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Abstract
Mosquito-transmitted diseases like malaria and dengue fever are global problem and an

estimated 50–100 million of dengue or dengue hemorrhagic fever cases are reported world-

wide every year. The mermithid nematode Romanomermis wuchangensis has been suc-

cessfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in

laboratory studies. However, this nematode can not undergo sex differentiation in vitro cul-

ture, which has seriously affected their application of biocontrol in the field. In this study,

based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1

and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex dif-

ferentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3

between male and female displayed obvious difference on the 3rd day of parasitic stage,

which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process

may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test

dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with

FITC concentration after 16 h incubation, indicating this nematode can successfully ingest

soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from

RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp

dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the

development of male nematodes. These results suggest that Rwucmab-3 mainly involves

in the initiation of sex differentiation and the development of male sexual dimorphism. Rwu-

claf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental sys-

tem. In conclusion, transcript sequences presented in this study could provide more

bioinformatics resources for future studies on gene cloning and other molecular regulatory

mechanism in R. wuchangensis. Moreover, identification and functional analysis of sex dif-

ferentiation genes may clarify the sex differentiation mechanism of R. wuchangensis, which

are helpful to solve the uncompleted sex differentiation problem in vitro culture and the
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potential large-scale field application controlling the larvae of C. quinquefasciatus, A.

aegypti and A. albopictus.

Introduction

Anautogenous mosquito females require vertebrate blood for reproduction, and blood feeding
makes them effective vectors for multiple infectious diseases [1]. The latest report released by
theWorld Health Organization estimated about 207 million cases of malaria infection, and
about 627,000 deaths in 2012 alone [2]. Mosquito-transmitted diseases like malaria and dengue
fever are global problem and an estimated 50–100 millions of dengue or dengue hemorrhagic
fever cases are reported worldwide every year [2, 3]. For instance, in 2013 and 2014, two conse-
cutive and unprecedented large outbreaks of dengue fever occurred in Guangdong Province,
Southern China, including 21,511 notifiable cases and six fatalities in 2014 [4]. In recent years,
mosquito control based on chemical insecticides is still an important element in the global
strategies and has been sometimes successful for the prevention of mosquito-borne diseases.
Unfortunately, the monolithic reliance on insecticide products and development of resistance
in vector mosquito species has led to adverse effects, blocking the effectiveness of insecticide-
based strategy [5–7]. Improper and immoderate application of insecticides easily causes severe
pesticide residues, is challenging the environmental safety in developing countries. Therefore,
it is necessary and urgent to develop alternative biocontrol strategies based on integrated pest
management (IPM) for mosquito-borne diseases in the world.
Culex quinquefasciatus is one of the important mosquito pest and widely distributed

throughout tropics and the lower latitudes of temperate regions such as southern states of
United States, Australia and China, which could transmit St. Louis encephalitis virus (SLEv),
West Nile virus (WNV) and filarial worm (Wuchereria bancrofti) [8, 9]. In our previous study,
one kind of nematode, R. wuchangensis was first separated from C. quinquefasciatus in Hubei
province and was maintained in the laboratory with controlled environmental conditions [10].
Research results indicated that R. wuchangensis could infectC. quinquefasciatus, A. aegypti and
A. albopictus, etc, and the infection rate and fatality rate of C. quinquefasciatus reached 49.18%
and 100% in the field experiment [11]. Among them, R. wuchangensis has the highest larvicidal
activity against C. quinquefasciatus, suggesting its high sensitivity to C. quinquefasciatus, which
maybe used as an effective biological agent for mosquito control.
However, this nematode can not undergo sex differentiation in vitro culture, which seriously

affects the large-scale cultivation in vitro and biocontrol application. The nematodes of Mer-
mithidae usually get nutrients from the hemolymph of host during the parasitic stage, and the
sex differentiation is related to the abundance of nutrients [12, 13]. Field observations showed
that proper infection intensity was necessary and conducive to the balance of sex ratio, which
guaranteed the number stability of R. wuchangensis population. Thus, study on sex differentia-
tion of R. wuchangensis is helpful to elucidate molecularmechanism in the critical develop-
mental period of the nematode, which can provide useful information for exploring efficient
monitoring and integrated pest management strategies of mosquito in the field.
In recent years, many studies on sex differentiation have been reported in different animal

species, such as nematodes, fishes, amphibians and birds. For instance, fox-1, sex-1, xol-1, sdc-
1, sdc-2, sdc-3, her-1, tra-1, tra-2, tra-3, fem-1, fem-2, fem-3, laf-1,mab-3 and other sex differen-
tiation genes of C. elegans were investigated and the regulatory pathway were constructed [14,
15].Mab-3 gene located in the downstream of C. elegans sex differentiation cascade and
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directly participated in gonad development, somatic sexual dimorphism development and
non-autonomous control of sexual dimorphism [16]. In C.elegans,Mab-3 encodes a DM (dou-
blesex andmab-3) domain-containing protein and functions in the male development, such as
formation of male sensory ray and expression of yolk protein in the development of intestine
[17, 18]. In addition, as a transmembrane receptor, tra-2 plays a major function in the sex
determination pathway to specify female fate in hermaphroditic XX animals including C. ele-
gans. Kuwabara and Mehra et al. found that TRA-2 protein from C. elegans can inhibit FEM-3
masculinizing activity, whereas in males, TRA-2 is negatively regulated by HER-1, allowing the
FEM proteins to specifymale development [19–24]. Laf-1 is a DEAD-box RNA helicase and
also participates in embryonic development and sex differentiation of C. elegans, and laf-1
mutations leads to nematode embryonic and larval lethality [14, 25].
In this study, the RNA-SEQ from cDNA library of male and female nematode was used to

