated using an experimental model of A. fumigatus infection in which Treg cells
were essential for both the control of the infection while simultaneously limiting excessive damage to
the host [64]; we will revisit this concept of balanced immune regulation in the section on Protective
Tolerance (Section 4.1). In contrast, dysregulated Treg cell activity has proven detrimental in the case of
human paracoccidioidomycosis (PCM) [67], with elevated Treg cell levels seen in patients with active
disease as compared to that seen in patients actively receiving treatment or healthy controls.

Collectively, these studies highlight an essential role for Treg cells in the immune regulation
required to combat these complex fungal pathogens. As will be discussed later in this review, Treg cells
contribute to multiple immunoregulatory processes seeking to balance the potency of effector immune
responses with the potential of these same effector responses to cause collateral tissue damage. In the
sections that follow, we will revisit the role of Treg cells in the carefully regulated response to fungal
pathogens as we further discuss their role in the IL-10, PD-1, and CTLA-4 signaling pathways.

3. Immunoregulatory Signaling Pathways

3.1. IL-10 Signaling

Interleukin-10 is a critical mediator of immune tolerance [72] and is intimately involved in the
immunoregulatory functions of DCs [39,73] and Treg cells [44,54]; both of which have the capacity for
potent IL-10 production. When considering the breadth of control that these two cell types have over
immunity, this identifies IL-10 as a key signaling pathway in the field of immunoregulation. IL-10 was
initially described as a cytokine synthesis inhibitory factor due to its capacity to inhibit production
of Type 1 cytokines [74]; subsequent studies confirm that IL-10 impairs excessive production of IL-1,
IL-6, IL-23, interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα) [75,76]. Early studies
demonstrated that IL-10−/− mice spontaneously develop colitis [77], and a more recent study showed
that the development of colitis requires microbial stimulation [75].

The role of IL-10 in promoting peripheral tolerance and in modulating immune responses to
numerous infectious and non-infectious insults has since been well-characterized, and we refer the
reader to several excellent reviews on the subject [78–80]. Our understanding IL-10 in the context of
fungal infections is less developed although investigations involving the endemic fungal pathogen
C. neoformans have proven particularly informative. Studies performed using human peripheral
blood-derived monocytes and DCs exposed to cryptococcal antigens have shown these cells produce
IL-10 and (or) respond to IL-10 by reducing expression of MHC II [36–38]. In support of these findings,
others have shown that enhanced IL-10 expression correlates with disseminated cryptococcosis in
patients with AIDS [81]. Murine models utilizing experimental cryptococcal lung infection in C57BL/6
mice have shown that IL-10-deficient mice display improved clearance of the organism from the
lung, which coincided with a skewing of the CD4+ T cell polarization profiles from Th2 to Th1
predominant [9]. Specifically, IL-10 deficiency was characterized by reductions in tissue eosinophilia
and expression of IL-4, IL-5, and IL-13, whereas Th1 responses (TNFα and IL-12 expression) were
enhanced. Our group has since directly demonstrated that persistent cryptococcal lung infection
in wild type C57BL/6 mice is associated with sustained IL-10 production by lung leukocytes [39],
and we further showed that IL-10 signaling blockade (using a blocking antibody to the IL-10 receptor)
reduced fungal burden and systemic dissemination even if administered after persistent infection had
been established [39]. Our findings suggested that the protective effect of IL-10 signaling blockade
was likely mediated through enhanced Th1 and Th17 responses and increased activation of effector
macrophages [39]. Additional murine studies showing that a highly virulent strain of C. neoformans
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induces greater IL-10 expression than a less virulent strain [82] suggest that the microbe itself may
alter IL-10 driven immunoregulation.

Studies investigating the role of IL-10 signaling in fungal pathogenesis are not limited to studies
of C. neoformans. Limited data from human studies have identified polymorphisms in the IL-10 gene
associated with increased susceptibility to invasive candidiasis [83], whereas polymorphisms in the
IL-10 promoter have been associated with either resistance or susceptibility to invasive pulmonary
aspergillosis [84]. In murine studies, IL-10 expression also occurs in response to murine infection with
C. albicans [85], H. capsulatum [86] and A. fumigatus [87] and the absence of IL-10 is associated with
improved fungal clearance. In particular, intravenous infection with C. albicans is quickly cleared in
IL-10−/− mice compared to wild-type mice, which is attributed to more efficient fungal killing by
neutrophils [85]. Interestingly, IL-10 production in response to C. albicans infections has been linked to
signaling through Toll Like Receptor 2 (TLR2) with additional downstream effects on the expansion of
Treg cells [59]; depletion of Treg cells improved resistance, thereby underscoring links between the
IL-10 signaling pathway and Treg cell-mediated immune modulation.

