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Abstract: This study explored the feasibility of fabricating fire-retardant strandboard with low me-
chanical properties deterioration to the physico-mechanical properties. A hybrid fire-retardant system
of ammonium polyphosphate (APP) and 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione
(TBC) was investigated. Thermogravimetric analysis results show that both APP and TBC enhance the
thermal stability and incombustibility of wood strands. An infrared spectrum was applied to investi-
gate the effect of flame retardants on the curing behaviors of polymeric diphenylmethane diisocyanate
(PMDI) resin. Based on the results of limiting oxygen index (LOI) and Cone calorimetry (CONE),
APP and TBC both lead to a higher fire retardancy to strandboard. It is worth mentioning that the
two flame retardants lead to evidently differential influences on the modulus of rupture (MOR),
modulus of elasticity (MOE), internal bond (IB), and water-soaking thickness swelling (TS) properties
of strandboard. Hence, a hybrid flame retardant is prominent in manufacturing strandboard with
both good fire retardant and satisfying physico-mechanical properties.

Keywords: strandboard; fire retardant; ammonium polyphosphate (APP); 1,3,5-tris(2,3-dibromopropyl)-
1,3,5-triazinane-2,4,6-trione (TBC)

1. Introduction

Considering their low-carbon advantages and constructional friendliness, wood con-
structions are encouraged by Chinese administrations with commercially engineered wood
products quantitatively available (e.g., oriented strandboard or OSB [1,2], glued laminated
timber or glulam, etc.).

Fire safety tends to be a key factor in wood construction. In 2020, there were 109,000 res-
idential building fires in China, resulting in 1416 death and injuries [3]. The situation seems
similarly grim in other parts of the world such as the USA, where timber-framed buildings
account for more than 80% of new constructions [4]. In 2018 alone, there were 379,600 resi-
dential building fires across the country, resulting in 14,315 death and injuries [5]. Hence,
the materials for wood constructions, e.g., OSB, need to be technically treated with fire
retardants, such as brominated fire-retardants (BFRs) [6–8].

The main fire retarding mechanism of BFRs is decomposition to generate halogen
hydride capturing and transfer combustion chain reaction of active radicals (such as ·OH,
·O, ·H) into bromine-free radicals with low activity, resulting in combustion slowing down
or termination [9,10]. Meanwhile, some studies further showed that BFRs have positive
effects on the mechanical properties of materials treated. Li et al. [11] studied the influence
of Brominated polystyrene (BPS) and other flame retardants on Polyamide 6 (PA6). BPS
combined with other flame retardants can improve the notch impact strength and tensile
strength of PA6. Guo et al. [12] modified rigid polyurethane foams (RPUFs) by brominated
benzyl polyols and found that it had little influence on compressive strength. Moreover, the
addition of brominated benzyl polyols improves the thermal stability and flame retardancy
of RPUFs.
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Phosphate flame retardants, typically ammonium polyphosphate, are another family
of flame retardants widely used in a variety of materials. These chemicals act mainly de-
pending on the condensed phase retarding mechanism, i.e., the generation of a high-quality
thermal insulation char layer, to block oxygen, heat or volatile small particles. However,
the pyrolysis of ammonium polyphosphate often affects some mechanical properties of
the material. Zhang et al. [13] added phosphorus-containing flame retardant to PU, and
the tensile strength increased first and then decreased with the increase of the addition
amount. When the addition amount reached 15 wt%, the tensile strength of PU reached
the maximum. Xie et al. [14] added phosphate-based flame retardants to PMMA, causing
18.1% deterioration to the tensile strength of PMMA, but having little impact on the tensile
modulus and impact strength. Li et al. [15] found, when using poly(P-xylylenediamine
spirocyclic pentaerythritol bisphosphonate) (PPXSPB) to modify epoxy resin, the addition
of 30 wt% caused 46% reduction to the tensile strength of epoxy resin, but had little effect
on the bonding strength. To summarize, two points cause the inverse influence of phos-
phorous flame retardants on the mechanical properties of the treated materials. Firstly, the
agglomeration of flame retardants causes stress concentration. Secondly, the addition of
flame retardants affects the pH value of adhesives, leading to the reduction of the bonding
strength of adhesives.

