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Memory T cells are crucial for both local and systemic protection against pathogens over a
long period of time. Three major subsets of memory T cells; effector memory T (TEM) cells,
central memory T (TCM) cells, and tissue-resident memory T (TRM) cells have been
identified. The most recently identified subset, TRM cells, is characterized by the
expression of the C-type lectin CD69 and/or the integrin CD103. TRM cells persist
locally at sites of mucosal tissue, such as the lung, where they provide frontline defense
against various pathogens. Importantly, however, TRM cells are also involved in shaping
the pathology of inflammatory diseases. A number of pioneering studies revealed
important roles of CD8+ TRM cells, particularly those in the local control of viral infection.
However, the protective function and pathogenic role of CD4+ TRM cells that reside within
the mucosal tissue remain largely unknown. In this review, we discuss the ambivalent
feature of CD4+ TRM cells in the protective and pathological immune responses. We also
review the transcriptional and epigenetic characteristics of CD4+ TRM cells in the lung that
have been elucidated by recent technical approaches. A better understanding of the
function of CD4+ TRM cells is crucial for the development of both effective vaccination
against pathogens and new therapeutic strategies for intractable inflammatory diseases,
such as inflammatory bowel diseases and chronic allergic diseases.

Keywords: CD4+ resident memory T cells, Aspergillus fumigatus, lung fibrosis, ATAC-seq, inducible bronchus-
associated lymphoid tissue (iBALT), pathogenic T cell
WHAT ARE TISSUE-RESIDENT MEMORY T CELLS?

“Immune memory” is a central and characteristic phenomenon of the acquired immune system.
The long-term survival of the antigen-specific memory T cell population in response to invading
harmful microorganisms is essential for the establishment of immune memory in vivo. Memory T
cells can respond directly and rapidly to re-invading harmful microorganisms and efficiently
eliminate them to protect the host.
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Memory T cells were originally classified into two
subpopulations, effector memory T (TEM) cells and central
memory T (TCM) cells, based on (1) the expression pattern of
cell surface molecules, (2) the orientation to specific tissues and
(3) responsiveness to re-stimulation with a certain antigen (1).
TEM cells show the low expression of CCR7, a chemokine
receptor that is crucial for homing to the secondary lymphoid
organ and the low expression of the cell surface molecule CD62L.
TEM cells are mainly found in the non-lymphoid tissues and are
responsible for peripheral immune surveillance and the
immediate protective function in the host. TEM cells respond
quickly to re-stimulation of antigens and produce large amounts
of proinflammatory cytokines, including IFN-g, IL-5 and IL-4,
but they showed shortened telomeres (2). In contrast, TCM cells
highly express both CCR7 and CD62L and migrate to sites with
secondary lymphoid tissues, such as lymph nodes; TCM cells
primarily produce IL-2 upon antigen restimulation. After
proliferation, TCM cells efficiently produce large amounts of
proinflammatory cytokines, such as IFN-g and IL-4 (3, 4).
Memory T cells are subdivided by various cell-surface markers,
including CD27, CD127, CD43, CXCR3 and CX3CR1 (5–8). A
study using CX3CR1-reporter mice reveals that CX3CR1hi CD8+

TEM cells were largely excluded from peripheral tissues after viral
infection, providing novel insight concerning CD8+ TEM cells (9).

Recently, non-circulating memory T cells have been
identified, which are now referred to as tissue resident
memory T (TRM) cells (10). TRM cells show the high
expression of C-type lectin-like molecule CD69 and integrin E
subunit molecule CD103. TRM cells produce various kind of
cytokines, including IL-2, IFN-g, TNF-a, and IL-17 (11–16).
Unlike TCM cells and TEM cells, which circulate throughout the
body via blood vessels and lymphatic vessels, TRM cells do not
circulate throughout the body, but they reside in non-lymphoid
tissues such as the lung, skin, and gut. However, a series of
recent studies clearly show that re-activated CD8+ TRM cells
rejoin the circulating pool and proliferate in draining lymph
nodes (Figure 1) (17, 18). Regarding CD4+ TRM cells, CD4+

TRM cells account for 30% of the lymph node-CD4+ T cell
population, which is a larger proportion than that of CD8+ T
cells (19). However, the plasticity of subpopulations of memory
CD4+ T cell has remained unclear. Regardless, the functions of
memory T cells are closely linked to their mobility in the body
of the host.

