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Abstract

Recently-developed methods that integrate multiple data sources arising from the same

ecological processes have typically utilized structured data from well-defined sampling pro-

tocols (e.g., capture-recapture and telemetry). Despite this new methodological focus, the

value of opportunistic data for improving inference about spatial ecological processes is

unclear and, perhaps more importantly, no procedures are available to formally test whether

parameter estimates are consistent across data sources and whether they are suitable for

integration. Using data collected on the reintroduced brown bear population in the Italian

Alps, a population of conservation importance, we combined data from three sources: tradi-

tional spatial capture-recapture data, telemetry data, and opportunistic data. We developed

a fully integrated spatial capture-recapture (SCR) model that included a model-based test

for data consistency to first compare model estimates using different combinations of data,

and then, by acknowledging data-type differences, evaluate parameter consistency. We

demonstrate that opportunistic data lend itself naturally to integration within the SCR frame-

work and highlight the value of opportunistic data for improving inference about space use

and population size. This is particularly relevant in studies of rare or elusive species, where

the number of spatial encounters is usually small and where additional observations are of

high value. In addition, our results highlight the importance of testing and accounting for

inconsistencies in spatial information from structured and unstructured data so as to avoid

the risk of spurious or averaged estimates of space use and consequently, of population

size. Our work supports the use of a single modeling framework to combine spatially-refer-

enced data while also accounting for parameter consistency.
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Introduction

Obtaining precise estimates of population density and space use can lead to a better under-

standing of the processes governing spatiotemporal ecological dynamics and, in turn, improve

wildlife management and conservation practices. The task of estimating ecological state vari-

ables is, however, challenging, especially for rare or elusive species such as large carnivores,

and requires analytical approaches that account for the fact that not all individuals in a popula-

tion can be observed [1]. Regardless of methodology, the quality of model-based inference is

directly related to data quality, which can be an issue for elusive species, especially when

resources for monitoring are limited. This has led to an emphasis on developing methods that

integrate multiple data sources [2, 3] and, importantly, to a realization that the vast amounts of

data regularly collected outside of formal scientific studies, unstructured or opportunistic data,

are a potentially valuable data source [4, 5]. Although the majority of data integration methods

have focused on improving estimates of species distribution and temporal population trends,

opportunistic data has great potential to improve inferences about spatial ecological processes.

Integrated population models (IPMs: [2, 6, 7]) provide a statistical framework for jointly

modeling count data and demographic data, typically resulting in improved inferences about

the mechanisms regulating population dynamics. As a result, there has been continued devel-

opment of more general ‘integrated data models’ that seek to combine any independent data

sources that arise from the same ecological process [3]. For example, occupancy and abun-

dance are two directly related ecological state variables, and joint analysis of capture-recapture

and occupancy data has been shown to improve estimates of abundance [8, 9], density [10],

and even colonization-extinction dynamics and dispersal [11]. A common feature of the

majority of studies that use multiple data sources, aside from improving parameter precision,

is that each independent data set is collected according to a well-defined sampling protocol,

i.e., an integration of structured data sets. The value of integrated models that use unstructured

or opportunistic data, such as that collected by many citizen scientists, is yet unclear. For

example, van Strien et al. [12] argue that opportunistic data represents an important data

source that, if analyzed appropriately, can yield improved inferences about temporal trends in

occurrence, while Kamp et al. [13] caution against its use, demonstrating that citizen science

data were unable to detect significant species declines. Regardless, with the rapid increase in

citizen science initiatives, finding innovative ways to utilize opportunistic data will broaden

the scope of ecological enquiry that can be addressed within a single analytical framework [3].

Spatial capture-recapture (SCR) methods [14–16] are now well-established in applied ecol-

ogy and produce estimates of population density using spatial encounter history data. Using

spatial patterns of observations to account for heterogeneity in detection due to differences in

trap exposure (i.e. distance between traps and individual home ranges), and treating space as

an explicit model component, SCR produces unbiased estimates of density and space use

across a range of conditions (e.g. [15, 17–19]). Moreover, SCR has been used to estimate den-

sity for elusive species from data collected using a variety of field methodologies including

camera traps [20], hair snares [21], and scat surveys [22]. A core component of SCR is an

explicit model for space use that relates encounter probability to the distance from an individ-

ual’s activity center via the estimation of a spatial scale parameter σ [15]. Estimating σ yields an

explicit definition of the effective sampling area, and as a result, absolute density can be

directly estimated. If follows that to estimate density well, σ must also be well estimated. As

with other statistical methods, the precision of SCR-derived estimates of space use and density

depend on sample sizes, specifically, but not solely, the number of unique spatial locations that

individuals are observed at (spatial recaptures). Thus, adding additional spatial information

should, in theory, lead to improved inference about space use, and in turn, density. For
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example, Gopalaswamy et al. [23] increased the number of spatial recaptures by integrating

camera trap and scat collection data which resulted in more precise estimates of density, while

Royle et al. [24] and Sollmann et al. [25] demonstrated that space use (σ) and density are esti-

mated with higher precision when telemetry data are used in addition to traditional capture-

recapture data (See also Table 1).