Thus, studies to date identify the IL-10 signaling pathway as a critical contributor to the
immunoregulatory networks that develop in response to fungal infections. An overabundance of IL-10
impairs fungal clearance and appears essential for the development of persistent fungal infections.
Yet deficiencies in local IL-10 production may result in over-exuberant inflammation including immune
reactions to commensal organisms. In the next sections, we further highlight interrelationships between
immunoregulatory mechanisms as we discuss the role of the PD-1 and CTLA-4 signaling pathways in
immune checkpoints.

3.2. Programmed Cell Death Pathway

The programmed cell death signaling pathway has rapidly gained attention as a critical immune
checkpoint, initially identified for its ability to severely inhibit T cell proliferation and effector
activity [88,89]. The pathway consists of the receptor PD-1 and its ligands PD-L1 and PD-L2 [90].
PD-1 is expressed on activated T cells [91,92], with evidence suggesting its expression on other cell
types including B cells and macrophages [92,93]. PD-L1 is expressed on many cell types including
antigen presenting cells (APCs), T cells, epithelial cells, and is often upregulated during inflammation.
PD-L2 expression is primarily restricted to APCs such as DCs and macrophages [94].

Similar to IL-10, PD-1 plays a prominent role in maintaining peripheral tolerance, and several
studies note that elimination of this pathway leads to the development of autoimmune disorders
in animal models, with PD-1 signaling-deficient mice developing conditions including Lupus-like
proliferative arthritis and autoimmune dilated cardiomyopathy [95,96]. These studies, and numerous
others described in several outstanding review articles [97,98], present compelling evidence of defects
in peripheral tolerance, suggesting a regulatory role for the PD pathway under homeostatic conditions.
Enthusiasm for investigating these molecules has increased steadily with the revelation that not only
can this immune checkpoint be inhibited with neutralizing monoclonal antibodies, but that inhibition
of PD-PD-L signaling can improve survival in human cancer patients as well as in numerous murine
cancer models. Murine models have shown that blocking any of PD-1 [99,100], PD-L1 [100,101],
or PD-L2 [101] has beneficial effects in inhibiting the growth and spread of tumors; conversely,
constitutive expression of PD-L1 by tumor cells leads to enhanced resistance to CD8+ T cell-mediated
cytolysis [102]. In a series of exciting developments, inhibitors of the PD-1 signaling pathway have
shown considerable efficacy in numerous clinical trials involving patients with malignant disease who
have failed conventional therapies (reviewed in [103,104]). Thus, in addition to understanding the
effects of the PD-1 signaling pathway on fungal pathogenesis (reviewed below), it will be essential to
ascertain whether the expanding clinical use of checkpoint inhibitors will alter the susceptibility or
severity of fungal infections in patients treated with these immunotherapy agents.

The immunomodulatory properties of the PD-1 signaling pathway in response to infectious
pathogens were initially characterized in the context of chronic viral infections (refer to several
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appropriate reviews [105,106]). Additional studies have defined a role for this pathway in response
to numerous non-fungal pathogens [107–109]. Despite a relative paucity of studies investigating the
PD signaling pathway in the context of fungal disease, the pathway has been studied in select fungal
infections with results suggesting a major role for the pathway in perpetuating persistent fungal
disease. Expression of both PD-L1 and PD-L2 increases alveolar macrophages (AMs) during the course
of pulmonary infection with C. neoformans [110] and H. capsulatum [111]. T cells obtained from patients
with paracoccidiomycosis over-express PD-1 as compared to T cells from healthy volunteers, whereas
other similar molecules (e.g., CD28) had unchanged expression [112]. However, in contrast to other
studies, the authors of this study found that neither anti-PD-1 nor anti-PD-L1 antibody treatment
restored proliferative capacity of T cells from infected donors in vitro, which suggested the possibility
of other, possibly redundant, pathways affecting the proliferative capacity of T cells.

