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Abstract

Epidemic modeling has been a key tool for understanding the impact of global viral outbreaks for over two decades. Recent
developments of the COVID-19 pandemic have accelerated research using compartmental models, like SI, SIR, SEIR, with their
appropriate modifications. However, there is a large body of recent research consolidated on homogeneous population mixing
models, which are known to offer reduced tractability, and render conclusions hard to quantify. As such, based on our recent work,
introducing the heterogeneous geo-spatial mobility population model (GPM), we adapt a modified SIR-V (susceptible–infected–
recovered-vaccinated) epidemic model which embodies the idea of patient relapse from R back to S, vaccination of R and S patients
(reducing their infectiousness), thus altering the infectiousness of V patients (from λn to λr). Simulation results spanning over a
period of t = 2000 days (6 years, the period ≈ 2020–2025) compare the impact of an epidemic outbreak with variable vaccination
strategies, starting after 1 year (as is the case of COVID-19). The infected proportion in the remaining 5-year period is analyzed
using vaccination rates from rv = 0 (no vaccination) to rv = 1. While rv < 0.4 is less effective during the earlier stages, all
strategies with rv ≥ 0.4 show a similar downward convergence reducing the number of infected by more than half, compared to
no vaccination. Given the complexity of epidemic processes, we conclude that higher vaccination rates yield similar results, but a
minimal rv = 0.4 (40% of population over five years) should be targeted.
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1. Introduction

Many recent studies in epidemic modeling are predominantly developing mass-action models into tools suitable for
analyzing COVID-19 dynamics [9, 11, 4, 15, 18, 12]. Too often, nevertheless, these studies focus on customizing the
underlying epidemic models (e.g., SIR, SEIR, SIRS), but consider homogeneous mixing of the population, implying
that all individuals are fully connected inside a compartment or stochastic block [6, 27, 5, 4, 12]. Some studies propose
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so-called “flattening the curve” solutions that try to reduce the reproduction number R0, but are also underpinned by
homogeneous mixing models. Conversely, Watts et al. [36] found R0 to have little influence on the predictability of
large-scale epidemics, in the context of real-world, multi-scale population structures. Real-world population models
are dictated by geographic, as well as historical, demographic and economic factors. As such, simplified population
(and mobility) models, which lack the complexity of global scale population organization can lead to over- or under-
estimations in terms of epidemic size and impact [8, 17, 12], or outbreak duration [4, 6, 18, 15].

Indeed, several state-of-the-art contributions developed increasingly realistic epidemic models by incorporating
heterogeneous population mixing and human mobility patterns. Using Network Science, Salathé et al. [23] found
that the topology of networks is a critical detail in explaining infectious dynamics, based on empirical data for viral
diseases, e.g., SARS [20], HIV [3], measles [13], and influenza [12]. Furthermore, community structure has been
observed to dictate the speed of epidemics. To this end, Shang et al. [25] study how overlapping communities and
a higher network average degree accelerate infectious spreading. Salathé et al. [23] explain how the dynamics of
epidemics over communities have implications on immunization strategies for large outbreaks. Chen et al. [7] show
how overlapping in communities leads to increased infection rates and a higher spreading speed. Finally, we note the
work of Stegehuis et al. [26] who demonstrate that the mesoscopic level of communities influences the behavior of
percolation on networks, by stimulating or suppressing spreading speeds.

The main goal of this paper is to offer a qualitative forecast of vaccination strategies’ efficacy, in the context of
COVID-19. To this end, we employ epidemic modeling using an original heterogeneous population mixing model sup-
ported by geo-demographic data and daily estimations of COVID-19 cases. In our recent study [28], we introduce the
geo-spatial mobility population model (GPM) which was compared to analogous homogeneous mixing models, and
validated against real COVID-19 data [10]. Nevertheless, in [28], our research focus was on the community structure
and individual mobility rather than on the transmission model; hence, a standard SIR epidemic model was incorpo-
rated into GPM to run numerical simulations. By contrast, this paper uses the underlying population mobility model of
GPM and adapts a SIR-V (susceptible–infected–recovered–vaccinated) epidemic model with several considerations
meant to increase the realism and the reliability of our analysis:

1. All recovered patients relapse back to susceptible after an average timeout of 3–6 months, as defined by recent
studies [34, 14, 37]. Consequently, the recovered state is not a “final” state, as in the case of a classic SIR model.