In mucosal tissues, such as the skin and female reproductive
tract, antigen-recognized CD8+ TRM cells produce IFN-g and
TNF-a to recruit other immune cells and activate dendritic cells
and NK cells (12–14). In non-mucosal tissues, such as the brain
and liver, CD8+ TRM cells reside in each organ and play crucial
roles in the host defense against pathogens (20, 21). In the brain,
IFN-g and Perforin-producing CD8+ TRM cells act as an
autonomous cytotoxic barrier to viral infection (21). In the
lymphocytic choriomeningitis virus (LCMV)-infected brain,
almost all CD8+ TRM cells express CD69, but these cells show
heterogeneous expression patterns of CD103 (21). In the liver,
CXCR3+CD8+ TRM cells are essential for protection against liver-
stage malaria (20). Human CD69+CD103+CD8+ TRM cells in the
Frontiers in Immunology | www.frontiersin.org 2
liver produce large amounts of IL-2 compared to CD69-CD103-

CD8+ T cells (15).
Regarding CD4+ T cells, recent studies have highlighted

prominent populations of CD4+ TRM cells in various mucosal
tissues, such as the skin (22–25), female genital tract (19, 22, 26,
27), small intestine (19, 28–30) and lung (16, 19, 22, 30–33). In
the skin, CD4+ TRM cells protect hosts against invading
pathogens, including Leishmania major (23, 24). Candida
albicans infection also induces IL-17-producing CD4+ TRM

cells in the skin (34). In the female genital tract, CD4+ TRM

cells are crucial for antiviral defense against genital herpes
simplex virus 2 (HSV-2) infection (26, 27). Helminth infection
and Listeria monocytogenes infection cause the induction of
functional CD4+ TRM cells in the intestine (28, 29). In the
upper tract, pneumococcus infection induces CD4+ TRM cells
that prevent pneumococcal colonization (33). Furthermore, lung
CD4+ TRM cells are essential for protection against bacterial
infection (16). Thus, similar to CD8+ TRM cells, CD4+ TRM cells
may facilitate a rapid immune response to protect the host
against re-exposure to pathogens in various mucosal organs.

In human, CCR7hi CD4+ TRM cells are detected in the female
genital tract (35). In infants, mucosal memory CD4+ and CD8+ T
cells already show characteristics of tissue residency, such as the
enhanced expression of CD69 and CD103, which suggests that
local in situ priming to antigens causes the induction of TRM cells
(36). Investigations of human samples from the lung after lung
transplantation have revealed that lung-infiltrating recipient
CD4+ and CD8+ T cells gradually acquire TRM phenotypes,
such as the enhanced expression of CD69 and CD103, over
several months in vivo (37). In non-mucosal sites, human brain
CD4+ T cells show the high expression of CD69 but a low
expression of CD103 (38). More detailed information about
human TRM cells has been reviewed in other articles (39, 40).
The roles of CD4+ TRM cells in the non-mucosal tissue have not
been well elucidated.

In addition to the essential role of TRM cells in the biological
defense of mucosal and non-mucosal organs, TRM cells and other
tissue resident immune cells, including innate lymphoid cells
(ILCs), play a critical role in tissue homeostasis (41).
THE MOLECULAR MECHANISMS
UNDERLYING THE INDUCTION AND
MAINTENANCE OF THE TISSUE
RESIDENCY OF TRM CELLS

The mobility of T cells among various organs throughout the
body is tightly regulated by various cytokines, chemokines and
cell surface molecules (42). Transforming growth factor b (TGF-
b) is an essential cytokine for the development of CD8+ TRM cells
in the mucosal tissues (43). TGF-b induces the expression of
CD103 on CD8+ T cells (44). In the skin, CD8+ TRM cells require
transactivated autocrine TGF-b for epidermal persistence (45).
An important cytokine for the survival of CD8+ TRM cells in the
skin is IL-15 (46). In the skin, hair follicle-derived IL-15 and IL-7
April 2021 | Volume 12 | Article 616309
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A