In this work, two flame retardants, i.e., APP and TBC, were tried to treat wood strand-
board using PMDI resin as the bonding agent. TBC as a hexabromoheterocyclic triazine
compound has a high thermal stability, resilience and light degradation resistance [10].
It is similar to PMDI adhesive chemically [8]. Whether the flame retardants affect the
curing process of PMDI adhesive was explored. The flame retardant mechanism was
preliminarily explained by thermogravimetric analysis and cone calorimetry. Moreover,
the physico-mechanical performance of the strandboard was specifically discussed.

2. Materials and Methods
2.1. Materials

PMDI resin was acquired from Huntsman Co. Ltd. (Shanghai, China). Wood strands
were from Baoyuan OSB Co. Ltd. (Hubei, China), which were industrially sliced from small-
diameter plantation poplar (Populus tremula) logs. The moisture content of wood strands
was 8%. Two systems of fire retardants were applied, i.e., ammonium polyphosphate
(APP) and tris(2,3-dibromopropyl) isocyanate (TBC) (Yunnan Tianyao chemical industry
Co. Ltd., Kunming, China). Acetone (Nanjing Chemical Reagent, Nanjing, China) was
invoked as the solvent of the powdered fire retardants, aiming at uniform distribution on
wood strands.

2.2. Fabrication of Strandboards

The preparation process is shown in Figure 1. Contents of PMDI resin and fire
retardants were based on the oven-dry weight of wood strands, followed the regulations in
Table 1. The APP, TBC, or hybrid flame retardant was firstly sprayed onto wood strands
under stirring for 5 min using an agitator, followed by PMDI adhesive. After lay-up
manually, the composite was hot-pressed into a 350 × 350 × 8 mm3 board at a target
nominal density of 800 kg·m−3. Each type of strandboard was prepared for 4 repetitions.
The hot-pressing temperature was 180 ◦C. The whole hot-pressing process lasted for 10 min,
10 MPa for 2 min, 5 MPa for 3 min and 2 MPa for 5 min.

2.3. Characterizations
2.3.1. Influence of Flame Retardant(s) on the Curing Behavior of PMDI Resin

A Fourier transform infrared (FTIR) analyzer (VTMR20-010-T, Bruker Corporation,
Karlsruhe, Germany) was used to analyze the influence of the flame retardants on the
curing process of PMDI resin.
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Figure 1. Schematic illustration of strandboards preparation.

Table 1. Synthesis condition of fire-retardant strandboards.

Specimens PMDI, wt%
Fire Retardants, Phr

APP TBC

Control 4
FRB/APP 4 10
FRB/TBC 4 10

CFRB1 4 2.5 7.5
CFRB2 4 5 5
CFRB3 4 7.5 2.5

TBC or APP flame retardants (particles through 300 mesh screen), liquid PMDI, and
water were mixed in a beaker at a weight ratio of 5:10:2. The beaker was stirred with an
electric mixer (JJ-1 60W, Jintan Xicheng Xingri Instrument Factory, Changzhou, China)
for 5 min. Then, the beaker containing the sample was removed into an oven at 80 ◦C.
Polymerization reaction of PMDI resin gradually develops, which can be characterized by
the change of isocyanate (-NCO) and amino (-NH) groups. Specimens for FTIR analysis
were taken from the outermost part of each beaker every 10 min. The total heating time
was 50 min until all of the specimens were cured.

To facilitate the analysis of infrared spectral data, the ratio of isocyanates to amino
groups is defined as follows:

R =
Ai
Aa

(1)

where Ai is the absorption peak of isocyanate group, Aa is the absorption peak of amino
group, and R is the ratio.