transcriptome sequencing analysis. Functional annotations of unigenes dramatically increase
the genomic information for R. wuchangensis, and may strengthen the current understanding
of the physiology of this nematode. Based on the transcriptome sequencing analysis, open
reading frame (ORF) of sex differentiation genes from R. wuchangensis were cloned and used
to explore their function.Moreover, the expression patterns of sex differentiation genes from
R. wuchangensis at different developmental stages were investigated by qRT-PCR. Finally, we
detected the function of these sex differentiation genes using by RNA interference (RNAi)
assay.

Materials and Methods

Ethics Statement

The laboratory colony of R. wuchangensis was originally collected from a natural population in
Wuhan City, Hubei Province, China.C. quinquefasciatus was provided by Hubei Provincial
Center for Disease Control and Prevention (Wuhan). All experimental animal procedures
including this pest were approved by the Institutional ReviewBoard at Central China Normal
University in China (CCNUIRB).

Animals rearing

C. quinquefasciatus was raised at 27 ± 1°C, 70–80% relative humidity (RH) and a 14:10 (L:D)
photoperiod. Two instar larvae of C. quinquefasciatus were infected by R. wuchangensis by the
ratio of 1:7 and 1:3 (mosquito: nematode). Then the infectedmosquitos were maintained in the
incubator (24 well plates) individually. When the post-parasitic stage nematode emerged from
C. quinquefasciatus, the infection rate and sex ratio (female: male) were calculated. After that,
the nematodes of each developmental stage were collected independently and stored at -80°C
until assayed.

RNA-seq library preparation and Illumina sequencing

The following protocols were performed by staff at the LC Sciences (Hangzhou, China). Total
RNA frommale and female nematode was extracted using OMEGA E.Z.N.A.1 Total RNA Kit
II. Poly (A) mRNA was isolated using oligo (dT) beads and fragmented into small pieces. Dou-
ble-stranded cDNA was then synthesized with random hexamer (N6) primers (Illumina).
These cDNA fragments then underwent an end repair process followed by phosphorylation
and ligation of adapters. Products were subsequently purified and amplified by PCR to create
the final cDNA libraries. Finally, the cDNA library was sequenced using Illumina HiSeq2000
(San Diego, CA, USA).
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Bioinformatics analysis of the transcriptome

The high-quality reads were obtained by removing adaptor sequences, empty reads low-quality
sequences (reads with unknown “N” > 5% sequences), and reads with more than 20% Q�10
base from the raw reads. Transcriptome de novo assembly was carried out through the short
reads assembling program Trinity [26]. The high-quality reads were loaded into the computer,
and a de Bruijn graph data structure was used to represent the overlap among the reads. After
de novo assembly with Trinity, the assembled unigenes were used for BLAST search and anno-
tation against the NCBI non-redundant protein sequences (NR), Swiss-prot protein, Kyoto
Encyclopedia of Genes and Genomes (KEGG), euKaryoticOrthologGroups of proteins
(KOG), and Pfam (e-value≦ 1e-5), and the best aligning results were used to decide direction
of unigenes. In addition, Blast2GO (http://blast2go.com/webstart/blast2go1000.jnlp) was used
for the functional classification of the unigenes based on gene ontology (GO) terms. Three uni-
genes encoding proteins homologous to Mab-3, Laf-1 and Tra-2 were identified and named
Rwumab-3, Rwulaf-1 and Rwutra-2. RwucMAB-3 (Genebank: KU201268), RwucLAF-1 (Gene-
bank: KU201269) and RwucTRA-2 (Genebank: KU201270) genes were identifiedR.
wuchangensis and submitted to National Center for Biotechnology Information (NCBI).

Cloning and sequences analysis of Rwucmab-3, Rwuclaf-1 and

Rwuctra-2

Rwucmab-3, Rwuclaf-1 and Rwuctra-2 genes were cloned from the R. wuchangensis cDNA
templates using by specific primers (Table 1). The annealing temperature and number of cycles
for Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were 52°C/35 cycles, 56°C/30 cycles and 60°C/30
cycles, respectively. Finally, 5 μl of the PCR product was electrophoresed on a 1% agarose gel
containing ethidium bromide. DNAMAN were used for multiple alignments for three sex dif-
ferentiation genes. MEGA 6 were used to construct the phylogenetic tree of sex differentiation
genes with other nematodes species by the neighbor-joiningmethod, and the numbers at each
node represent the bootstrap value with 1000 replicates. Domain prediction was performed
using SMART (http://smart.embl-heidelberg.de).