In addition to its effects on T cells, it is important to recognize that the PD-1/PD-L signaling
pathway is bidirectional with additional effects on the cognate PD-L expressing APCs. DCs acquire a
suppressive phenotype when exposed to soluble PD-1 (sPD-1) as evidenced by their reduced expression
of costimulatory molecules CD40, CD80, and CD86, and increased production of IL-10 relative to
isotype antibody-exposed DCs [113]. Although studies directly examining this ‘reverse signaling’
phenomenon in fungal infections are lacking, this is an area in need of further research due to its
implications for utilizing antibodies as treatment. Also of interest is the potential for the PD-1 signaling
pathway to mediate immunoregulatory interactions between APCs. This was demonstrated in a murine
model of Pneumocystis pneumonia (PcP) in which myeloid-derived suppressor cells (MDSCs) were
found to accumulate in the lungs of infected mice and cause subsequent lung damage. These MDSCs
expressed high levels of PD-L1, whereas resident alveolar macrophages expressed increased amounts
of PD-1 in response to infection. The authors showed that in vitro co-culture of alveolar macrophages
obtained from uninfected mice with MDSCs from PcP mice resulted in an 18-fold increase in PD-1
expression associated with a significant impairment in the phagocytic capacity of these macrophages.
Critically, addition of an anti-PD-L1 antibody reduced these effects [93], demonstrating that the PD
signaling axis was specifically modulating AM phagocytic function, emphasizing that interactions
between myeloid cells can modulate their respective phenotypes via PD-1 signaling.

Fungal sepsis represents an acute form of disseminated candidiasis that may require more
rapid immunoregulation than many chronic infections such as pulmonary cryptococcosis and
paracoccidiomycosis. Patients suffering from C. albicans fungal sepsis display elevated levels of
PD-1 on CD8+ T cells, as well as increased expression of PD-L1 on both CD4+ and CD8+ T cells [114].
In this study, the control group was critically ill non-septic patients with no evidence of fungal infection,
suggesting that septic infection with the fungal pathogen C. albicans was an important and specific
determinant in activation of the PD signaling pathway. Using both one- and two-hit fungal sepsis
models, Chang et al [115] demonstrated that blockade of PD signaling utilizing either anti-PD-1
or anti-PD-L1 antibodies significantly improved mouse survival in both models. PD-1 expression
was found to be upregulated on both CD4+ and CD8+ T cells as early as 3 days post-infection,
demonstrating that PD-1 upregulation is an important early physiological response to an acute fungal
infection. Addition of anti-PD-1 antibody also led to significant increases in splenocyte secretion of
IFNγ, IL-10, and IL-6, and increased expression of MHC II on both macrophages and dendritic cells,
further supporting a role for PD-1 in inhibiting a broad array of immune activity. Thus, these studies
identify an important and potentially unique role for the PD-1 signaling pathway in response to an
acute and systemic fungal infection resulting in sepsis.

A lethal murine model of H. capsulatum infection provides additional exciting evidence for an
important role of PD signaling in regulating immunity toward an acute fungal pathogen [111]. Whereas
100% of WT mice succumbed to disease within 4 weeks of initial infection, 100% of PD-1−/− mice
survived disease free for at least 90 days. Of note, although both WT and PD-1−/− mice developed
disseminated disease, this trend was rapidly reversed in PD-1−/− mice as H. capsulatum was completely
eradicated from all organs by 13 days post infection in these animals. The authors demonstrated that
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PD-L1 and PD-L2 were both up-regulated on lung macrophages and DCs, and these cells significantly
impaired both CD4+ and CD8+ T cell proliferation in vitro. To more accurately reflect therapeutic
potential, the authors also blocked the PD-1 signaling pathway (using an anti-PD-1 neutralizing
antibody) during infection of WT mice, and found a 70% survival rate that persisted for at least
6 months, as compared to 0% survival seen in the untreated group. Our preliminary studies using
a murine model of persistent cryptococcal lung infection support and extend these findings as we
have shown that treatment of mice with an anti-PD-1 blocking antibody to mice with established
infection enhances T cell activation and reduces fungal burden (unpublished data). The results of
these studies raise the exciting possibility that immune checkpoint inhibitors may represent novel
immunotherapeutics for the treatment of chronic lung infections.