Materials 2022, 15, 435 4 of 12

2.3.2. Distribution of Fire Retardants on Wood Strands

To find out the distribution of fire retardant particles on the wood strands, microscopic
scanning was conducted (SEM, Quanta 200 FEI Company, Hillsboro, OR, USA). Wood
strands were randomly selected before mat formation and preheated at 60 ◦C for 3 h. After
cooling down to room temperature, the strands were cut into small pieces and fixed on
the metal sample table with conductive adhesive. Before observation, the specimens were
covered with a thin Aurum film.

2.3.3. Thermogravimetric Analysis

Thermogravimetric Analysis was used to investigate whether flame-retardant would
enhance the thermal stability of wood/PMDI and to analyze the flame retardant mechanism
of flame retardants. Thermogravimetric (TG) analysis was conducted for the blended
sample using the Netzsch STA 409 PC/PG analyzer (Netzsch group, Karlsruhe, Germany)
at a heating rate of 10 ◦C/min and an air flow rate of 30 mL/min ranging from 40 ◦C to
800 ◦C.

Wood strands were milled for 5 min into powders (HC-800Y, Wuyi Haina Electric
Appliance Co., Ltd., Jinhua, China) and screened out with an 80-mesh screen. The powders
were dried at 60 ◦C for 3 h and cooled at room temperature in a dry dish for 3 h. The
content of PMDI was increased and flame retardant was reduced to demonstrate the flame-
retardant effect of flame retardants better. Wood powders, liquid PMDI and fire retardant(s)
were uniformly mixed at a mass ratio of 100:6:7.

2.3.4. Physico-Mechanical Properties Testing of Strandboards

To investigate the possible influences of fire retardants on the mechanical and physical
performance of strandboards, MOE and MOR, IB strength, and 2 h TS were tested in
accordance with the Chinese national standard for properties testing methods of wood
based-boards, GB/T 17657 [16]. All boards were conditioned at 20 ± 2 ◦C and 65 ± 5%
relative humidity (RH) for one week before cutting specimens for testing. For static bending
testing, the specimens of 210 × 50 × 8 mm3 were loaded at a middle-length position at a uni-
form head motion speed of 5 mm/min till fracture. Following that speed, IB strength was
acquired through a continuous tensile load perpendicular to the surface of 50 × 50 × 8 mm3

specimens. Thickness swelling (TS) testing was conducted for 50 × 50 × 8 mm3 specimens,
judging the thickness change rate before and after 2 h water soaking at room temperature.
16 repetitions were prepared for IB tests and TS test, while 8 repetitions for MOE and MOR.

2.3.5. Burning Behavior Testing

The burning behavior of various strandboards was tested following LOI method
according to the Chinese national standard GB/T 2406.2 (identical to the ISO 4589-2 stan-
dard) [17], using an HC900-2 oxygen index meter (Shangyuan Analytical Instrument Co.
Ltd., Nanjing, China). Nitrogen and oxygen gases were separately introduced into a burn-
ing cylinder (diameter 75 mm, height 400 mm) at a flow rate of 40 mm ± 10 mm/s, and
the minimum volumetric percentage of oxygen for igniting and maintaining continuous
burning of the specimen is recorded as LOI (%). The specimens were strip-shaped with a
dimension of 100 × 7 × 8 mm3. Each type of strandboard was prepared for 8 repetitions
for LOI tests.

Cone calorimetry (FTTi-Cone 0402) was also used to test the combustion performance
of all the strandboards, using the 100 × 100 × 8 mm3 specimens according to the ISO
5660-1 standard, in 1800 s at 50 kW/m2 heat flux. Each kind of strandboard was prepared
1 sample for CONE tests.