Real-time quantitative PCR analysis of gene expression

The infectedC. quinquefasciatus were dissected on the 3rd, 4th and 5th day of parasitic stage.
Since the sex of parasitic nematode almost indistinguishable during the parasitic stage, the
nematode number in one infectedmosquito was used as a metric to distinguish female nema-
tode frommale. According to our infection tests results, when the number of parasitic nema-
tode in one infectedmosquito equal to 1, the nematode will develop into female; when the total
nematode number is equal or greater than 4, all nematodes obtained from this mosquito will
develop into male. Each test replicated three times. Total RNA was extracted, and cDNA was
synthesized from 2 ug of RNA using TIANGEN FastQuant RT Kit following the manufac-
turer's recommendations.Many primers were used to determine the relative abundance of
three sex differentiation genes mRNA and β-actin gene was used as the control (Table 1). The
qRT-PCR amplifications were carried out using CFX 96 Real-Time System (Bio-rad) in a final
volume of 20 μl containing 2 μl of cDNA, 0.4 uM of each primer, 10 μl of TransStart Top
Green qPCR Super Mix (TransGen) and 7.2 μl of RNase-free water. The qRT-PCR was initi-
ated with an activation step at 95°C for 3 min, followed by 40 cycles of 10 s at 95°C, 30 s at the
Tm specific for the primer pairs used. A melting curve cycle was given at 95°C for 5 s, 65°C for
5 s with acquisitions 0.5 per °C from 95 to 65°C to confirm the amplification of a single prod-
uct. The differential gene expression was analyzed by 2−ΔΔCTmethod [27, 28]. Each real-time
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PCR reaction for each sample was carried out in three biological replicates and three technical
biological replicates.

Nematode soaking and FITC treatments

To find an optimum concentration of Fluorescein isothiocyanate isomer I (FITC) that reflected
uptake of solutes through the cuticle, ten concentrations of FITC (0.02, 0.04, 0.06, 0.08, 0.1, 0.2,
0.4, 0.6, 0.8, 1.0 mg/mL) were added to the RNase-free H2O and uptake was observed.The
effect of FITC on nematodes was estimated by fluorescence intensity after incubation at 25°C
for 16 h. For each concentration of FITC, 500 larvae of R. wuchangensis were soaked in RNase-
free H2O in the dark at 25°C for 16h.

RNAi assay

Double stranded RNA corresponding to Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were used in
soaking experiments. DsRNA corresponding to the gfp gene of Aequorea victoriawas used as
control. These were synthesized from PCR products as templates using Ambion MEGAscript
RNAi Kit according to the manufacturer’s recommendations. The DNA templates for the nem-
atode genes were generated with primer pairs, T7-Rwucmab-3-F and T7-Rwucmab-3-R, T7-
Rwuclaf-1-F and T7-Rwuclaf-1-R and T7-Rwuctra-2-F and T7-Rwuctra-2-R, each with the T7
promoter sequence upstream of the gene specific portion for in vitro transcription with the T7
RNA polymerase promoter (Table 1). Primers used to amplify the gfp gene were T7-gfp-Fand
T7-gfp-R.Briefly, 2 mg of DNA was incubated with the T7 enzymemix and 75 mM each of

Table 1. Primers used in the experiments.

Primer name Squence (5’-3’)

Rwucmab-3-F ATGAGCAACGACTTAACC

Rwucmab-3-R TCAAAGTCTCATCGTATC

Rwuclaf-1-F ATGGCTTATCAGACGAAC

Rwuclaf-1-R TTAATTTTCCCACCAATC

Rwuctra-2-F ATGGGAGAAGAGAACGGTAG

Rwuctra-2-R TCAAGAATAAGATCGCGAACG

qRwucmab-3-F AAGGGAGCGTCGTCA

qRwucmab-3-R CAGTTCGGGCATTCG

qRwuclaf-1-F TTGAGATTAGGTTGCCATTT

qRwuclaf-1-R TACGACGGATTTGAGGTT

qRwuctra-2-F CCGCTATCTGGGTC

qRwuctra-2-R TTGATTCGGTCGTGT

qRwucactin-F GCGGCTATTCGTTCACCA

qRwucactin-R CGGGCAATTCGTAGCTCTTC

T7-Rwucmab-3-F TAATACGACTCACTATAGGGAGACAGCCAAGGGAGCGTCGTCA

T7-Rwucmab-3-R TAATACGACTCACTATAGGGAGAGCGTCCGCCTAAGGTGTATCT

T7-Rwuclaf-1-F TAATACGACTCACTATAGGGAGACACCTGCGAAACATTGACTT

T7-Rwuclaf-1-R TAATACGACTCACTATAGGGAGATTTGGCGACCCTTTCTAACC

T7-Rwuctra-2-F TAATACGACTCACTATAGGGAGACAGCCGCTCGCGTAGTTCGT

T7-Rwuctra-2-R TAATACGACTCACTATAGGGAGACGGGCGTAGGAGTATGTGGTC

T7-gfp-F TAATACGACTCACTATAGGGAGAATGGTGAGCAAGGGCGAG

T7-gfp-F TAATACGACTCACTATAGGGAGATTACTTGTACAGCTCGTCCATGC

Note: The T7 polymerase promoter sequence is underlined.