In summary, an emerging body of literature identifies the PD-1 signaling pathway as a unique
immunoregulatory pathway capable of mediating bidirectional effects amongst myeloid cells and
between myeloid cells and T cells in response to fungal infections. As an immune checkpoint,
this pathway may represent a novel target for applied therapeutics designed to enhance immunity
against persistent fungal diseases that can be difficult to treat with antibiotics alone. Thus far, there is
no evidence that the use of checkpoint inhibitors in the treatment of patients with cancer alters their
susceptibility to fungal infections or triggers IRIS (reviewed below) yet these possibilities warrant
ongoing monitoring.

3.3. Cytotoxic T Lymphocyte-Associated Protein 4 Signaling

Similar to PD-1, CTLA-4 has been shown to regulate T cell activation in response to tissue
grafts, demonstrating a valuable effect on peripheral tolerance, as CTLA-4 blockade accelerates tissue
graft rejection [116]. Unlike PD-1, which has its own unique ligands, CTLA-4 binds to the more
well-studied costimulatory molecules CD80 and CD86 [117–119], subsequently acting to inhibit T
cell activation and effector function [120–122]. In this way, CTLA-4 competes with CD28 and not
only reduces costimulatory signaling via CD80 and CD86 binding to CD28, but actively inhibits T
cell activity upon binding these ligands [123,124]. Under some circumstances, CTLA-4 ligation can
override CD28-dependent T cell activation, although IL-2 can in turn override the effect of CTLA-4 and
restore activation [125]. Thus, CTLA-4 can be viewed as having an effect opposite that of CD28 [126],
as compared to the relatively unique signaling seen within the PD-1 axis. This distinction is supported
by data suggesting a synergistic, rather than redundant, role for the two pathways. Loss of PD-1
results in priming of autoreactive CD8+ T cells in a mouse model of peripheral CD8+ T cell tolerance;
blocking CTLA-4 signaling has a similar effect. When both pathways are blocked, however, the effect
is enhanced, suggesting functional non-redundancy [127]. Although both pathways were not blocked
simultaneously, a study utilizing a murine model of C. albicans-induced fungal sepsis showed that
blocking signaling through PD-1, PD-L1, or CTLA-4 resulted in similar improvements in survival,
demonstrating a comparable magnitude of effect between the two pathways during candidiasis [115].

As with PD-1, research into the impact of CTLA-4 signaling on regulation of immune responses to
fungal diseases is limited but promising. Studies performed on patients with PCM have demonstrated
increased CTLA-4 activity relative to healthy patients or patients receiving treatment [67], leading the
authors to speculate that increased CTLA-4 activity contributes to the relative immunosuppression
known to occur in this disease, perhaps by mechanisms related to CTLA-4 induced apoptosis of T
cells. Alternatively (or in addition), this study also showed that simultaneous blockade of CTLA-4
and Fas ligand on T cells from PCM patients resulted in enhanced T cell proliferation in vitro; thus,
inhibition of T cell proliferation might be an additional mechanism of CTLA-4 mediated immune
regulation in patients with PCM [128].

Investigations of C. neoformans infection have provided additional insights into the
inter-relationship of this signaling pathway with cryptococcal virulence factors and the ability
to establish effective immune responses following vaccination. Specifically, murine CD4+ T cells
stimulated with C. neoformans up-regulate CTLA-4 expression rapidly after exposure. Further,
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C. neoformans-stimulated CD4+ T cells proliferate and produce cytokines including IL-2 and IFNγ in
response to CTLA-4 blockade, as compared to stimulated CD4+ T cells in the absence of blocking
anti-CTLA-4 antibodies [129]. The authors further noted differences in CTLA-4 up-regulation
when cells were stimulated with virulent, capsular C. neoformans as compared to the relatively
benign acapsular form. Thus, induction of CTLA-4 may be one means of immune evasion used
by some fungal pathogens. Efforts to counteract CTLA-4-mediated immune evasion may represent an
effective therapeutic strategy as supported by one promising study [130], which demonstrated that
CTLA-4 blockade enhanced survival of mice infected with a highly virulent strain of C. neoformans.
Enhanced survival was mirrored by reduced fungal burden in the lung, spleen, and brain,
demonstrating the potential of CTLA-4 blockade to both inhibit fungal growth at the initial site
of infection and to limit potentially lethal dissemination. Perhaps most intriguing, however,
was the additional observation that administration of anti-CTLA-4 antibodies during induction of a
cell-mediated immune response to C. neoformans by vaccination improved the efficacy of vaccination
and increased protection against subsequent infection with the organism. These data support and
extend findings from a study demonstrating increased CTLA-4 expression on Th17 cells relative to Th1
cells in response to C. albicans infection [131]. Together, these studies may guide future vaccination
strategies designed to elicit more potent recall responses from specific T cell subsets when traditional
vaccination is combined with anti-CTLA-4 antibody treatment.