B

FIGURE 1 | Distribution of various memory T cells in vivo. There are three types of memory T cells in vivo: (1) central memory T (TCM) cells, which mainly reside in
secondary lymphoid tissues, (2) effector memory T (TEM) cells, which circulate in the blood, non-lymphatic tissues, and secondary lymphoid tissues, and (3) resident
memory T (TRM) cells, which reside within non-lymphoid tissues. (A) A recent study revealed that CX3CR1hi CD8+ TEM cells are largely excluded from peripheral
tissues after viral infection (9). In case of CD8+ TRM cells, a series of recent studies clearly showed that re-activated CD8+ TRM cells rejoined the circulating pool and
proliferated in draining lymph nodes (red arrows). Some TEM cells move back and forth between the blood vessel and parenchyma. (B) However, whether or not
CD4+ TRM cells rejoin the circulating pool and a re-activated in the draining lymph nodes is unclear.
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are required for the maintenance of CD8+ TRM cells (47). During
influenza viral infection, IFN-g produced by CD4+ T cells
induces CD8+ TRM cells, which are crucial for protection
against pathogenic viruses (44).

For the long-term survival of CD4+ TRM cells, IL-7 is needed
in the skin (47). In the lung, IL-15 is required for the generation
of CD4+ TRM cells (48).

Regarding chemokines and cell surface molecules, CD62L
and CCR7 must be expressed on T cells to enter the peripheral
lymph nodes (1), while Sphingosin-1-Phosphate Receptor 1
(S1P1), which binds the ligand Sphingosin-1-Phosphate (S1P),
allows T cells to leave the lymph nodes and enter the lymphatic
vessels (49). In humans, both CD8+ and CD4+ TRM cells
upregulate the adhesion molecules ITGAE (CD103) and
ITGA1 (CD49a) as well as inhibitory molecules, including PD-
1 and the dual specificity phosphatase DUSP6 (30). Both CD8+

and CD4+ TRM cells show the down-regulated expression of
S1PR1 (30). CD69 is a type 2 glycoprotein with a C-type lectin-
like domain that acts as a homodimer (50). CD69 binds to S1P1
to promote the internalization and degradation of S1P1 in the
cytoplasm. As a result, CD69-expressing T cells remain within
lymphoid tissues, such as the thymus and lymph nodes (49).
CD8+ TRM cells in the lungs of mice with influenza viral infection
show the high expression of CD69, and a CD69-deficient
environment was shown to be associated with a reduced
number of CD8+ TRM cells in the lung (51, 52). In the skin
and kidneys, CD69-deficiency in CD8+ T cells also result in a
markedly reduced number of CD8+ TRM cells (53, 54). CD8+

TRM cells show lower S1P1 expression levels (43). In addition,
CD8+ TRM cells reveal the low expression of Krupple-like factor 2
(KLF2), a transcription factor that regulates the expression of
S1PR1 (55). These findings suggest that CD69 plays a crucial role
in CD8+ TRM cells, as more than a mere cell surface marker.
Interestingly, though, CD8+ TRM cells are able to be maintained
in the lung independently of the CD69 expression (52).
Furthermore, experiments using pet mice with differing
microbial experiences revealed that the CD69 expression on
CD8+ T cells was insufficient to interpret tissue residence (56).
Indeed, the functional requirement for CD69 is evidently
dependent on the tissue where CD8+ TRM cells exist (54).
Thus, although CD69 is not a perfect cell surface marker for
tissue residency, more detailed studies regarding the functional
roles of CD69 in TRM cells, especially CD8+ TRM cells, are needed
to draw firm conclusions. In contrast, the role of CD69 in CD4+