doi:10.1371/journal.pone.0163127.t001
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ribonucleotides for 16 h at 37°C, followed by 1 h of DNase I treatment at 37°C. DsRNAs were
purified and checked for integrity on a 1% agarose gel prepared with 1× TAE as describedby
the manufacturer.
Five RNAi soaking experiments were set up and 200 nematodes were fed with 0.8 mg/mL of

dsRNA corresponding to Rwucmab-3, Rwuclaf-1, Rwuctra-2 and gfp in RNase free H2O. For
each soaking experiment, three replicates were set up and incubated at 25°C for 16 h. After
incubation, nematodes were washed three times with sterile water by centrifugation at 5000
rpm for 3 min to remove the soaking solution, and nematodes were used to infect the second
stage C. quinquefasciatus. When the nematode completed the parasitic stage and emerged
from the mosquito, we calculated the sex ratio of five RNAi soaking groups, respectively.

Statistical analysis

Using SPSS (SPSS Inc., Chicago, Illinous, U.S.A.), the significance of the differences between
treated groups and control group were evaluated by Student's t-test at P< 0.05 and P< 0.01.

Results

Illumina sequencing analysis and de novo assembly

There were 31,955,060 clean reads and 3,994,382,500 bases filtered by the pre-processing from
the raw data with 32,407,368 reads and 4,050,921,000 bases (Table 2). Then, 16,882 unigenes
were reported from de novo assembly by Trinity with N50 value of 1,532 bp. The lengths of the
transcripts ranged from 201 to 12,614 bp, with an average of 1,008 bp (Table 3). More than
60% of the transcripts were in the range of 201–900 bp (63.48%), and 1, 969 transcripts were
longer than 2 kb. The size distributions of these unigenes were given in S1 Fig.

Annotation of assembled unigenes

A total of 16,882 unigenes were detected from the R. wuchangensis library, among which, 9,215
unique sequences were annotated based on blastx alignment (E-value< 1e-5) searches of five
public databases: Swiss-prot, NR, KEGG, KOG and Pfam (Table 4). Among the 16,882 unique
transcripts, 45.83% (7,737) was annotated by KOG, 46.89% (7,916) was annotated by Pfam,
35.58% (6,007) was annotated by KEGG, 7,566 transcripts (44.82%) had hits at Swiss-Prot pro-
tein database and 7,580 (44.90%) transcripts exhibited one or more significantmatches at NR
(Table 4). GO assignments were used to classify the functions of the predicted unigenes. Based
on homologous genes, 6,840 sequences from all unigenes of R. wuchangensis libraries were cat-
egorized into 50 GO terms consisting of three domains: biological process, cellular component
and molecular function (S2 Fig).
To further examine the integrity and effectiveness of the annotation process, the unigenes

number with KOG classification was calculated. 7,310 unigenes were identifiedwith a KOG

Table 2. Overview of the sequencing reads.

Samples Total Reads Total Nucleotides (nt) Q20 ratio (%) N ratio (%) GC ratio (%)

R. wuchangensis 31955060 3994382500 90.26 0.00 46.52

doi:10.1371/journal.pone.0163127.t002

Table 3. Summary statistics for assemblies.

Total numbers Min length Median lengh Mean length N50 (bp) Max length Total length

Unigene 16882 201 690 1008 1532 12614 17028667

doi:10.1371/journal.pone.0163127.t003
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classification. Among the 25 KOG categories, the cluster of “Single transductionmechanisms”
occupied the highest number (1,225, 16.76%), followed by “General function prediction”
(1,143, 15.64%) and “Posttranslational modification, protein turnover, chaperones” (757,
10.36%). The categories of “Cell wall/membrane/envelope biogenesis” (50, 0.68%), “Nuclear
structure” (49, 0.67%) and “Cell motility” (24, 0.33%) had the fewest matching genes (Fig 1).

Infection rate and sex ratio of R. wuchangensis in different situations

As shown in Fig 2A (left: infected larvae; right: control), obvious pathological changes and
nematodes were observed in the thoraxes of infectedmosquito larvae. After R. wuchangensis
infected larvae of C. quinquefasciatus, many nematodes were obtained from infected group
(Fig 2B). When the ratio of mosquitoes: nematodes were 1:7 and 1:3, the infection rate reached
96.88% and 81.25%, respectively (Table 5). Furthermore, the sex ratio of obtained nematodes
frommosquito larvae reached 1:7.54 and 1:1.27, respectively (Table 5). When total nematode
number from one infectedmosquito is 1, all nematodes obtained from the mosquito will
develop into the female. In contrast, if the total nematode numbers from one infectedmos-
quito is equal or more than 4, all nematodes obtained from the mosquito larvae will develop
into the male.

Table 4. Summary of annotations of the R. wuchangensis unigenes against major public databases.