4. Unique Immunoregulatory Circumstances

4.1. Protective Tolerance

Protective tolerance represents a host preservation immune strategy that functions to limit
immunopathology while controlling an infection. This strategy appears especially pertinent to fungal
infections given their propensity to evade initial host defenses, which often leads to lengthy and
persistent attempts by the host to achieve sterilizing immunity at the risk of incurring host tissue
damage. As such, in some instances it is advantageous for the host to contain and coexist with a (fungal)
pathogen rather than continuously striving to attain absolute fungal clearance. Protective tolerance
may also be viewed as the development of commensalism between host and fungus [132], born out of
necessity due to the ubiquitous nature of many fungi in the environment.

Both regulatory T cells and IL-10 are prominent contributors to protective tolerance.
Studies investigating oral tolerance to C. albicans have shown that the disruption of regulatory pathways
involving CD28, CD86, and IL-10 leads to an enhanced ability to restrict fungal growth but at the cost
of inflammatory immunopathology [133]. As C. albicans is a well-established commensal within the
oral microbiome, protective tolerance would seem evolutionarily favorable rather than unleashing the
full capabilities of host defenses to eradicate the organism given the “collateral damage” caused by
such efforts. Similarly, although not typically viewed as a commensal microorganism, A. fumigatus
can establish persistent infection and ultimately necessitate the development of protective tolerance
for the well-being of the host. Data demonstrating that DCs activate Treg cells [134,135] and dampen
inflammatory Th1 and Th17 responses to the fungus [134,136] provide evidence that the host may
avail itself to this strategy when encountering this organism. Although not directly implicated in
protective tolerance against C. albicans or A. fumigatus, the involvement of the CD28-CD80/86 signaling
axis suggests that the CTLA-4 and perhaps the PD-1 signaling pathways might also be involved;
further investigation into the role of these pathways in protective tolerance is warranted.

Collectively, the concept of protective tolerance can be viewed as a unifying theme with
regard to the immunoregulatory mechanisms discussed within this review. Protective tolerance,
while a relatively novel concept in need of further investigation, likely relies on several or all of the
immunoregulatory mechanisms discussed above to function properly. Evidence suggests that Treg
cells are a critical mediator of protective tolerance [71,137]. Dendritic cells promote the development
and activity of Treg cells, in part through production of IL-10, and Treg cells in turn utilize IL-10
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to influence both innate and adaptive immunity. Treg cells also utilize PD-1 and CTLA-4 signaling
to exert their immunoregulatory effects and are thus identified as a central regulatory cell through
which several other immunoregulatory mechanisms mediate their immunomodulatory effects. Thus,
protective tolerance results from the cumulative effects of several immunoregulatory mechanisms
working in concert to effectively control fungal infections while limiting host damage, thereby resulting
in commensalism.

4.2. Immune Restoration Inflammatory Syndrome

As the focus of this review is mechanisms of immunoregulation in fungal disease, much of
the discussion has centered on studies in which these regulatory processes dampen inflammation.
Emerging evidence of a unique phenomenon termed Immune Restoration Inflammatory Syndrome
(IRIS), a syndrome of excessive inflammation in response to rapid immune reconstitution, raises a
red flag to researchers regarding the potential drawbacks of interfering with these tightly-controlled
pathways. Shelburne and colleagues proposed the following clinical definition of IRIS: “a paradoxical
deterioration in clinical status attributable to the recovery of the immune system during highly active
antiretroviral therapy (HAART) of HIV infection” [138]. As will be discussed, IRIS is not limited to
individuals undergoing HAART, but most instances of IRIS are seen in this context. A rapid increase in
the number of CD4+ T cells present likely plays a critical role in the development of IRIS, as evidence
suggests that a high baseline CD4+ T cell count is protective against developing IRIS, and conversely
lower CD4+ T cell counts are predictive of IRIS development [139,140]. Thus, IRIS occurs while
adaptive immunity is being restored following immunosuppression [141,142].