2. All susceptible and recovered individuals can undergo vaccination defined by a constant rate rv. During each
simulation iteration, a constant proportion of random non-infected individuals are selected for vaccination.

3. Transmission to the vaccinated state will not render individuals immune to the epidemic. Conversely, as recent
studies suggest [2], vaccinated individuals are less likely to get infected by roughly 75%. In other words, all
vaccinated susceptible individuals are transformed back into susceptible individuals with a reduced infection
probability λr, as opposed to non-vaccinated (normal) susceptibles with λn. Vaccinated recovered individuals
keep their recovered state until the relapse timeout, when they become susceptibles with the reduced infection
rate λr.

Given the increased realism of the GPM population model [28] and the proposed SIR-V epidemic model, inspired
by recent scientific findings, we study the effect a variable vaccination rate rv over a moderate time window (5 years).
We reproduce a GPM model for several countries with different population densities, then analyze the dynamics of
infected and recovered proportions using computer simulation.

2. Methods

2.1. The GPM model

Settlements are the basic form of human organization as they delimit the boundary between inhabited and non-
inhabited land. To simplify our assumptions, the GPM model considers two levels of population organization, namely
that of countries, and settlements (i.e., villages, towns, cities, regardless of region and size) inside each country.
The current COVID-19 pandemic has shown that countries, even though an artificial political construct, are a highly
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relevant form of population organization, as they can adopt different policies for population mobility (including lock-
downs, social distancing, mobility restrictions) further influencing epidemic dynamics [33, 19].

The first ingredient of GPM is the generated realistic population structure. In essence, GPM translates into a
two dimensional mesh of stochastic block models [16], with each block corresponding to a human settlement si

(defined by a given country). Each settlement si is characterized by its real-world geographical position, using latitude
(y) and longitude (x), and its size Ωi (i.e., number of inhabitants). For higher accuracy, we use GPM at a country
level, rather than a continental or global level, due to the sparsity of available data. All individuals from a settlement
n j ∈ si are considered as interconnected, thus similar to a SIR compartmental model applied independently for each
settlement. Nevertheless, the division of a total population into multiple (e.g., hundreds, thousands) of unique blocks
is a significant factor favoring the realism of epidemic dynamics.

The second important ingredient of GPM is the modeled individual mobility. All individuals from a settlement
si have the same probability of leaving to another settlement s j. As such, we express the normalized probability of
mobility from a settlement si to s j as p(si, s j), given by the following equation:

p(si, s j) =
Ω j · e−di j/ψ

ΣkΩk · e−dik/ψ
(1)

where Σk p(si, sk) = 1, Ω j is the size |s j| of settlement s j, di j is the geographical distance (i.e., Euclidean distance
(∆x2 + ∆y2)1/2) between the two settlements si and s j, and ψ is a tunable parameter. The ψ parameter can be used
to amplify or reduce global mobility; we use a fixed ψ = 0.2 in this study, translating to the reduced mobility seen
throughout the COVID-19 period (2020–2021). For a full definition of the geo-spatial population model (GPM), which
is beyond the goal of our current paper, please refer to our previous contribution [28].

2.2. The SIR-V epidemic model

The proposed epidemic model is summarized in Figure 1 which defines the four states and particular transition
rates. Any individual can be in one of the four states: susceptible (S), infected (I), recovered (R) or vaccinated (V).
The transition S → I → R is determined by the classic (normal) infection rate λn, and recovery rate µ, respectively.
For these transition rates we chose the values λn = 0.06 and µ = 0.02, supported by recent studies which measured an
R0 = λn/µ = 3.3 ± 1.4 for COVID-19 [1].

Fig. 1. Overview of our modified SIR epidemic model into a SIR-V model with the following states: susceptible (S), infected (I), recovered (R),
vaccinated (V), and specific transmission rates: normal infection rate λn, infection rate for vaccinated individuals λv, recovery rate µ, vaccination
rate rv, and average timeout for patient relapse δr . We consider V a transitory state (hence the dotted contour) since all S/R individuals undergoing
vaccination return to their previous S/R state, with the new (lower) infection rate.
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Unlike the classic SIR model, we do not model R as a final state for individuals. Given the relatively short immunity
to the SARS-CoV-2 virus, all individuals in R will eventual transition back to S after a relapse (timeout) period δr.
The relapse period for any recovered individual is uniformly chosen between of 3–6 months (i.e., 90–180 iterations),
supported by recent estimates of COVID-19 immunity [34] (3 months), [14] (4–5 months), and [37] (6 months).