Database 16882 Unigenes with predicted coding regions

Annotated (n) Percentage (%)

Swiss-prot 7566 44.82

Nr 7580 44.90

Pfam 7916 46.89

KEGG 6007 35.58

KOG 7737 45.83

doi:10.1371/journal.pone.0163127.t004

Fig 1. KOG annotations of unigenes. The x-axis indicates the subcategories, the y-axis indicates the number of unigenes.

doi:10.1371/journal.pone.0163127.g001
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Phylogenetic and sequence analysis of sex differentiation genes

Sex differentiation genes are very crucial for the development of R. wuchangensis. With the
purposes of further verifying the accuracy of the RNA-Seq assembly results and understanding
the role of these sex differentiation genes in the development of nematode, Rwucmab-3, Rwu-
claf-1 and Rwuctra-2 were identified from R. wuchangensis based on transcriptome analyses.
Rwucmab-3 was deduced to be 513 amino acids protein encoded by 1,542 nucleotides and con-
tained two DM domain (67–120 aa and 138–194 aa). The Rwuclaf-1 cDNA contained an ORF
of 2160 bp and encoded 719 amino acids protein included DEXDc domain (240–459 aa) and
HELICc domain (501–582 aa). The Rwuctra-2 protein contained 263 amino acids including a
RRM domain (144–217 aa). Amino acid sequence analysis of Rwucmab-3, Rwuclaf-1 and
Rwuctra-2 from R. wuchangensis shared high sequence identity with orthologs of other animal
species (Figs 3 and S3–S6). As shown in Figs 4 and S5, the Rwucmab-3 and Rwuclaf-1 has
closer relationship with the previously reportedOvolMAB-3 and OvolLAF-1 of Onchocerca
volvulus (26.06% and 49.18%. In addition, the Rwuctra-2 (KU201270) from R. wuchangensis
also exhibited high identity with HsapTRA-2 (NP_004584.1) ofHomo sapiens (43.81%) and
LpolTRA-2 (XP_013772437.1) of Limulus polyphemus (43.62%).

Expression patterns of sex differentiation genes

qRT-PCR method was used to measure mRNA expression pattern of sex differentiation genes
of R. wuchangensis. The qRT-PCR results revealed that Rwucmab-3 was highest expressed in
the male nematode on 5th day of parasitic stage. On the 3rd day of parasitic stage, the relative
expression level of Rwucmab-3 in the male and female nematodes first appeared difference

Fig 2. Photomicrographs of pathological mosquito larvae infected by R. wuchangensis and normal larvae (A). Photomicrographs of

many nematodes were obtained from infected group (B). Arrow: the nematode existed in the thorax of mosquito C. quinquefasciatus.

doi:10.1371/journal.pone.0163127.g002

Table 5. Infection rate and sex ratio of R. wuchangensis in different situations.

Mosquito:

Nematode

Infection rate

(%)

Sex ratio (female:

male)

Total nematode number from one infected

mosquito = 1

Total nematode number from one infected

mosquito�4

1: 7 96.88±2.08 1: 7.54±0.98 All nematodes develop into female All nematodes develop into male

1: 3 81.25±2.95 1: 1.27±0.13

doi:10.1371/journal.pone.0163127.t005
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(P< 0.05) (Fig 5A). As shown in Fig 5B, relative expression level of Rwuclaf-1 in male nema-
tode and female nematodes presented difference on the 5th day of parasitic stage for the first
time. These results indicated Rwuclaf-1 maybe involved in sex differentiation during parasitic
stage (from 3rd day to 5th day, P< 0.05). On the 1st day of late parasitic stage, the expression
level of Rwuclaf-1 in both of the male and female nematodes were significantly higher than that
of other developmental stages. Differences in expression of Rwuctra-2 first presented on the 1st
day of the late parasitic stage between the male and female nematodes (P< 0.05) (Fig 5C).

Ingestion of soaking solution by R. wuchangensis using FITC as a

marker

FITC was used as a marker to test dsRNA uptake efficiencyof R. wuchangensis, which fluores-
cence intensity of which increasedwith FITC concentration increasing after 16 h incubation,

Fig 3. Multiple sequence alignment by DNAMAN of Rwucmab-3 with that of other nematodes. Identical and similar amino acid residues are

shaded in black and gray, respectively. Sequences from the following nematode were used in this analysis: RwucMAB-3 (KU201268); CeleMAB-3

(CE14902); CbreMAB-3 (CN05170); CjapMAB-3 (JA51043); BmalMAB-3 (BM23119); OvolMAB-3 (OVP11339).

doi:10.1371/journal.pone.0163127.g003
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indicating this nematode can successfully ingest soaking solution via the cuticle (Fig 6). The
fluorescence intensity of R. wuchangensis increasedwith FITC concentration increasing from
0.02 to 0.8 mg/mL after 16 h incubation, and no significant difference in nematode fluores-
cence intensity incubated in solutions between 0.8 and 1.0 mg/mL FITC treated groups.