3. Results and Discussion
3.1. FTIR Analysis

ATR-FTIR spectra reveals the changes of chemical groups along with the curing process
of PMDI resin. Depending on the polymerization reaction mechanism of isocyanate-
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water, the absorption peaks of PMDI before and after curing are dominated by -NCO
(2270 cm−1) and ammonia ester group (3750–3000 cm−1), respectively [18]. Combined with
Figures 2 and 3, the ratio of isocyanate group to amino group(R) in pure PMDI increases
first and then decreases during the whole curing process. In the process of 10~30 min,
the amino groups increase rapidly and R value decreases greatly. Macroscopically, it
corresponds to higher viscosity. In Figure 2, there is always a peak at 2270 cm−1, indicating
that the isocyanate group still exists even after PMDI has completely cured. During the
curing process, the stretching vibration peak of carbonyl group (1708–1703 cm−1) and the
bending vibration peak of carbonyl group (1690–1640 cm−1) amide II (1540–1530 cm−1) in
urea increases.

Figure 2. FTIR Spectra of Different Periods (a): 0 min (b): 10 min (c): 20 min (d): 30 min (e): 40 min
(f): 50 min.

In Figure 3, The R value of PMDI/APP is lower than that of pure PMDI, indicating
that the addition of APP increases the viscosity of PMDI at all stages and also leads to the
early solidification of PMDI, which is the result the polyphosphoric acid root catalyzed the
curing reaction of isocyanate-water.

The spectra of PMDI/TBC and pure PMDI are almost the same, suggesting that there
was good compatibility between TBC and PMDI, indicating the addition of TBC has no
obvious effect on the curing time of PMDI. But whether there is an influence in the glue
bond strength of PMDI still needs to be further investigated.
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Figure 3. Process Images of (a) FTIR Samples Curing Process and (b) R Values of Specimens at 80 ◦C.

3.2. Distribution of Fire Retardants on Wood Strands

APP particles can penetrate the wood cells, the fracture sites of wood fibers, and the
lumen of wood cells. APP particles were widely distributed on the surface of wood, and
there was agglomeration among particles (Figure 4a). This may cause the adhesive to fail
to hold the wood firmly. According to Image J measurement, the length and width of APP
particles are between 23–28 µm and 12–16 µm respectively.

Figure 4b shows TBC is dispersed on the wood surface, mostly in the cell voids, and
the penetration is deep in the voids without aggregation. APP agglomeration phenomenon
cannot be seen on the surface of wood strands in CFRB1, and the particle size of fire retar-
dant can also be found to be markedly smaller. In CFRB2, the agglomeration phenomenon
caused by APP on the surface of wood strands was significantly reduced, but the coverage
degree was still high. The combination between APP particles and TBC particles was closer,
which made the wood surface flatter at the microscopic level, which was conducive to the
later decoration treatment. In CFRB3, agglomeration phenomenon caused by APP was
found on the surface of wood strands, but the coverage degree was very high, and APP
particles were well distributed in the broken duct channels on the wood surface, and the
combination between APP particles and TBC particles was close and the fusion was good.

3.3. Physico-Mechanical Properties

The test results showed that the addition of fire retardant had significant interaction
with mechanical properties, as shown in Table 2.
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Figure 4. SEM of Fire-Retardant Strands (a): FRB/APP (100×, 500× and 2000×) (b): FRB/TBC (100×
and 1000×) (c): CFRB1 (100× and 2000×) (d): CFRB2 (100× and 400×) (e): CFRB3 (100× and 2000×).

Table 2. Mechanical and physical properties of fire-retardant strandboard.

Specimens Modulus of Rupture
(MPa)

Modulus of Elasticity
(MPa)

Internal Bond Strength
(MPa)

Thickness Swelling
(%)

Control 47.68 (4.65) * 4482.68 (426.07) 1.17 (0.34) 5.41 (0.03)
FRB/APP 28.85 (4.42) 3938.42 (740.39) 0.85 (0.08) 4.19 (0.01)
FRB/TBC 33.79 (3.11) 5130.94 (643.10) 1.18 (0.27) 1.41 (0.01)

CFRB1 32.76 (3.66) 4232.16 (823.31) 0.87 (0.21) 3.93 (0.02)
CFRB2 30.54 (8.48) 4158.60 (774.18) 0.93 (0.22) 3.83 (0.01)
CFRB3 31.38 (7.14) 4065.96 (829.51) 0.89 (0.12) 4.04 (0.01)

* Values in parentheses are standard deviation for 8 repetitions for MOR and MOE, 15 repetitions for IB strength
and TS.