TRM cells remains unclear.
The unique transcriptional features of TRM cells have been

well established in CD8+ TRM cells. The transcription factor
homolog of Blimp1 in T cells (Hobit) is specifically expressed in
CD8+ TRM cells (57). Hobit and Blimp1 cooperatively
downregulate the expression of S1pr1 and Ccr7, which are
required for tissue egress (57). Hobit and Blimp1 also repress
the transcription factors Tcf7 and Klf2, which regulate survival
and trafficking of circulating memory T cells (57). The
transcription factor Runx3 plays a crucial role in establishing
CD8+ TRM cells (57, 58). CD8+ TRM cells in the liver show an
enhanced expression of Hobit (20). Without appropriate CD4+ T
Frontiers in Immunology | www.frontiersin.org 4
cell help, lung CD8+ TRM cells show an enhanced expression of
T-bet that suppresses the formation of CD8+ TRM cells by direct
binding to the Itgae locus (44).

Regarding CD4+ T cells, Hobit and Blimp1 are reported to
attenuate CD4+ TRM cell-dependent colitis (59). Viral infection
induced-CD4 TRM cells show the enhanced expression of Hobit
and Eomes (19). However, another group reports that T helper
type 2 (Th2) CD4 TRM cells do not preferentially express Hobit,
Blimp1 or Runx3 in their RNA sequencing (RNA-Seq) data sets
(60). In humans, the transcription factor c-MAF induces the
tissue residency transcriptional program in Th17 cells (61).
Although many of the phenotypic characteristics of CD4+ TRM

cells are shared with CD8+ TRM cells, precise assessments
regarding the transcriptional features of CD4+ TRM cells are
required to identify the nature of CD4+ TRM cells (62).

Recent studies using human tissue resident memory T cells
have revealed that both CD4+ and CD8+ TRM cells are
transcriptionally distinct from other memory T cell subsets
(30, 63). A core gene signature including ITGA1, ITGAE, IL-2,
CXCR6, and PD-1 shows differential regulation between TRM

cells and circulating T cells, suggesting the unique feature of
human TRM cells in vivo (30).
THE EXPERIMENTAL TECHNIQUES USED
TO IDENTIFY TRM CELLS IN VIVO

Proving the tissue residency of T cells is a major challenge. It is
necessary to show at least that the cells are present in the same
tissue for a certain period to prove tissue residency. Currently,
experimental techniques, such as (1) parabiosis, (2) in vivo
intravascular staining, and (3) tissue transplantation are used
to prove the tissue residency of a certain population of cells
(Figure 2).

Parabiosis is an experimental technique in which two mice
are surgically linked and share a common circulatory system
(Figure 2), which makes us possible to separate substances that
are circulating in blood vessels and those that are not in the
bloodstream. This method was established in France in the 19th
century. In the second half of the 20th century, it has been widely
used to investigate the endocrine system. In the field of
immunology, parabiosis experiments are conducted to
demonstrate the tissue residency of a certain cell population in
vivo. In the tissue transplantation, the tissue—together with
tissue-resident cells—is transplanted into congenic mice and
then analyzed for the migration of donor-derived cells in the
tissue to demonstrate tissue residency (10). Intravascular in vivo
labeling is an experimental technique using the intravenous
injection of cell-surface antibodies, such as anti-CD4
antibodies, to distinguish cells in tissue from those in blood
vessels (Figure 2) (64). The advantage of this technique is its
simplicity in comparison to parabiosis and tissue transplantation
experiments. T cells in the vasculature were found to differ from
those in the lung parenchyma, which were not stained with cell-
surface antibodies (64). However, it is important to note that this
experiment shows that unstained cells were not present in the
April 2021 | Volume 12 | Article 616309
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vessels for a certain period of time after the intravenous injection
of the antibody, because the cells were collected from each organ
3-5 minutes after the intravenous injection of the antibody
under anesthesia.

As each of these techniques has certain limitations and addresses
several specific criteria for residency, the definitive assessment of
tissue residency of T cells should rely on supportive results obtained
from multiple experimental techniques.
THE PROTECTIVE AND PATHOGENIC
ROLES OF CD4+ TRM CELLS AT LOCAL
INFLAMMATORY SITES

In addition to other memory T cell populations, such as TEM and
TCM cells, TRM cells play an important role in the body’s defense
against infection. In several experimental models in mice, CD8+

TRM cells have been revealed to be important in defending
against viral, parasitic and other infections (20, 65–67). In
humans, CD8+ TRM cells have been reported to be crucial in
defending against herpes simplex type 1 virus infection in the
skin (68).