RNAi of Rwucmab-3, Rwuclaf-1 and Rwuctra-2 of R. wuchangensis

Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were determined by RNAi experiment for their physiol-
ogy function of sex differentiation. RNAi results revealed the sex ratio of R. wuchangensis from
RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfpdsRNA
treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the nematode
develop into male (Fig 7A). Besides, RNAi results of Rwuclaf-1 and Rwuctra-2 from R.
wuchangensis demonstrated a slight, but statistically insignificant increase or decrease in sex
ratio with both of control groups (Fig 7B and 7C).

Discussion

Mosquito control strategies, alternative to chemical insecticides,which are harmless to nontar-
get organisms and hard to generate insecticide resistance, are being advocated and developed
by many researchers [29, 30]. Among them, Romanomermis is an excellent mosquito control
material, which distributes distributed throughout tropical and subtropical regions worldwide
[31]. In the past thirty years, extensive research has been done in R. wuchangensis, including
morphology, the biological characteristics, field trials, the mass cultivation both in vivo and in
vitro, and the biochemistry and molecular biology [32]. R. wuchangensis can infectC. quinque-
fasciatus, A. aegypti and A. albopictus, etc. However, the unsuccessful in vitro cultivation of R.
wuchangensis has limited its application in biocontrol. Besides, another nematode R. culici-
vorax could also infect the larvae of many different mosquito species, and has been investigated

Fig 4. Phylogenetic trees based on the deduced amino acid sequences of sex differentiation gene mab-3. Amino acid

sequences of Rwucmab-3 were analyzed using the Mega 6.0 program by the neighbor-joining method, respectively. The numbers

at each node represent the bootstrap value with 1000 replicates. Sequences from the following nematode were used in this

analysis: RwucMAB-3 (KU201268); CbriMAB-3(CBP05898), CremMAB-3 (RP15394), CeleMAB-3 (CE14902), CjapMAB-3

(JA51043), CbreMAB-3 (CN05170), BmalMAB-3 (BM23119), OvolMAB-3 (OVP11339), PpacMAB-3 (PP31573), DrerMAB-3

(Q71MM5).

doi:10.1371/journal.pone.0163127.g004
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Fig 5. Expression pattern of sex differentiation genes Rwucmab-3 (A), Rwuclaf-1 (B) and Rwuctra-2

(C) in various developmental stages of R. wuchangensis. P3-P5: the 3rd day of parasitic stage to the 5th

day of parasitic stage; PP1-PP7: the 1st day of post-parasitic stage to the 7th day of post-parasitic stage; A:

adult stage; G: Gravid adult nematode. *P < 0.05, **P < 0.01.

doi:10.1371/journal.pone.0163127.g005
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for its potential as a biocontrol agent of malaria and other disease vectors [33, 34]. R. culici-
vorax has also been cultured in laboratory and its complete genome has been reported to be
used as an attractive and tractable alternative model to study the evolutionary dynamics of
nematode development, but their sex differentiationmechanism was still unknown [35]. The
sex differentiationmechanism of Romanomermis requires further investigation in the future,
which is important to its applicaton in mosquito control.
In this study, transcriptome sequencing analysis of R. wuchangensis was completed and

16,882 unigenes were identified. About 63.48% of the transcripts were in the range of 201–900
bp, and 1,969 were longer than 2.0 kb. To date, many nematodes genomes have been
sequenced, includingAscaris suum, Brugia malayi, Bursaphelenchus xylophilus, Caenorhabditis
angaria, Caenorhabditis briggsae,Caenorhabditis elegans, Dictyocaulus viviparus,Dirofilaria
immitis, Haemonchus contortus, Heterorhabditis bacteriophora, Loa loa,Meloidogyne floriden-
sis,Meloidogyne hapla,Meloidogyne incognita, Panagrellus redivivus, Pristionchus pacificus, R.
culicivorax, Trichinella spiralis, Trichuris muris, Trichuris suis and Trichuris trichiura have
been published (http://www.nematodes.org/nema-todegenomes/index.php). Thus, transcript
sequences analysis of R. wuchangensis could provide better bioinformatics resources for future
studies on gene cloning and other investigation of R. wuchangensis. Among the unique tran-
scripts, 9,215 unique sequences (54.58%) have been annotated based on the similarity search
against the public databases. In addition, 7,667 unique transcripts also exhibited no significant
similarity with sequences deposited in the public databases and need further study.
Based on the transcriptome sequencing analysis, potential physiological function and role of

three sex differentiation genes were evaluated by Real-timePCR and RNAi assay. The initiation
of sex differentiationmust relate to differential expression of sex differentiation genes between
the male and female nematodes. In present study, we found that the expression level of Rwuc-
mab-3 betweenmale and female nematodes displayed obvious difference on the 3rd day of para-
sitic stage (P< 0.05), which was earlier than that of Rwuclaf-1 and Rwuctra-2. This result
demonstrated that the sex differentiation process of R.wuchangensismay start on the 3rd day of