After the addition of APP, the deterioration to MOR, MOE and IB of strandboard
is clear. Compared to the control group, MOR and IB strength in the FRB/APP group
were reduced by 39.49% and 27.35%, respectively. Agglomeration occurs on the surface
of wood strands treated by APP causing the concentration of stress in strandboards and
deterioration of MOR. This can be seen in by FTIR analysis. The addition of APP makes
PMDI solidify in advance. When it happens in the hot-pressing process, the surface part of
strandboard will cure before the core layer, which will decrease the bonding performance
and lead to the deterioration of mechanical properties. However, the FRB/APP group
showed a better thickness swelling rate than the control groups. This is due to the high
degree of polymerization (>1000) of APP, which causes poor water solubility and shows a
hydrophobic effect.

TBC reduces the MOR of strandboard but increases the IB strength and MOE. Com-
pared to the control group, the MOR of FRB/TBC strandboard was decreased by 29.13%.

Due to the rigid triazine ring, TBC increased the MOE of strandboards. TBC is a
hydrophobic organic flame retardant, which is the main reason for the small value of TS.
When APP and TBC are simultaneously added into strandboards, it was found that the
more TBC added, the better MOE is.
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Compared to the control group, MOR of CFRB1 was reduced by 31.29%, CFRB2 by
35.95%, and CFRB3 by 34.19%. In the terms of MOE, TBC still works after blending. The
MOE of CFRBs shows a decreasing trend when the content of TBC decreases. However, IB
strength and TS of strandboards are not as obvious as MOE. Compared to the control group,
the internal bond strength of CFRB1 was decreased by 29.06%, CFRB2 by 20.51%, and
CFRB3 decreased by 23.93%. Which is the result of APP agglomeration between the glue
lines. Among the hybrid strandboard, CFRB1 shows the best physico-mechanical properties.

3.4. Thermal Stability of Specimens

The effect of PMDI on the thermal stability of wood powder was tested by TGA. Wood
powders were the main component in all specimens, so the pyrolysis curves show a similar
trend to that of the Control group (Figure 5). The first stage (60–220 ◦C) is due to the loss of
small molecules such as thermally unstable branched chains on water and hemicellulose.
The second stage (220–340 ◦C) is the main pyrolysis stage. Cellulose and hemicellulose
produce a large number of low molecular compounds at high temperatures, along with
char. The third stage (340–470 ◦C) comes from the continuous decomposition of cellulose,
hemicellulose, lignin and other main components and char production. After 470 ◦C, most
of the charred portion burns steadily [19]. The addition of 6%PMDI resulted in lower
combustion residues, suggesting that PMDI had a side effect on char layer quality.

Figure 5. Thermogravimetric Curve (a) and Derivative Thermogravimetric Curve (b) of Fire-
retardant Strandboards.

The addition of APP significantly improved the thermal stability of the wood. TBC also
has a positive effect on the thermal stability of wood. Table 3 compares the characteristic
temperature and residual char content of different materials. The reason why it takes higher
temperature for APP to initial degradation temperature (T5%) of APP is that the NH3 and
polyphosphate acid generated from the endothermic decomposition reaction of APP in
the first stage of the pyrolysis process (60–220 ◦C). NH3 covers part of the wood surface
and isolating air. In the next weight-loss stage (220–310 ◦C), due to the dehydration of
hemicellulose and cellulose polyphosphate acid and the promotion of char production,
the pyrolysis temperature was higher and the pyrolysis rate was effectively reduced. The
flame retardant effect of TBC is not so obvious as that of APP. According to the increase
of char yield after the addition of TBC, it can be judged preliminarily that TBC has a
condense-phase flame retardant mechanism.