Interestingly, in the context of SCR, telemetry data require no information about sampling

effort because observed locations provide representative information only about the spatial

scale parameter (σ), and thus any amount of telemetry data are likely to be informative about

space use. So, while the inability to quantify observer effort and bias is often cited as a major

limitation of data collected by citizen scientists [29], it appears that such opportunistic data

lends itself naturally to integration within the SCR modeling framework. Specifically, when

opportunistic observations can be made of individually-identifiable animals, i.e., via direct or

indirect recognition of naturally marked, collared or tagged individuals or the collection of

DNA yielding biological samples such as hair or faeces, the locations of those observations are

informative about space use. As a consequence, opportunistic observations have the potential

to improve estimates of spatial parameters in SCR, and have the added benefit of potentially

increasing the geographic extent of monitoring studies significantly.

Although a joint analysis of SCR, telemetry and opportunistic data is possible, such an

approach assumes that data sources with shared parameters are indeed informative of the

same process. For example, estimating a single spatial scale parameter, σ, from multiple data

sources requires that the ecological process, space use, gives rise to the same spatial distribution

of observations, i.e., the parameter is consistent. Despite the increasing use of integrated

modeling approaches, this issue has received relatively little attention. Popescu et al. [30] dem-

onstrated that information on space use obtained from camera trap and telemetry data are in

general agreement and advocate for integrating additional sources of information when inves-

tigating space use. There are cases where the process that gives rise to spatial observation pat-

terns differ, particularly when using both direct and indirect observations, or when the data

types are associated with specific behaviors, for example territory marking at tree rubs com-

pared to larger scale foraging patterns. So, because we can integrate multiple data sources does

Table 1. Summary of contributions that provide an integrated framework for spatially-referenced individual data. Systematic data are collected under

specific study designs: spatial capture-recapture (SCR), telemetry, and counts or binary detections (survey). Parameter shared:ψ, Data Augmentation param-

eter; σ, scale parameter of the observation model; ϕ, survival probability; α, effect of a landscape covariate on the relative probability of use; δ, individual-level

recruitment probability.

Systematic Opportunistic

Paper SCR Telemetry Survey Parameter Study species

Sollmann et al., 2013a [25] •1 - - - σ jaguar

Gopalaswamy et al., 2012 [23] •1 - - - ψ, σ tiger

Sollmann et al., 2013b [26] •2 • - - σ raccoon

Sollmann et al., 2013c [27] •2 • - - σ Florida panther

Royle et al., 2013 [24] • •3 - - σ, α black bear

Linden et al., 2017 [28] • •3 - - σ, α American marten

Chandler et al., 2014 [10] • - • - ϕ, δ black bear

Present study • • - • σ brown bear

1 camera trapping and scat collection;
2 extended to mark-resight;
3 resource selection function data

https://doi.org/10.1371/journal.pone.0185588.t001
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not necessarily mean that we should, and there is a need to find ways of testing for consistency

in wildlife data.

Here we analyze data from a reintroduced brown bear Ursus arctos population in the cen-

tral Alps, one of the most populated regions to be occupied by brown bears [31, 32]. This is a

region where bear-human interactions are highly probable and any perceived threat is consid-

ered a key factor in determining the success or failure of the reintroduction [33]. First, we

describe the brown bear sampling design and data, the classical SCR model, and how opportu-

nistic data can be formally incorporated into spatial capture-recapture methods. We then dem-

onstrate an application of a model-based test for parameter consistency across data types using

Bayesian variable selection.

Materials and methods

This study used data from GPS collared brown bears which were captured and collared with

the permission of the Italian Ministry of the Environment.

Study area and population

This study was conducted in 2013 in the Italian Alps, an area characterized by a mosaic of nat-

ural and human-modified habitats, with a landscape fragmented by urban areas and roads.

Elevation ranges from 65 m to more than 3900 m a.s.l., with submontane, montane and subal-

pine vegetation covering areas below 2000 m, and human population density concentrated

below 1000 m [33]. Between 1999 and 2002, nine bears (three males and six females, 3–6 years

old) were released in the area as part of a reintroduction project to establish a self-sustained

population [33, 34]. At the time, the original brown bear population consisted of at least three

animals, which were assumed to have died without any genetic exchange with the translocated

bears and their progeny [35].