Fig 6. FITC fluorescence of R. wuchangensis incubated in RNase-free water. Images in Figures A-J show FITC fluorescence of R. wuchangensis

incubated for 16 h with different concentrations of FITC: A = 20 μg/mL; B = 40 μg/mL; C = 60 μg/mL; D = 80 μg/mL; E = 100 μg/mL; F = 200 μg/mL;

G = 400 μg/mL; H = 600 μg/mL; I = 800 μg/mL; J = 1000 μg/mL. Scale bar represents 50 μm.

doi:10.1371/journal.pone.0163127.g006

Characterization of Sex Differentiation Genes from R. wuchangensis

PLOS ONE | DOI:10.1371/journal.pone.0163127 September 23, 2016 12 / 18

http://www.nematodes.org/nema-todegenomes/index.php


parasitic stage, which was consistent with our previous paraffin section results inOvomermis
sinensis [36, 37]. The central function ofmab-3 in somatic tissues is to induce localized sex-spe-
cific differentiation by integrating information about sex, position and time [38–40]. Currently,
laf-1 has also been proved to function in the reproduction and development of many nematode

Fig 7. Sex ratio displayed by R. wuchangensis following soaking in dsRNA of Rwucmab-3 (A),

Rwuclaf-1 (B) and Rwuctra-2 (C) for 16h. *P < 0.05, **P < 0.01.

doi:10.1371/journal.pone.0163127.g007
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species fromCaenorhabditis [25, 41]. Therefore, we speculate the relative high expression of Rwu-
claf-1 on the 1st day of late parasitic stage may closely related and play a direct role in the develop-
ment of nematode reproductive system. In addition, tra-2 is another important sex-determining
gene and encodes a membrane protein, which promoting gametogenesis and female development
in various animals [42]. Compared to the paraffin-cut section results in mermithidaeO. sinensis
with tra-2 research in Caenorhabditis, the relative high expression on the 1st day of late parasitic
stage may closely related to gametogenesis and reproductive system development.
To further investigate molecular regulatory function of Rwucmab-3, Rwuclaf-1 and Rwuc-

tra-2, RNA interference analysis was used to measure their physiological function in sex differ-
entiation of R. wuchangensis. At present, RNAi has been widely used in human, plant and
animal, such as soaking, feeding and microinjectionwere applied to RNAi in the parasitic nem-
atodes [43–46]. Gene silencing by RNA interference (RNAi) was initially performed on C. ele-
gans by microinjection [47, 48]. Delivery of dsRNA through the intestine was subsequently
achieved via ingestion of transfected Escherichia coli, and direct soaking of worms in dsRNA
also has been used extensively to examine gene function in Caenorhabditis [49, 50]. The nema-
tode species from Romanomermis could penetrate through the hemocoel of mosquito larvae
and absorbed nutrition from the hemolymph of mosquito. Subsequently, during the parasitic
stage, Romanomermis larvae developed to mature nematode in host and emerged out before
pupation of host [51]. Since sex differentiation process completed during its parasitic stage,
delivery of dsRNA through soakingmethodmaybe appropriate for function analysis of R.
wuchangensis. Therefore, we used FITC as a marker to test the ingestion efficiencyof soaking
solution by R. wuchangensis. After soakingwith FITC for 16 h incubation, all the nematodes
were observed to fluoresce, indicating that the nematodes successfully ingested soaking solu-
tion via the cuticle, which was consistent with that of root lesion nematodes Pratylenchus thor-
nei and Pratylenchus zeae [46]. In C. elegans, members of the Dmrt family are expressed in
tightly restricted spatial patterns in association with the development of sex-specific organs
and encode a DM (doublesex and mab-3) domain-containing protein, which function in sev-
eral aspects of male development [16, 18]. The sex ratio of RNAi treated groups which the
nematodes were soaked in dsRNA of Rwucmab-3 were significantly higher than gfpdsRNA
treated groups and control groups (without dsRNA added), highlighting RNAi ofmab-3may
hinder the nematode to develop into male, which was consistent with report by Artyom [16].
Laf-1 encodes a putative DEAD-box RNA helicase related toDrosophila vasa and Saccharo-

myces cerevisiae ded1p, which plays a vital role in sex differentiation and embryonic develop-
ment [14]. Mutation of laf-1 gene has been proved to seriously affect sex differentiation of C.
elegans in early developmental stage, suggesting that LAF-1 can promote male cell fates [52].
TRA-2 promotes female fates, and regulation of its expression is critical for normal sex devel-
opment [53]. In tra-2 gain of functionmutants, causes excess tra-2 activity and feminizes the
hermaphrodite germline [54]. However, compared to gfpdsRNA treated groups and control
groups (without dsRNA added), R. wuchangensis soaked in dsRNAs of Rwuclaf-1 and Rwuc-
tra-2 has not showed statistically significant change in sex ratio of nematodes emerged out
frommosquito. Recent research in Pratylenchus species showed that the extent of gene silenc-
ing induced by soaking nematodes with dsRNA has a close and direct relationship with the
nematode species, the type of target gene and the concentration of dsRNA used in RNAi assay
[46]. Actually, the similar results, such as RNAi efficiencyor susceptibility of RNAi was not
great, have been reported in Caenorhabditis species, even RNAi effect in closely related nema-
tode species was different and equally effective [55, 56]. Furthermore, difference of silencing
effects from the same gene because of different target regions has also been observed inHetero-
dera glycines and Radopholus similis [57, 58]. We speculate that the length and gene position of
dsRNA for Rwuclaf-1 and Rwuctra-2 used in RNAi assay may influence their interference effect