In general, the addition of PMDI promoted the thermal decomposition of wood, while
both flame retardants improved the thermal stability of wood. APP is better than TBC,
especially in the term of char yield.
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Table 3. Thermogravimetric analysis results.

Specimens T5% (◦C) Tpeak1 (◦C) Tpeak2 (◦C) Char at 800 ◦C (wt%)

Control 254.58 343.19 470.61 1.91
6%PMDI 242.26 335.67 472.98 0.19

6%PMDI + 7%APP 257.72 348.06 492.03 8.67
6%PMDI + 7%TBC 252.56 333.50 484.76 4.64

T5%: decomposition temperature at 5% mass loss; Tpeak1: the first peak temperature; Tpeak2: the second peak tem-
perature.

3.5. Limited Oxygen Index (LOI)

LOI is a convenient tool to assess the flammability of materials. the LOI of strandboards
treated with flame retardants was all higher than 27% (Table 4). The limited oxygen index
of FRB/APP is higher than FRB/TBC. Among the hybrid flame retardant stranboards, it
shows a similar pattern. The more APP contains, the higher LOI value is.

Table 4. LOI of Different Strandboards.

Specimens Limited Oxygen Index (%)

Control 25.19 (0.29) *
FRB/APP 34.23 (0.22)
FRB/TBC 29.10 (0.30)

CFRB1 30.11 (0.11)
CFRB2 30.97 (0.27)
CFRB3 33.77 (0.21)

* Figures in parentheses are standard deviation values for 8 repetitions.

The role of APP in the fire combustion of strandboard is divided into two steps. Firstly,
APP releases ammonia and generates polyphosphate acid, which would promote wood
cellulose and hemicellulose dehydration, absorb heat and accelerate the charring process.
Secondly, APP loses water and forms an expansion layer covering the wood surface to
isolate heat and air. In CFRBs, the quality of char is better and less flammable gas flees
from wood when it contains more APP. This is the reason why CFRB1 shows the smallest
value in LOI test. The main effect of adding TBC into strandboard during combustion is to
capture high-energy free radicals and generate non-flammable gas. It has a very limited
effect in accelerating the charring processing.

3.6. Cone Calorimetric Analysis

The combustion performance of strandboards was comprehensively analyzed ac-
cording to Table 5 and Figure 6. As can be seen from Figure 6d, the ignition time (TTI)
of strandboards enhanced by flame retardants is shorter than that of the control group,
because flame retardants catalyze thermal decomposition, reduce thermal decomposition
temperature, and release small molecule volatile substances in advance [20].

Table 5. Cone calorimetry test results of strandboards.

Scheme TTI (s) FPI (m2s/kW) pHRR1 (kW/m2) pHRR2 (kW/m2) THR (MJ/m2) TSP (m2)

Control 31 0.19 165.29 241.37 56.84 2.8
FRB/APP 21 0.17 122.88 136.86 37.76 0.7
FRB/TBC 20 0.10 193.13 225.7 64.83 2.4

CFRB1 19 0.13 148.58 117.85 47.94 4.7
CFRB2 22 0.14 159.12 146.77 50.84 4.5
CFRB3 19 0.10 188.01 128.16 52.14 3.9

TTI: time to ignition; FPI: fire performance index; pHRR1: the initial peak of heat release rate; pHRR2: the second
peak of heat release rate; THR: total heat release; TSP: total smoke production.
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Figure 6. Flame retardancy of the wood strandboards with and without flame retardants. (a–c) Smoke
Production Rate (SPR), total Smoke Production, Heat Release Rate (HRR) during the Cone Calorimet-
ric Test. (d) The comprehensive combustion performance of flame retardant specimens compared
with control group. (e–g) Images of CONE test samples before and after combustion, top views of
CONE test samples before combustion; top and side views of char residues.