Also, any susceptible and recovered individuals can undergo vaccination with a rate of rv (estimated for a 5 year
period). For simplicity, we interpret rv as a global “successful” vaccination rate, not considering the different types of
vaccines currently available. From rv, a daily vaccination rate dv is computed as dv = rv/5/365. Thus, a proportion
dv of randomly chosen, non-infected and non-vaccinated individuals transition to the V state every iteration (day).
However, this state is transitory, as it simply alters the rate at which nodes will eventually infect and become infected
by others. All nodes in V are marked in such a way that their new infection rate becomes λv. Vaccination performance
is known to vary between 60-95% (based on existing products), however, we use λr = 0.25 · λn, supported by recent
research findings, published in The Lancet, that the reduction in COVID-19 cases dropped by 75% (down to one
quarter) compared to non-vaccinated individuals [2].

Overall, our proposed SIR-V model implies a continuous transition of nodes between states S → I → R . . . S ,
defined by the relapse timeout δr, and the reduction of λn to λv (used both for infecting and being infected) after each
node is vaccinated.

2.3. Geo-spatial and infections datasets

We run GPM at country level, i.e., modeling all settlements inside a chosen country. As such, the number of
settlements (and the total simulation population Ω =

∑
iΩi, are defined by a chosen geographical area A, limited by

a country’s borders. Furthermore, the position (x, y) and size Ωi of settlements si are defined in accordance to the
Global Rural-Urban Mapping Project (GRUMP v1) curated by the Center for International Earth Science Information
Network (CIESIN), Columbia University [35]. Since the project is still evolving, it is missing some data for various
regions of the world. Nevertheless, we choose to model three countries, representative in terms of population density
(i.e., which in turn influences the amount of human mobility). In this paper we run a set of experiments on models of
Romania, Germany and South Korea. These countries were chosen because of their increasing population densities,
as detailed in Table 1, which summarizes the demographic data of each used country model. The focus is to show how
population and density play a role in the epidemic dynamics.

Table 1. Country models used in this study, detailing their population density, the real country size (as defined by the GRUMP dataset), the
simulation population (used by GPM), and the number of settlements considered in GPM.

Country Density (pop/km2) Real size (GRUMP) Simulation size (GPM) Settlements

Romania 81 15.35M 15,357 864
Germany 235 53.31M 53,316 1132
South Korea 512 38.72M 38,722 150

We note that, in order to speed-up the simulation, without loosing notable predictive accuracy [28], we reduce the
modeled population Ω uniformly, from reach settlement, by a factor of ×1000 (see column “Simulation size (GPM)”
in Table 1). To keep the same population density, we also reduce the size of the total area A by the same ×1000 factor.
Experiments show that, as long as the density (=Ω/A) is kept constant, by reducing both Ω and A, the dynamics of the
modeled epidemic maintain the same characteristics.

In order to compare our computer simulations output with real epidemic data, we use a recent snapshot of the
JHU CSSE COVID-19 dataset, that is being curated by the Center for Systems Science and Engineering (CSSE) at
Johns Hopkins University [10]. This comprehensive dataset contains time series information on daily accumulated
confirmed Coronavirus cases worldwide. From these numbers we express the absolute daily number of cases, as the
difference between each two consecutive days. Also, we estimate the number of infected individuals in a country, for
any day d, as the sum of daily cases over the two weeks prior to d (i.e., the sum of daily cases from d − 13 to d). This
simplification of the estimation of total infected cases is [21].
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3. Results

In this section we present the summary of numerical simulations on three country models, with population structure
and mobility defined by GPM (see Table 1 for details), and epidemic dynamics according to the proposed SIR-V model
(see Figure 1 for details). Our goal is to provide a qualitative assessment of the performance of vaccination strategies.
As such, we try to understand how the proportions of infected and recovered individuals (normalized by country
population, and expressed in % for convenience) vary based on an increasing vaccination rate rv = 0, 0, 1 . . . 0.9, 1.