Characterization of Sex Differentiation Genes from R. wuchangensis

PLOS ONE | DOI:10.1371/journal.pone.0163127 September 23, 2016 14 / 18



against the nematodes. Since the expression level of target gene in parasitic nematodes is hard
to detect, we can not draw any conclusions for the slight, but statistically insignificant, increase
or decrease in sex ratio of the nematodes soaked in dsRNA of Rwuclaf-1 and Rwuctra-2.
Because sex differentiation of R. wuchangensis occurred in the infectedmosquitoes, it could
not directly develop into mature nematode in vitro. In the following experiments, we will
explore the nutritional requirement of this nematode in their parasitic stage and relationship
betweenmolecular regulationmechanisms of these sex differentiation genes and nutrition.
These RNAi results provide a great experimental basis for further study to investigate in-vitro
culture of R. wuchangensis, which is necessary for field application of this nematode.
In conclusion, transcript sequences presented in this study could provide more bioinformat-

ics resources for future studies on gene cloning and other molecular regulatorymechanism in
R. wuchangensis. Moreover, identification and functional analysis of three key sex differentia-
tion genes could provide fundamental data for solve the uncompleted sex differentiation prob-
lem in large-scale cultivation in vitro, which are helpful to field application to control the larvae
of C. quinquefasciatus and A. albopictus in water environment. Present results suggest that R.
wuchangensismay also have a potential as a suitable and effective biocontrol agent in control-
ling dengue or dengue hemorrhagic vector, A. aegypti.

Supporting Information

S1 Fig. Length distribution of unigene assembledby Trinity. X-axis represents sequence
size. Y-axis indicates sequence-numbers.
(TIF)

S2 Fig. Go annotation results of the transcriptome of R. wuchangensis.
(TIF)

S3 Fig. Multiple sequence alignment by DNAMAN of Rwuclaf-1 with that of other nema-
todes. Identical and similar amino acid residues are shaded in black and gray, respectively.
Sequences from the following nematode were used in this analysis: RwucLAF-1 (KU201269);
CeleLAF-1 (CE38657); CbreLAF-1 (CN27298); CjapLAF-1 (JA49168); BmalLAF-1
(BM32535); OvolLAF-1 (OVP14211).
(TIF)

S4 Fig. Multiple sequence alignment by DNAMAN of Rwuctra-2 with that of other species.
Identical and similar amino acid residues are shaded in black and gray, respectively. Sequences
from the following nematode were used in this analysis: RwucTRA-2 (KU201270); LpolTRA-2
(XP_013772437.1); BcorTRA-2 (AJE26246.1); AsusTRA-2 (AET31469.1); MmusTRA-2
(NP_932770.2); HsapTRA-2 (NP_004584.1); XlaeTRA-2 (NP_001080216.1).
(TIF)

S5 Fig. Phylogenetic trees based on the deduced amino acid sequences of various sex differ-
entiation gene laf-1.Amino acid sequences of Rwuclaf-1 were analyzed using the Mega 6.0
program by the neighbor-joiningmethod, respectively. The numbers at each node represent
the bootstrap value with 1000 replicates. Sequences from the following nematode were used in
this analysis: RwucLAF-1 (KU201269); CremLAF-1 (RP07243), CbriLAF-1 (CBP31421), Cbre-
LAF-1 (CN27298), CeleLAF-1 (CE38657), CjapLAF-1 (JA49168), PpacLAF-1 (PP44015),
BmalLAF-1 (BM32535), OvolLAF-1 (OVP14211), XlaeLAF-1 (P24346).
(TIF)

S6 Fig. Phylogenetic trees based on the deduced amino acid sequences of various sex differ-
entiation gene tra-2.Amino acid sequences of Rwuctra-2 were analyzed using the Mega 6.0
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program by the neighbor-joiningmethod, respectively. The numbers at each node represent
the bootstrap value with 1000 replicates. Sequences from the following nematode were used in
this analysis: RwucTRA-2 (KU201270); CbreTRA-2 (CN32673), CjapTRA-2 (JA65557), Cele-
TRA-2 (CE23546), CbriTRA-2 (CBP37603), CremTRA-2 (RP28999), DmelTRA-2
(CAA40722.1), DvirTRA-2 (XP_002049699.2), AsusTRA-2 (AET31469.1), AechTRA-2
(EGI70155.1), BmorTRA-2 (NP_001119709.1), PpolTRA-2 (XP_013145601), MdesTRA-2
(AGW99165.1), AalbTRA-2 (AHW45715.1), LpolTRA-2 (XP_013772437), HsapTRA-2
(NP_004584.1), MmusTRA-2 (EDK98603.1), XlaeTRA-2 (NP_001080216.1).
(TIF)
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