Regarding CD4+ T cells, CD4+ TRM cells are important for
optimal protection against respiratory virus infection via the
enhanced production of IFN-g (11). CD4+ TRM cells play key
Frontiers in Immunology | www.frontiersin.org 5
roles in the elimination of HSV-2 and chlamydia in the vagina
(26, 69). HSV-2-specific CD4+ TRM cells are enriched in local
inflammatory sites, and the chemokine CCL5 is important for
the retention of CD4+ TRM cells in vaginal tissues (26). These
CD4+ TRM cells also produce large amounts of IFN-g (26). In an
LCMV infection model, CD4+ TRM cells play a key role in local
immunosurveillance along with CD8+ TRM cells (19). CD4+ TRM

cells also play a protective role against pneumococcal infection in
the lung (70). In this model, IL-17-producing CD4+ TRM cells
recruit neutrophils to the lung, which is crucial for protecting the
host against bacterial infection (70). In humans, an increased
frequency of donor TRM cells in the lung of patients with lung
transplantation is associated with a reduced rate of adverse
clinical events, such as primary graft dysfunction (37). This
finding suggests the protective roles of donor TRM cells in the
rejection of transplanted tissue.

However, TRM cells are also involved in the pathogenesis of
various human immune-related diseases. In psoriasis, an
autoimmune disease of the skin, CD8+CD49a- TRM cells
produce IL-17 at the local inflammatory site and are involved
in the pathogenesis of the disease. In vitiligo, CD8+CD49a+ TRM

cells produce IFN-g in the inflammatory tissue and are involved
in the pathogenesis of the disease (71). In addition, using
experimental autoimmune encephalomyelitis, a mouse model
of multiple sclerosis, CD8+ TRM cells have been shown to be
involved in the onset and relapse of disease (72).
A B C

FIGURE 2 | A schematic illustration of the experimental techniques used to identify TRM cells. (A) Surgical connection of two congenic mice allows them to share
blood circulation. (B) In vivo intravascular staining marks circulating T cells through the intravascular injection of an anti-cell surface molecule antibody. (C) In tissue
transplantation, donor-derived T cells are detected in the graft after transplantation.
April 2021 | Volume 12 | Article 616309
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Mucosal tissues that include a large number of TRM cells are
susceptible to environmental stresses, such as cell damage, cell
death, and changes in partial oxygen pressure. TRM cells play
important roles in maintaining local tissue homeostasis,
including tissue repair and regeneration as well as defense
against infection and the pathogenesis of immune-related
diseases. Indeed, CD8+ TRM cells localize within local
inflammatory sites during tissue regeneration after influenza
virus infection (52). This suggests that CD8+ TRM cells are
involved in the processes of tissue repair and regeneration.
However, overactivation of the tissue repair process causes
tissue fibrosis (73). Various stimuli, including HDM and fungal
infection, cause fibrosis in the lung (73–75). In fact, house dust
mite (HDM)-induced allergic airway inflammation has been
demonstrated to be dependent on HDM antigen-specific CD4+

TRM cells in the lungs in experimental mouse models (74, 76). IL-
2 signaling is required for the residency of HDM antigen-specific
CD4+ TRM cells, which are sufficient to induce airway hyper-
responsiveness (76). Interestingly, chronic exposure of HDM
induces the infiltration of both CD4+ and CD8+ T cells into the
lung tissue; however, only CD4+ TRM cells persist in the lung for
a long time (77). Another group reported that allergen-specific
CD4+ T cells were able to survive for over 70 days in the lung
(74). A dominant type 2 immune response is induced by
repetitive HDM exposure, and Th2 TRM cells are functionally
and transcriptionally distinct from circulating memory Th2 cells
in the lungs of mice with HDM-induced allergic inflammation
(60). Th2 TRM cells express increased levels of Il5 and Il13 (60).
Thus, CD4+ TRM cells play a critical role in shaping various
pathologies, such as airway hyper-responsiveness and
eosinophilic inflammation during chronic type 2 inflammation.