Although some studies show that HAART patients experiencing IRIS tend to have a slightly
better long-term prognosis than those that do not (presumably due to the host’s robust immune
system providing a greater long-term benefit), one cannot discount the significant short- and
medium-term morbidity associated with the disease, as IRIS symptoms can persist for two years
following immune restoration [140]. IRIS is a significant concern for HIV+ individuals initiating
HAART, as reinvigorated immune responses to latent or previously controlled infections may lead
to widespread immunopathology in the host. There are two broad categories of IRIS, unmasking
and paradoxical. Unmasking IRIS occurs when a previously unknown opportunistic pathogen is
present for which a patient had previously tested negative but tests positive upon initiation of HAART,
with concomitant development of symptoms. Paradoxical IRIS occurs when a disease has been
previously diagnosed and the patient received treatment prior to the initiation of HAART, with the
patient experiencing symptoms of IRIS associated with inflammatory responses to the infection [139].

Indeed, whereas M. tuberculosis represents the most common pathogen causing IRIS, primary or
coinfection with C. neoformans is also exceedingly common in IRIS patients [143,144]. Current estimates
vary, but anywhere from 8%–43% of HIV+ patients previously treated for tuberculosis, and 4%–66%
of those previously treated for cryptococcosis, undergoing HAART, develop symptoms of IRIS
following initiation of treatment [145]. IRIS is particularly relevant to immune dysregulation in
the context of fungal infections, as much research into this syndrome focuses on individuals with active
cryptococcosis or latent C. neoformans infection. Cryptococcal IRIS is potentially life-threatening [146],
as fungal antigens residing within the central nervous system (CNS) can trigger lethal IRIS-associated
excessive inflammation in this location. Risk factors for cryptococcal IRIS include high baseline fungal
burden, an ineffective host response to the initial infection, and a subsequent rapid restoration of
immunity (e.g., due to HAART) [147].

Despite the elegant immunomodulatory networks described in our discussion of protective
tolerance, there is evidence that many of these regulatory mechanisms also contribute to IRIS [148];
in addition, there is evidence suggesting that many of the pathogens promoting IRIS are of fungal
origin. Cryptococcal IRIS is associated with a skewing of the immune system from a Th2 response
to a Th1 response [147] associated with additional increases in Th17 and natural killer (NK) cell
responses and elevated production of inflammatory cytokines including IL-6, IL-7, and IFNγ [148,149].
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One study identified a 10-fold increase in serum IFNγ and IgG in cryptococcal meningitis (CM)
IRIS patients on HAART as compared to HAART patients without CM-IRIS or healthy controls.
Interestingly, the authors also noted an increase in the abundance of Treg cells within these individuals,
suggesting a role for these regulatory cells in the development or suppression of IRIS [150]. The most
precise estimates of IRIS occurrence range from 25%–32.5%, developing on average 8 weeks after
the initiation of HAART, with increased expression of pro-inflammatory markers including IFNγ,
TNFα, and eotaxin in CM-IRIS patients as compared to individuals simply experiencing a relapse of
CM [151,152]. This distinction is critical, as it clearly shows that IRIS is an immunological phenomenon
distinct from basic host immune responses to C. neoformans in the CNS.

Although IRIS is typically viewed from the perspective of HIV patients undergoing HAART,
other circumstances associated with restoration of host defenses are capable of triggering IRIS.
IRIS has been shown to occur in roughly 5% of C. neoformans-infected transplant patients and 14% of
M. tuberculosis-infected transplant patients upon cessation of immunosuppressive therapy [153,154].
One critical distinction, however, is that whereas HAART-IRIS patients typically experience a clinical
deterioration followed by recovery, transplantation IRIS greatly increases the risk of allograft rejection,
thus severely reducing the chances of recovery. C. neoformans-induced transplantation IRIS in
particular has been shown to cause a significantly higher incidence of graft rejection, with studies
demonstrating 2–11 times greater rejection frequency [153,155]. Critically, approximately 54%–72%
of these cases involve dissemination to the CNS, thus further increasing the likelihood of morbidity
and mortality [155]. Although C. neoformans is the most commonly observed fungal infection
during transplantation IRIS, invasive aspergillosis has also been demonstrated to trigger IRIS in
transplant recipients [156]. Interestingly, McLin and colleagues have recently proposed that pediatric
transplantation patients may be protected from IRIS. Specifically, the authors suggest that the relative
absence of IRIS in pediatric patients may be attributable to thymus-dependent immune reconstitution,
which may promote the generation of more Treg cells, thereby creating a more balanced restoration of
immunity relative to the less diverse and more highly polarized lymphocyte reconstitution that occurs
in adults. Although intriguing, the suggestion is speculative, underscoring the need for additional
research in this field [157].