Brown bear data

Non-invasive genetic sampling. Bear hair samples were collected from 99 hair traps and

89 rub trees. Hair traps consisted of a strand of barbed wire wound around trees at c. 50 cm
above ground level enclosing an area of c. 25 m2 with scent lure placed in the center [36]. They

were set from 15 May to 31 July, checked on five occasions, and the number of days between

occasions ranged from 3 to 10 days (Fig 1). Rub trees, barbed wire wrapped around trees, were

monitored during the same period and were checked twice, first after six days and then after a

further four days (Fig 1). All hairs on the hair trap and rub tree barbed wire were collected dur-

ing each visit ensuring that only newly deposited hairs were collected in subsequent visits.

Because the hair trap and rub tree data were collected according to a specific protocol, we refer

to this structured data as traditional SCR data, or simply ‘SCR data’. In addition to the struc-

tured data collection, opportunistic hair and feces data were also collected [32, 35, 37, 38]. Fol-

lowing notification by third parties (typically members of the public), opportunistic sampling

of hair and feces was carried out by agency personnel at sites where bear damage occurred, e.g.

depredation on livestock, beehives and/or crops [38]. We refer to this data as ‘opportunistic

data’.

Biological samples were genetically analyzed for individual identification. For a detailed

description of DNA extraction methods, PCR protocols, protocols for individual identifica-

tion, and molecular sexing, see [32, 35]. We considered only data belonging to the non-cub

part of the population and successfully identified a total of n = 22 individuals (12 females and

10 males). Of the 22 individuals, 19 were detected using hair traps; two males and one female

were sampled only on rub trees. During the period of trap deployment, 11 of the 22 individuals
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(four females and seven males) were detected opportunistically resulting in an additional 30

unique spatial locations (Figs 1 and 2a, S1 Fig).

Telemetry. Two bears, one male and one female, were tracked during the hair trap and

rub tree sampling period using Global Positioning System (GPS) collars (Vectronic GPS-GSM

collars, Vectronic Aerospace GmbH, Berlin, Germany). GPS collars collected positions at dif-

ferent intervals ranging from 10 min to 1 h. For the analysis we selected one random record

per day per individual, giving a total of 143 unique telemetry locations (74 and 69 for the male

and female respectively). The collared female was detected at a hair trap but never detected at

rub trees or opportunistically (Fig 2b). The collared male was never detected with hair traps,

but was detected once at a rub tree and was observed opportunistically five times (Fig 2c).

Data analysis

Spatial capture-recapture data. Spatial capture recapture models are hierarchical models

[39] that describe distance-dependent encounter probabilities (the observation process), and

the spatial distribution of individuals across the landscape (density, the ecological state pro-

cess). We adopt a Bayesian analysis of the model [21, 40] and assume that individual encounter

data, yijk, representing whether or not individual i was detected in trap j in occasion k, are Ber-

noulli random variables with success probability pijk, i.e., the encounter probability:

yijk � BernoulliðpijkÞ: ð1Þ

Encounter probabilities in SCR are assumed to decline with distance between a trap (x) and an

Fig 1. Timeline of data collection. The diagram shows the period when SCR data were systematically collected (i) using an array of hair

traps checked on five occasions of variable length (black blocks), and (ii) from rub trees checked for hairs in two period (grey blocks).

Telemetry data were thinned by randomly selecting one record per day, and opportunistic recovery of biological samples was performed in

23 days.

https://doi.org/10.1371/journal.pone.0185588.g001
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Fig 2. Spatial distribution of the three types of data available for the brown bear population in the central Alps. (a) Distance from the

point were founders were released (in km) and location of bear captures from systematic sampling with hair traps and rub trees (SCR),

telemetry and opportunistic records. (b-c) Location of the records for the two collared individuals from which telemetry information was

derived. Grey dots indicate the location of all observed individuals.

https://doi.org/10.1371/journal.pone.0185588.g002
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individuals activity center (s) according to some decreasing function; here we use the half-nor-

mal encounter model and allow for sex-specific variation in the parameters:

pijk ¼ p0;ijk exp �
1

2s2
sex

dðxj; siÞ
2

� �

; ð2Þ

where σsex is the sex-specific spatial scale parameter that determines the decrease in encounter

probability with distance between trap j and individual i’s activity center (d(xj, si)). The param-

eter p0,ijk is the baseline encounter probability and can itself be modeled as a function of indi-

vidual- (i), trap- (j) and occasion- (k) specific covariates. Specifically, we modeled the baseline

encounter probability as a function of sex, trap type (trap: hair trap or rub tree), and, to

account for the different time elapsed between consecutive sample occasions in each trap, time

since last check (time), using standard logistic regression:

logitðp0;ijkÞ ¼ g0 þ g1 sexi þ g2 trapj þ g3 timejk: ð3Þ

where γ0 is the baseline encounter probability for females at hair traps, γ1 is the difference

between male and female detections at hair traps, γ2 is the additive effect of trap type (i.e., the

difference in detectability between hair traps and rub trees), and γ3 measures the change in

detectability as time elapses since a trap was checked.