Furthermore, Th2 TRM cells show the enhanced expression of
metalloproteases, extracellular matrix (ECM) components and
regulators for ECM (60). These unique transcriptomic feature of
Th2 TRM cells suggests the pathogenic role of Th2 TRM cells in
the induction of fibrotic responses. Regarding fungal infection,
patients with allergic bronchopulmonary aspergillosis/mycosis
(ABPA/ABPM) have recurrent bronchial asthma attacks
accompanied by bronchial dilatation and fibrotic changes in
the lung (75). In the lungs of mice with repeated exposure to the
Aspergillus fumigatus antigen, CD4+ TRM cells, which produce
various type of inflammatory cytokines accompanied by the low
expression of CD103 and the enhanced expression of fibrosis-
related genes, induce fibrotic responses (78). In addition, CD103-

CD4+ TRM cells also express the metalloprotease Adam8 (78). An
assay for transposase-accessible chromatin using a sequencing
(ATAC-Seq) analysis revealed that the characteristic features of
these CD4+ TRM cells populations were regulated at the
chromatin level. For example, the regulatory elements of
inflammatory cytokines, such as Il4, Il5, and Il13, were
specifically accessible in CD103-negative CD4+ TRM cells
(Figure 3). At the same time, CD103-positive CD4+ regulatory
T (Treg) cells are induced in the inflammatory lung. These
CD103-positive Treg cells regulate the fibrotic responses
induced by CD103-negative CD4+ TRM cells in chronic allergic
inflammation caused by repeated exposure to the A. fumigatus
Frontiers in Immunology | www.frontiersin.org 6
antigen in vivo (78) (Figure 3). Thus, CD103- CD4+ TRM cells are
involved in the fibrotic response processes in the lung. Taken
together, these findings suggest that CD4+ TRM cells play
pathogenic roles in the fibrosis induced by various stimuli,
such as HDM and fungi.

The protective roles of CD4+ TRM cells have been elucidated
in various infectious diseases. However, the pathogenic roles of
CD4+ TRM cells in chronic inflammation other than type 2-
related diseases, such as allergic inflammation, have been
unclear. Thus, we await the further investigation of the
pathogenic roles of CD4+ TRM cells in various immune-related
diseases, including multiple sclerosis and psoriasis, the induction
of which reportedly involves type 17 inflammation.
PLASTICITY AND EPIGENETICS
OF TRM CELLS

It is now clear that memory T cells comprise several subsets,
including TCM cells, TEM cells and TRM cells. Researchers have
shown that CD8+ TCM cells become CD8+ TRM cells via an
adoptive transfer experimental system (79). In fact, adoptively
transferred CD8+ TCM cells reside in the skin of donor mice
accompanied by the enhanced expression of CD69 and CD103
after viral infection (79).

But what about the opposite direction of re-differentiation? In
other words, do CD8+ TRM cells have the ability to re-
differentiate to CD8+ TCM cells? TRM cells are localized within
specific organs for a long time, indicating their involvement in
first-line protective responses against local reinfection. If CD8+

TRM cells can re-differentiate to CD8+ TCM cells, TRM cells may
be involved in systemic memory immune responses.
Experiments using CD8+ TRM cells accompanied by an analysis
of the methylation state of the CpG region have shown that the
function of TRM cells is not fixed, and TRM cells have the ability to
change their function in vivo (17). A machine learning-based
analysis using the methylation state of the CpG region in CD8+

TRM cells showed that CD8+ TRM cells were able to re-
differentiate (17). Furthermore, using an experimental system
of virus-infected mice, researchers showed that some reactivated
CD8+ TRM cells returned to the systemic circulatory system and
re-differentiated into CD8+ TCM cells. Using a CD8+ TRM cell-
restricted transcription factor Hobit-reporter system, another
group showed that Hobit+ CD8+ TRM cells proliferate in draining
lymph nodes after viral re-infection (18). Importantly, Hobit+

CD8+ TRM cells re-differentiated into CD8+ TEM cells together
with the downregulation of theHobit expression and contributed
to the generation of the systemic immune responses (18). These
results suggest that immune memory maintained in the local
inflammatory sites may also be involved in systemic memory
immune responses, at least in the case of CD8+ TRM cells.