In addition to cases in HAART and transplantation patients, IRIS has been observed in women
post-parturition; this has been shown due to infection with both C. neoformans [158–160] and
Coccidioides immitis [161,162]. Although pregnancy is generally only mildly immunosuppressive,
the dysregulated reconstitution of immunity following childbirth is sufficient to induce IRIS.
During pregnancy, in addition to general immunosuppression, the immunological environment shifts
in favor of Th2 immunity, which in turn provides a more hospitable environment for the establishment
of fungal infections or reactivation of latent infections [163–165]. A reversal in this balance following
childbirth, when Th1 immunity becomes more pronounced, has been documented [166], thus providing
one means by which IRIS may be triggered in the post-partum period.

In summary, protective tolerance and IRIS can best be viewed as opposite outcomes along the
spectrum of immunoregulatory mechanisms active in response to fungal infections. Both scenarios
identify the complex and often complementary mechanisms utilized by the immune system in its
efforts to achieve healthy immune homeostasis. Our increased understanding of these mechanisms
may allow us to prevent or better treat the morbidity and mortality that may result when these
mechanisms become dysregulated.

5. Conclusions

Fungal infections present unique challenges to the host immune system. As fungi are more
similar to mammals than are other pathogens such as bacteria or viruses, sterilizing immunity is often
difficult to achieve, and conventional treatments are far more limited due to the greater potential for
damage to the host. This in turn can lead to prolonged infections leaving the host at increased risk for
immunopathology due to ongoing inflammatory processes in response to the pathogen. Ultimately,
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immunoregulatory mechanisms are required to minimize host damage while simultaneously allowing
effective immune responses to continue. Immunoregulation is a double-edged sword, however, as a
reduction in Th1 and pro-inflammatory processes can allow pathogens to multiply and potentially
spread to secondary locations such as the CNS.

In this review, we have highlighted several cell types and pathways activated in response to
fungal infections (summarized in Table 1). We have identified dendritic cells and regulatory T cells as
crucial regulatory immune cells that orchestrate both innate and adaptive immunity through direct
and indirect mechanisms. Although multiple immune processes contribute to immune regulation
in response to fungal infections, we focused our attention on the IL-10, PD-1, and CTLA-4 signaling
pathways as individually and collectively they have proven to be of central importance to numerous
immunoregulatory networks. Working in concert, these cells and pathways may comprise an
effective strategy to establish commensal relationships with fungi through protective tolerance.
In contrast, dysregulation amongst these cells and pathways may result in over-exuberant and
deleterious inflammation as observed in IRIS. Perhaps most exciting are the opportunities that
we have highlighted in which these cells and pathways might be intentionally manipulated to
enhance our ability to prevent or treat fungal disease. Such advances will require the continued
investment of our scientific community including ongoing partnerships with basic scientists, clinicians,
and pharmaceutical companies.

Table 1. Concepts Relevant to Immunomodulation in Fungal Disease.

Concept Specific Topic Fungi of Relevance References

Cells

Dendritic Cells

A. fumigatus [20,21,35]
C. albicans [28,29,68]

C. neoformans [9,30–33,36–38]
H. capsulatum [34]

Regulatory T Cells

A. fumigatus [64]
C. albicans [58,59,65,67–69,71]

C. neoformans [61,62]
H. capsulatum [63]
P. brasiliensis [60,66,67]

Signaling Pathways

IL-10

A. fumigatus [84,87]
C. albicans [83,85]

C. neoformans [9,36–39,81]
H. capsulatum [86]

PD-1

C. albicans [114,115]
C. neoformans [110]
H. capsulatum [111]
P. brasiliensis [112]

P. jirovecii [93]

CTLA-4
C. albicans [115,131]

C. neoformans [129,130]
P. brasiliensis [67,128]

Unique Circumstances

Protective Tolerance
A. fumigatus [134–136]
C. albicans [71,133]

Immune Restoration Inflammatory Syndrome
A. fumigatus [156,157]

C. immitis [162,163]
C. neoformans [143–153,155,159–161]
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