The second component of the SCR model is a point process model that describes the distri-

bution of individual activity centers, si, within a defined region, S, which should be large

enough to contain all plausible activity centers of all observed individuals [15]. We were partic-

ularly interested in modeling density as a function of spatially varying covariates, i.e., as an

inhomogeneous point process, and so we used a discrete representation of S defined as the

center points of each pixel. In other words, the state-space S was defined as a raster, and indi-

vidual activity centers (si) were associated with pixel centroids. In our case, where we are con-

sidering a population that was established from a single release point, we modeled variation in

density as a function of the distance from the point that the founding population was released

between 1999 and 2002 (d.release; see ‘Study area and population’ and [41]). Using a binomial

point process model, the per-pixel intensity, μ(s), is modeled as a log-linear function of ‘d.

release’:

log ðmðsgÞÞ ¼ b0 þ b1 d:releaseg ; ð4Þ

for pixel g = 1, . . ., nG, with total number of pixels nG = 506, and the probability that an indi-

vidual activity center is located in a pixel, π(s) is given by:

pðsgÞ ¼
mðsgÞ
P

mðsgÞ
: ð5Þ

This is the standard formulation of a Bayesian SCR model with a sex-specific half-normal

encounter probability model, an inhomogeneous point process density model, and the estima-

tion of sex-specific total population size N using data augmentation (see Chapters 7 and 10 in

[15]). Sex was known for all observed individuals but not for unobserved (augmented) individ-

uals so was modeled as an individual random effect to be estimated: sexi * Bern(ωsex), where

ωsex is the population-level sex ratio. We expected detectability to vary between sexes and trap

type, and to be positively related to the time since last check. We also expected space use, σ, to

vary by sex. Finally, we expected density to decline with distance from the release point.

The spatial encounter histories for the standard SCR analysis were generated for detec-

tions from a J = 188-trap array consisting of hair traps and rub trees across K = 5 sampling

occasions (Fig 1 and S2 Fig). Data were formatted in a 3-dimensional M × J × K array, YSCR,
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where n is the number of observed individuals and M − n is the number of augmented ‘all-

zero’ encounter histories, a proportion of which are the estimated unobserved individuals.

The additional data required to fit the model are: the coordinates of each hair trap and tree

rub, a vector of sex determination of each individual, a J × K trap operation matrix which is

a binary indicator denoting whether each trap was operational during sampling occasion,

and the J × K matrix of ‘time since last check’ covariates, which were scaled to have zero

mean and unit variance (S2 Fig).

Telemetry and opportunistic data. Unlike the traditional SCR data described above,

both telemetry locations, Itel and opportunistic data Iopp are not restricted to trap locations

and therefore provide important additional information about individual movement, i.e., both

are direct observations of space use [24]. We combine the individual telemetry and opportu-

nistic locations and refer to them collectively as Ii for individual i = 1, . . ., n. These additional

locations can be modeled using a bivariate normal ‘movement model’ with mean si and vari-

ance-covariance matrix S with variance s2
sex and zero covariance [26, 27]:

Ii � BVNðsi;SÞ ð6Þ

where,

S ¼
s2

sex 0

0 s2
sex

" #

: ð7Þ

The parameters of this model can be related directly to the SCR half-normal encounter proba-

bility model (Eq 2) through the shared parameters s and σ, which means that telemetry data,

opportunistic data and traditional SCR data can be jointly modeled, each contributing to the

estimation of the latent activity centers and the spatial scale parameter σ.

The telemetry and opportunistic data, for Rtel = 143 and Ropp = 30 locations at which data

were available, were formatted in two R × n × K arrays each, one containing x-coordinates and

the other containing corresponding y-coordinates, for the n observed individuals and K occa-

sions. This array structure allows the unstructured data (telemetry and opportunistic) to be

related to the SCR data in the integrated model (S2 Fig). In addition, an M × K matrix denotes

the number of unstructured locations for each individual in each occasion (S2 Fig).

In our case study telemetry data were available for two individuals only. We note, however,

that the lack of this type of data is quite common in ecological and wildlife management stud-

ies (e.g. 3 collared individuals in [24] and [27]).

Model-based test for data consistency. First we evaluated the relative value of adding

additional data sources by comparing estimates of density and space use obtained from the tra-

ditional SCR model with estimates obtained with the addition of telemetry data only, opportu-

nistic sightings data only, and then both telemetry and opportunistic sightings data. Note that

these models all assume consistency in the estimation of the spatial scale parameter σsex

between structured (SCR) and unstructured (telemetry and opportunistic) data. To test the

consistency assumption, we fit a fifth model to formally evaluate whether estimates of σ vary

by data type. In summary, we fit the following five models:

1. Traditional SCR data only (data from hair traps and tree rubs)

2. SCR data + telemetry data (assuming data consistency)

3. SCR data + opportunistic sightings (assuming data consistency)

4. SCR data + telemetry + opportunistic sightings (assuming data consistency)

Data integration and consistency for spatial processes
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5. SCR data + telemetry + opportunistic sightings (data type-specific σtype).