An IL-17A tracking-fate mouse experimental system showed
that CD4+ TRM cells were derived from effector Th17 cells (16).
In humans, CD4+ TRM cells in the bone marrow show unique
DNA methylation profiles among memory T cell subsets,
indicating their specialized function (80). However, in contrast
April 2021 | Volume 12 | Article 616309
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to findings concerning CD8+ T cells, the plasticity of the CD4+

memory T cell population has remained unclear.
THE MAINTENANCE OF TRM CELLS IN
THE NON-LYMPHOID TISSUE

Inducible bronchus-associated lymphoid tissue (iBALT), a type of
ectopic lymphoid tissue, is often formed in response to various
stimuli, including infection, smoking, and collagen disease, in the
inflamed lung (81). iBALT includes MHC class II-positive cells,
B220-positive cells, CD11c-positive cells, VCAM1-positive stromal
cells, and CD21-positive follicular dendritic cells. CD11c-positive
dendritic cells are crucial for the reactivation of CD8+ TRM cells in
the lung (82). Memory CD4+ T cells are maintained within iBALT
in lungs with chronic allergic inflammation (83). Furthermore,
Thy1-positive IL-7-producing lymphoid endothelial cells are
Frontiers in Immunology | www.frontiersin.org 7
essential for the survival of memory CD4+ T cells due to their
production of IL-7 in the inflammatory tissue of the lung (83).
Interestingly, the maintenance of allergen-specific CD4+ T cells is
dependent on IL-7 signaling in the lung (74). Single-cell RNA
sequencing of the lung from mice with bacterial infection has
revealed the enhanced expression of Il7 by lymphatic endothelial
cells, which are colocalized with CD4+ T cells (16). Based on these
findings, it is likely that CD4+ TRM cells, which are induced by
repeated exposure to Aspergillus fumigatus antigen, are also
maintained within iBALT in the inflamed lung. In fact, repeated
exposure to Aspergillus fumigatus antigen induces the enhanced
formation of iBALTs in the inflamed lung. However, the molecular
mechanisms underlying the differentiation, induction, and
maintenance of CD4+ TRM cells in the lung and the role of
iBALT in these processes remain unclear and require further
research. In another mucosal tissue, the skin, the formation of
ectopic lymphoid tissue called inducible skin-associated lymphoid
tissue (iSALT) was reported (84). CD4+ TRM cells accumulate
FIGURE 3 | The induction of CD4+ TRM cells with a unique regulome signature. Chronic allergic inflammation with fibrosis of the lung induced by repeated exposure
to Aspergillus fumigatus antigen causes the induction of two cell populations, CD103-negative CD4+ tissue-resident memory T (TRM) cells and CD103-positive
regulatory T (Treg) cells, which are involved in the pathogenesis of fibrotic responses. Each of these cell populations has its own characteristic regulome. For
example, CD103-negative CD4+ TRM cells produce proinflammatory cytokines and show specific peaks of ATAC-Seq in the Th2 cytokine loci (arrows). In contrast,
CD103-positive Treg cells show specific peaks of ATC-Seq in the Foxp3 locus (arrows).
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within iSALT following skin inflammation (84, 85). IL-7 is a key
cytokine supporting the long-term survival of CD4+ TRM cells in the
skin (47).