The heat release rate (HRR) of strandboards can be divided into two peaks (Figure 6c).
The formation of the first peak is due to the continuous heating and combustion of the
strandboard surface, which gradually formed the thermal insulation char layer. As a result,
HRR is greatly reduced. Only after the char layer was destroyed by high temperature did
the inner of the strandboards begin to release heat and form a second peak. As can be
seen in Figure 6 the addition of APP reduced both pHRR1 and pHRR2. This is because the
phosphoric acid generated by the thermal decomposition of phosphorus groups acts as
a nucleophilic center to promote the cyclization of char layer. After phosphoric acid was
coated on the char layer, the oxidizable active center on the char layer was passivated and
smoldering behavior was inhibited.
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The addition of TBC prolongs the arrival of pHRR2, as TBC releases non-flammable
gases during the combustion decomposition process to play the role of free radical collector,
making strandboard combustion intensity inferior to the control group.

Among the compound groups, the arrival time of CFRB3 was the last, and the pHRR2
of the three compound combinations was at a similar level. This indicates that APP can also
release free radical trapping gas when the char layer is broken, but the flame retardancy
effect of free radical trapping is not particularly outstanding compared with the flame
retardancy effect of condensed phase mechanism for high-quality char layer being formed.

Smoke release rate and total smoke production are both important indexes of combus-
tion performance. The peak time of SPR and HRR was consistent. They are all related to
the insulating char layer. When the char layer is dense, there are fewer emission channels
in strandboard. When the char layer is broken, the accumulated flue gas is released in large
quantities. The peak SPR of the control group was 0.029 m2/s, TSP was 2.8 m2, TBC and
APP were 0.0228 m2/s and 0.0147 m2/s, respectively. The maximum SPR in the compound
groups is 0.0265 m2/s from CFRB2. CFRB3 was 0.0189 m2/s, which was the lowest SPR
in the composite group. Compared with the control group, SPR and TSP in TBC group
decreased 21.38% and 14.29%, respectively, and SPR and TSP in APP group decreased
50.09% and 75%, respectively. However, the SPR of composite flame retardant did not
decrease obviously, and TSP increased to different degrees. The TSP high indicated that it
was not easy to produce visible fire in the combustion process.

Fire Performance Index (FPI) is the proportion of TTI and the maxima of the initial
peak intensity of the heat release rate (HRR) curve. The larger the FPI, the better the flame
retardant effect [21]. Combining the results of HRR, it can be concluded that FRB/APP has
the best flame retardant effect in all combinations, and CFRB2 has the best flame retardant
effect in composite combinations.

4. Conclusions

PMDI-bonded strandboard with APP and/or TBC retardants were studied. Addition
of the retardants enhances the thermal stability and incombustibility of wood strands and
affects the curing behavior of PMDI resin as well. A valuable finding is that APP and TBC
lead to evidently differential influences on the bending and internal bond properties of
strandboard. FTIR indicated that the addition of APP would make PMDI curing in advance,
and the macroscopic mechanical performance was the decrease of IB strength. However,
the addition of TBC has little influence on PMDI curing process, and the mechanical
properties of FRB/TBC were better than FRB/APP, especially in IB strength. In hybrid
groups, CFRB2 shows the best physico-mechanical properties. Its MOR was 30.54 MPa,
MOE was 4158.6 MPa, IB was 0.93 MPa. In burning behavior tests, both LOI and CONE
results showed that the more APP contained, the better flame retardant effect. CONE also
indicated that the combination of APP and TBC could not only improve the quality of
char layer, but also enhance the flame retardant effect from the perspective of gas phase
mechanism. Combined with mechanical and combustion test results, CFRB2 is the optimal
combination scheme. A combination scheme of APP and TBC shows its prominent future
in manufacturing fire-retardant strandboard with good comprehensive performance.
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