Models 1 to 4 are described above. Model 5 uses a Gibbs variable selection approach (GVS:

[42, 43]) to estimate the degree of support for the inclusion of a data type effect on σ, i.e., sup-

port for the hypothesis that estimates differ by data type. To do so, we formulate the model for

σ as follows:

log ðstype;sexÞ ¼ ys þ y1 sexi þ w y2 type ð8Þ

where θσ is the intercept of the log-linear model for σ, and because sexi = 0 for female and

type = 0 for traditional SCR data, exp(θσ) is the female σ for structured data (σst,f). The parame-

ters θ1 and θ2 are the sex and data-type effects (differences) on σ, where estimates not overlap-

ping 0 denote important effects. An important note is that the models that assume data

consistency (models 2, 3, and 4) are special cases of this model but with θ2 fixed at 0. In model

5, the model where the difference between data types is examined, θ2 is an estimated parameter

and is multiplied by an ‘inclusion parameter’ w, a latent binary variable with a Bernoulli prior

distribution with probability 0.5. The posterior distribution of the inclusion parameter is the

probability that there is a difference between types and therefore provides explicit inference

about data-specific parameter consistency, and θ2|w = 1 is an estimate of the data type effect

on σ.

For each model, we estimated sex-specific total population size, Nsex, and sex-specific (and

for model 5, data type-specific) spatial scale parameters, σ, and compared point estimates (pos-

terior median) and precision (95% Bayesian Credible Interval width, BCI from here) of the

estimated parameters. We adopted a Bayesian analysis of the SCR models using Markov chain

Monte Carlo (MCMC) using the program JAGS [44] implemented in R [45]. In all models, we

used an uninformative Normal(0, 100) priors for the parameters γ and β in Eqs 3 and 4. We

used a Normal(0, 15) prior for the intercept of the log-linear model for sex- and data-specific

σ, and a Uniform(-3, 3) prior for the sex and data type regression coefficients θ1 and θ2, respec-

tively. In the model with variable selection to evaluate parameter consistency, a ‘slab and spike’

prior was used to improve the mixing and convergence time of the MCMC algorithm [42] (see

S1 Text for details).

After testing a range of resolution values for the state-space, S, we used a resolution of 4 × 4

km, a value that was small enough to yield stable parameter estimates, and large enough to

ensure the model was computationally tractable. To ensure the state space was large enough to

contain all plausible activity centers, we used a 21 km buffer around the most extreme coordi-

nates of all the data (telemetry, opportunistic and trapping data, Fig 2a). Data were augmented

with M − n ‘all-zero’ encounter histories, where M = 300. Summaries of the posterior distribu-

tion were calculated from 30,000 post-burn-in posterior samples (burn-in = 3,000 iterations).

The R̂ diagnostics [46] used to assess convergence were< 1.02 for all parameters. The code for

the fully-integrated models where (i) data consistency is assumed, (ii) data consistency is

tested, or (iii) data inconsistency is accounted for, is available in S2 Text.

Results

Estimates of the parameter relating density to distance to the reintroduction point (β1) were

negative under all models, and although there was some variation in the strength of the effect,

this result supports the hypothesis that density decreased with distance from the point were

founders were released (S1 Table). The estimated sex ratio in the population, ωsex, did not vary

significantly between the five models based on 95% Bayesian Credible Intervals and was lowest

in SCR-only model (0.22, BCI: 0.09–0.41) and highest in the SCR + telemetry model (0.36,
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BCI: 0.19–0.57). Across all models, detectability was higher for males, higher at hair traps, and

increased with increasing time between checks (S1 Table).

Assuming data consistency in the model

Overall, when consistency was assumed, integrating all available sources of information (tradi-

tional SCR, telemetry and opportunistic data) produced more precise estimates of population

size and spatial scale parameters when compared to models using either SCR data alone or

integrating a single additional data source (Fig 3, Tables 2 and 3). In particular, the gain in pre-

cision achieved by jointly modeling all three data types was particularly relevant for sex-spe-

cific population size estimates (Nsex). In addition to the increase in precision, integrating

additional sources of information resulted in a shift in the median abundance point estimates:

from 16 (BCI: 8–30) under the SCR-only model to 13 (BCI: 7–22) under the fully integrated

model for males (a 19% difference), and from 58 (BCI: 24–148) to 25 (BCI: 13–52) for females

(a 57% difference).