More detailed information regarding the tissue-specific
anatomical niches for the maintenance of CD4+ TRM cells has
been reviewed in other articles (62, 86).
TRM CELLS AND THE “PATHOGENIC TH
CELL DISEASE INDUCTION MODEL”

We proposed a model for the pathogenesis of immune-related
inflammatory diseases called the “pathogenic Th-cell disease
induction model” (87). In our proposed “pathogenic Th-cell
disease model”, a certain population of memory CD4+ T cells is
highly pathogenic, and the generation of pathogenic T cells is
important for the pathogenesis and regulation of various
inflammatory diseases. In other words, various immune-related
chronic inflammatory diseases are not induced by an imbalance
between the subsets of CD4+ T cells (e.g., Th1 cells, Th2 cells or
Th17 cells), rather, they are induced by a specific population of
pathogenic cells (pathogenic CD4+ T cells) that arise in
peripheral tissues under certain conditions. For example, we
identified IL-5 high-producing-pathogenic Th2 cells that
produce large amount of IL-5 and induce eosinophilic airway
inflammation (88). We also identified fibrosis-inducing-
pathogenic Th2 cells that produce Amphiregulin, a tissue
repair factor, and induce tissue fibrosis via the activation of
eosinophils (89, 90). These pathogenic Th2 cells have also been
found in tissue, as they are maintained within the iBALT.

The CD103-negative CD4+ TRM cells that we identified
recently are also pathogenic CD4+ T cells, which coexist with
pathogenic Th1/Th2/Th17 cells due to the nature of the
pathological model of Aspergillus fumigatus antigen
administration. Interestingly, both pathogenic CD4+ TRM cells
and regulatory T cells are induced simultaneously in chronic
inflammatory tissues. Thus, multiple functional CD4+ TRM cell
populations are involved in the pathogenesis of refractory
immune-related inflammatory diseases, such as bronchial
asthma and atopic dermatitis. We need to investigate the
diversity of CD4+ TRM cells in the lung using a single cell
RNA-sequencing (scRNA-seq) analysis.
CLOSING REMARKS

Tissue-resident memory T cells represent a relatively new cell
population that has only been attracting attention for
approximately 10 years. Regarding CD8+ T cells, the tissue-
resident memory T cell population is being actively studied
worldwide, and novel findings about CD8+ TRM cells have
emerged one after another, including the identification of
transcription factors such as Hobit, Blimp1, and Runx3, which
are important for the induction of CD8+ TRM cells (57, 58). As
described previously, the plasticity of CD8+ TRM cells has also
been analyzed at the epigenomic level.
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On the other hand, the mechanisms underlying the
differentiation, maintenance, and plasticity of CD4+ TRM cells
remain unclear. CD4+ TRM cells play a protective role in the
lungs against infections such as Streptococcus pneumoniae and
Mycobacterium tuberculosis (70, 91). CD4+ TRM cells also play an
important role in the elimination of HSV-2 and chlamydia in the
vagina (26). The intranasal administration of pneumococci induces
IL-17-producing CD4+ TRM cells that protect the host against
pneumococcal colonization (33). Intranasal vaccination of
influenza virus induced the accumulation of both CD4+ and
CD8+ TRM cells in the lung of mice (92). Moreover, intranasal
vaccination with Venezuelan equine encephalitis replicons (VRP)
encoding a severe acute respiratory syndrome coronavirus (SARS-
CoV) CD4+ T cell epitope resulted in airway memory CD4+ T cell-
dependent protection against SARS-CoV (93). In humans,
increased frequencies of CD4+ TRM cells in the airway are
associated with surviving severe disease of SARS-CoV-2 infection
(94). Furthermore, CD4+ TRM cells may promote the generation of
antibodies by B cells against pathogenic microorganisms in mucosal
tissues, including the lung. In fact, a subpopulation of CD4+ TRM
cells promotes humoral responses in the lung after viral infection
(95, 96). This subpopulation shows the follicular helper T (Tfh)-like
phenotype, including a high expression of PD-1 and CXCR5 (95).
The differentiation of this subpopulation depends on B cells and the
intrinsic expression of Bcl6 (95). Importantly, Bcl6hi CD4+ TRM
cells, which are colocalized with B cells in iBALT, promote local
antibody production and help CD8+ TRM cells via the enhanced
production of IL-21 (95, 96). Thus, CD4+ TRM cells are a promising
target cell population in terms of the development of next-
generation vaccine therapies (97). In the future, more intensive
research on CD4+ TRM cells is expected to reveal new cellular
mechanisms and molecular mechanisms for CD4+ TRM cells.
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