Precision gains in estimates of σ were minimal when adding opportunistic data (fewest

additional data points) and highest when integrating telemetry information only (most addi-

tional data points), and was higher for males than females (Fig 3, Table 3). As with the esti-

mates of bear population size, the integration of additional information led to a change in the

point estimates of σ; compared to the SCR-only model, there was a noticeable increase in the

scale of space use when any of the additional data was used. The female 95% home range size

estimated from the half normal encounter model under the SCR-only model was 218 km2

(BCI: 114–421) whereas for the fully integrated model, the estimate was 1379 km2 (BCI: 1107–

1719). Conversely, estimates of male space use, σm, were consistent across models (Fig 3,

Table 3), as were the corresponding 95% home range size estimates: 1836 km2 (BCI: 1127–

3062) under the SCR data only and 2029 km2 (BCI: 1697–2424) under the fully integrated

model.

Fig 3. Comparison of posterior estimates for population size (N) and spatial scale parameters of the gaussian kernel (σ) from the

different models. Mean and 95% Bayesian Credible Interval achieved using structured (SCR) data only, or integrating them with

unstructured data, i.e. telemetry (‘tel’) and opportunistic (‘opp’) data, available for the brown bear population in the Italian Alps. Filled points

correspond to models with implied data consistency, empty points refer to the fully integrated model that account for data inconsistency.

https://doi.org/10.1371/journal.pone.0185588.g003
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Testing and accounting for data inconsistency

There was strong support for the need to account for differences in the spatial scale parameter

as estimated from structured vs. unstructured data (model 5); posterior inclusion probability

of the data-type effect was Pr(w = 1) = 0.98. Population size estimates were similar to those

obtained with the fully integrated model where data consistency was assumed (14 males, BCI

10–25; 28 females, 16–62; Fig 3, Table 3). The inclusion of a sex-specific data type effect on the

spatial scale parameter supported the inconsistency of information on space use provided by

structured and unstructured data, with significantly larger σ values, and thus larger home

range size estimates, derived from unstructured data than those obtained from structured

data. Specifically, the difference between data type-specific spatial scale parameters was differ-

ent from zero (θ2 = 0.389, BCI: 0.187–0.570; Fig 3, S1 Table). Precision in data type-specific σ

Table 2. Posterior estimates of population size achieved using structured (SCR) data alone or integrated with unstructured (telemetry and oppor-

tunistic; tel, opp) information available for the brown bear population in the Italian Alps. Parameters estimates are reported for males (Nm) and females

(Nf).

Model Parameter mean SD 2.5% 50% 97.5%

SCR Nm 16.574 5.766 8.000 16.000 30.000

Nf 65.057 31.086 24.000 58.000 148.000

data consistency implied

SCR + tel Nm 15.514 5.297 8.000 15.000 28.000

Nf 28.206 11.284 14.000 26.000 58.000

SCR + opp Nm 13.687 4.297 7.000 13.000 24.000

Nf 36.890 18.900 16.000 32.000 90.000

SCR + tel + opp Nm 13.088 3.893 7.000 13.000 22.000

Nf 26.587 10.249 13.000 25.000 52.000

data consistency tested

SCR + tel + opp Nm 14.661 4.156 10.000 14.000 25.000

Nf 30.516 12.341 16.000 28.000 62.000

https://doi.org/10.1371/journal.pone.0185588.t002

Table 3. Posterior estimates of spatial scale parameter achieved using structured (SCR) data alone or integrated with unstructured (telemetry and

opportunistic; tel, opp) information available for the brown bear population in the Italian Alps. Parameters are denoted as follows (m = male,

f = female): sex-specific spatial scale parameter shared among different data types, σsex; sex-specific spatial scale parameter for structured and unstructured

data, σst,sex and σun,sex, respectively.

Model Parameter mean SD 2.5% 50% 97.5%

SCR σm 9.796 1.277 7.739 9.644 12.756

σf 3.355 0.582 2.460 3.274 4.729

data consistency implied

SCR + tel σm 8.556 0.425 7.773 8.538 9.441

σf 8.339 0.482 7.461 8.316 9.345

SCR + opp σm 11.800 0.905 10.207 11.741 13.743

σf 7.092 1.103 5.380 6.936 9.669

SCR + tel + opp σm 10.372 0.474 9.496 10.351 11.348

σf 8.548 0.481 7.669 8.523 9.558

data consistency tested

SCR + tel + opp σst,m 7.632 0.620 6.567 7.582 8.991

σun,m 11.242 0.606 10.121 11.218 12.498

σst,f 6.149 0.667 5.021 6.094 7.612

σun,f 9.037 0.515 8.096 9.014 10.112

https://doi.org/10.1371/journal.pone.0185588.t003
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estimates was similar in both fully integrated models. Sex-specific 95% home range size esti-

mates derived from structured and unstructured data were 1103 km2 (BCI: 812–1521) and

2385 km2 (BCI: 1928–2940) for males, and 720 km2 (BCI: 474–1090) and 1542 km2 (BCI:

1234–1924) for females, respectively.

Discussion

We developed a formulation of a spatial capture-recapture model that integrates multiple data

sources and, importantly, allows formal testing and accounting for parameter consistency

among data types which, as a result, improves inferences about density and space use. We illus-

trated the approach using empirical data from a reintroduced population of brown bears in

the Italian Alps, a low density species of conservation concern for which available data are

sparse. Specifically, we jointly analyzed traditional SCR data, collected using systematic sam-

pling of hair traps and rub trees, satellite telemetry data, and opportunistic recovery of biologi-

cal samples. Comparing estimates from models ranging from traditional SCR to a fully

integrated SCR model, we demonstrated that the addition of unstructured data results in

increased precision in estimates of population size and space use. Most importantly, we identi-

fied and explicitly modeled data-type-specific inconsistency in estimates of spatial model

parameters which, if ignored, can produce biased estimates of space use and abundance. Our

approach provides a model-based procedure for valid integration of different sources of infor-

mation in ecological studies of spatial processes.

Integrating spatial data

Estimates of male population size were stable across all models, with highest precision

observed for the fully integrated model, i.e., the model with most spatial data, and lowest for

the SCR-only model, which had the fewest spatial locations (Fig 3). For females, estimates of

population size from models with additional (unstructured) data were comparable, but were

different from the SCR-only estimates, both in terms of precision and point estimates. The

addition of telemetry and opportunistic data increased the precision in estimates of female

population size when compared to the SCR-only model, but overall, precision was lower than

for males.

Although the number of individuals observed for the two sexes was similar (12 females and

10 males), there were fewer spatial recaptures at hair traps or rub trees of females (mean 2.1,

min 1, max 4) than of males (mean 8.6, min 1, max 21) (S1 Fig). This suggests that smaller

SCR data sets benefit most from the approach that integrates high quality spatial information

from even a small number of telemetered or opportunistically observed individuals, or con-

versely, they may be less stable and more sensitive to combining data. It is encouraging how-

ever, that population size estimates based on the two independent unstructured data sources

produce similar estimates of abundance, suggesting the addition of opportunistic information

is beneficial when consistent with information on space use provided by other unstructured

data, such as telemetry. It is important to note, however, that while we provide a much needed

framework for evaluating parameter consistency across data types, our approach does not

assess parameter sensitivity. The test for consistency is, in our opinion, a welcome first step

towards better understanding the consequences of combining multiple data sources [47], and

relatively straightforward to implement in practice. Evaluating parameter sensitivity on the

other hand would require a full-scale simulation, especially in the current case where the dif-

ferent data types represent the extremes of a spectrum: SCR sampling typically generates sparse

spatial information on several-to-many individuals, while telemetry studies typically generate

large amounts of fine scale spatial data on relatively few individuals.
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Unsurprisingly, the addition of high temporal resolution telemetry data results in a larger

precision improvement compared to the relatively sparse opportunistic data (Fig 3). However,

the addition of even a few opportunistic locations produces an increase in precision relative to

inference from the SCR-only model (Fig 3), suggesting that even in the absence of telemetry

data, opportunistic data can be important sources of spatial information. Of course, in our

application the true values are unknown and accuracy cannot be evaluated, but our findings

are consistent with previous population estimates for the same time period [38], and support

the notion that estimated female population size derived from the SCR-only is indeed unrealis-

tically high.

As with abundance, estimates of sex-specific σ were more precise under the integrated

model (Fig 3). The most notable difference was between estimates of female space use from the

three integrated models and the SCR-only model. These differences arise for the larger spatial

distribution of telemetry locations compared to hair trap and tree rub (SCR) data, and they are

likely related to the link between detector type and behavior. The SCR data were comprised of

a few spatially clustered encounters which may be the result of hair deposition patterns related

to territoriality, potentially at the core of a home range. Telemetry and opportunistic data, on

the other hand, are passive location observations that do not require physical deposition of

hair, and that could reflect more general and wider ranging space use (Fig 2b). Estimates of

abundance are explicitly linked to estimates of space use, and the difference in the spatial scale

parameter estimates, which are more pronounced for females, gives rise to the resulting differ-

ences in abundance, but perhaps more importantly, is indicative of potential inconsistency in

data-specific parameter estimates. In general, these findings further illustrate the fact that inte-

grated data models allow sex-specific effects on detectability, and consequently abundance, to

be modeled, which can often be limited by insufficient observations of one sex or the other

when traditional SCR are sparse [48, 49].

Testing and accounting for data inconsistency

To deal with the apparent sensitivity to the data integration shown by the marked shift in esti-

mates of female population size and spatial scale parameter, we developed a formal model-

based test for parameter consistency. Specifically, we used a Bayesian variable selection

approach to estimate the degree of support for data-type-specific parameter estimates, and in

doing so, estimate the differences in the spatial scale parameter. In practice, this allows for a

convenient and formal assessment of the strength of evidence for whether a parameter, σ in

this case (although other parameters could be tested where appropriate), should be shared

across data types or instead be data type-specific.

In our case, the fully integrated model with an effect of data type on σ revealed a significant

difference in the posterior estimates of the spatial scale parameter, suggesting an underestima-

tion of the home range size using hair trap and tree rub data alone. In fact, home range size

estimated from structured data was less than half of the dimension estimated using unstruc-

tured information in both sexes. On the other hand, population size estimates did not strongly

differ when accounting for data inconsistency in the fully integrated model, although estimates

in the latter case were more conservative. These results suggest that careful consideration

should be given to the biological interpretation of space use in SCR models because the data

are related closely to behavior, e.g., territory marking versus freely roaming. This is likely the

case in this study, as suggested by fact that the direction of change in the spatial scale parameter

is the same for both sexes.

We suspect that the inconsistencies observed in this study are due to the sampling-behav-

iour interactions, i.e., the fact that in order to be detected, animals must exhibit a certain
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behavior, whereas both telemetry data and opportunistic sightings are observation of move-

ment around a home range. Thus, inconsistencies are expected when sampling methods are

geared towards different behaviors. Apparent inconsistency may also arise in the presence of

transient individuals with non-stationary home ranges, e.g. [50]. Thus, it is clear that while

integrated data models are appealing, it is important to acknowledge the underlying biology

that gives rise to apparently similar data generated from different sampling schemes.

Testing and accounting for data inconsistency in the same modeling framework used to

combine structured and unstructured spatially-referenced data may therefore avoid the risk of

spurious estimates of space use. This has important implications in the definition of the study

design, since estimates of the spatial scale parameter (and ultimately home range size) are used

to calibrate trap spacing and in turn the extent of the trap array [15].

Conclusion

We provide evidence that integrating SCR, telemetry, and unstructured opportunistic data, by

conceptually treating opportunistic records as thinned telemetry data, improves inference pre-

cision on abundance and space usage, which are key population-level parameters to inform

conservation decisions of elusive and difficult-to-study species. However, care must be taken

to assess potential inconsistencies in spatial information provided by the different data sets,

where telemetry is both the most informative source of space use but also often available only

for a few individuals, whose movement may not be representative of population space use.

Understanding how animal density changes in space and how the latter is used is crucial when

addressing practical issues in population management and conservation [51]. To this end, the

use of opportunistic information increases availability of spatially-referenced individual infor-

mation, that can be suitably modeled along with other data within a unified framework, thus

reducing the need for additional invasive methods. Despite the fact that we can incorporate

unstructured data, and thereby increase precision, we should always previously verify whether

data are consistent with each other, and thus suitable for integration. The model-based

approach here presented offers a natural way of formally testing data consistency.

Supporting information

S1 Fig. Location of bear captures from systematic sampling with hair traps and rub trees

(SCR), telemetry and opportunistic records. Grey dots indicate the location of all observed

individuals. Bear ID is reported on the top of each plot.

(PDF)

S2 Fig. Graphical representation of the data involved in the integrated analysis. Circles rep-

resent estimated parameters. Observed data for n individuals, detected during K visits and

members of the population of size N, were augmented with M − n all-zero detections (YSCR

matrix). SCR data were collected at J sites, consisting of Jh hair traps and Jr rub trees. Data set

names in Courier font correspond to the names used in the model code. Coordinates, trap

deployment, and (standardized) time since last check data sets for the J = Jh + Jr traps are

denoted by SCR.traps,active, and time.elapsed.sc labels, respectively. Raster data

contain information on the distance from the point were founders were released for each of

the nG pixels (d2core) and was used to model density. Telemetry and opportunistic data

were formatted in the same way, with an augmented matrix for number of records available

for individual i in occasion k (n.obs.TEL and n.obs.OPP, respectively) and the x (TEL.
y_x, OPP.y_x) and y (TEL.y_y,OPP.y_y) coordinates of those records for each
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individual in each of the Rtel or Ropp locations and occasion k.

(PDF)

S1 Text. Details on the Bayesian variable selection.

(PDF)

S2 Text. R and BUGS codes for the fully integrated models.

(PDF)

S1 Table. Posterior parameter estimates achieved using structured (SCR) data alone or

integrated with unstructured (telemetry and opportunistic; tel, opp) information available

for the brown bear population in the Italian Alps. Parameters are denoted as follows: effect

of sex on the spatial scale parameter for structured data, θ1; effect of data type on the spatial

scale parameter, θ2; baseline encounter probability (p0) intercept, γ0; effect of being male on p0,

γ1; effect of trap type on p0, γ2; effect of time since last check on p0, γ3; density intercept, β0;

effect of distance from the release point on density, β1; data augmentation parameter, ψ; proba-

bility of being a male, ωsex.

(PDF)
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Ursus arctos reintroduction in the Adamello Brenta Natural Park. A tool to establish a metapopulation in

the Central-Eastern Alps. Hystrix. 2003; 14(1–2):3–27.
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