All simulations run for a fixed duration of t = 2000 iterations (i.e., days), with vaccination beginning after one year
(t = 365), as is the case of COVID-19, offering a 5-year post-vaccination overview of the epidemic. For simplicity,
we note that the geo-spatial data and the population model do not evolve during this time.

Figure 2a shows the dynamics of COVID-19 using real data from [10] in Romania, measured by the total infected
proportion, estimated from the daily number of cases. Here we notice three irregular waves (w1 − w3) occurring at
non-deterministic moments in time. A similar dynamic characteristic is observed in Figure 2b (red dotted area) where
the simulated dynamics for Romania (blue) are very similar. Additionally, Figure 2b also plots simulation dynamics
for Germany (orange) and South Korea (green). The simulation scenario employs a moderate vaccination rate of
rv = 0.3. We notice high variability in the early stages of the simulation (t = 0− 400), that suggest an association with
the population density. Indeed, South Korea did adopt early isolation strategies, so it did not have the same infection
spike as depicted in Figure 2b (green). After ≈ 400 days, the infected proportion has a declining convergent trend,
regardless of country density. The same conclusion can be drawn from the inset of Figure 2b, where the recovered
proportion converges for all countries.

Fig. 2. (a) Heterogeneous characteristic of COVID-19 spreading (in Romania) from outbreak onset to March 2021. The dynamics shows three waves
(w1 − w3) occurring at non-deterministic times and of variable amplitude. (b) Simulation results for a vaccination rate of rv = 0.3, using GPM
for three country models with distinct population densities (Romania-81; Germany-235; S.Korea-512 inhabitants/km2). The infected proportion
during the first year of simulation displays high variability, but converges after ≈ 2 years to a slowly declining trend, regardless of country density.
The same observation is valid for the recovered proportion depicted in the inset of panel (b). Real data in panel (a) are depicted starting from the
beginning of 2020, while simulation data in (b) start from the first actual cases (≈ 3 months later), thus explaining the slight temporal shift on the
OX-axis.

In Figure 3 we depict the impact of vaccinating the general population by comparing three strategies: no vaccination
(rv = 0), moderate vaccination (rv = 0.3), and strong vaccination (rv = 0.9) over a 5-year period (Jan/2021–Dec/2025).
It is obvious that the effects of the pre-vaccination period cannot be undone, but once vaccination starts (t ≥ 365), it
becomes clear that both strategies (blue, green) reduce the number of infected individuals noticeably. During the early
vaccination period (2021–2022), infection waves will still be probable for the moderate strategy (rv = 0.3), while the
stronger strategy seems to dampen these waves better. During the moderate-term period (2023–2025), we notice that
both vaccination strategies converge similarly, and keep the infected ratio much smaller than without any vaccination.
Specifically, our SIR-V model pinpoints a drop in the infected proportion from > 0.4% (orange line) in case of no
vaccination, down to < 0.2% infected in case of any of the two other vaccination strategies (green, blue lines).

Next, we focus on detailing the impact of a more granular vaccination rate rv. Figure 4a depicts a snapshot from
t = 1000 − 2000 (roughly Jan/2023–Dec/2025), after the infected proportion has dampened for most vaccination
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Fig. 3. The impact of a moderate vaccination strategy (30%, green line), a strong vaccination strategy (90%, blue line) versus no vaccination in
the population (0%, orange line). The first part (pre-vaccine) of the simulation period is more unpredictable due to the heterogeneity of population
structure and mobility (considered by our GPM model). After ≈ t > 400 we notice a significant impact of both vaccination strategies – larger waves
are avoided, and the dynamics converges towards a smaller overall infected proportion of < 0.2%, instead of > 0.4% visible for the no vaccination
strategy. Nevertheless, our simulation shows no significant difference between the 30% and 90% strategies given a moderate temporal perspective
(2-5 years).

strategies, which suggest no more visible epidemic waves. Without a vaccination policy (rv = 0, dark blue line), the
infected count would reach a high, pseudo-constant proportion of 0.4–0.5%, comparable to a permanent infection
wave. To put the simulation results into perspective, in early 2021, Romania saw a second wave ending and a third
wave unfolding with about 0.3–0.5% of the population infected with SARS-CoV-2.

The “weakest” vaccination strategy, depicted in Figure 4a, is rv = 0.2 (orange line) and converges slowly towards
the dynamical characteristic of the other stronger strategies (rv ≥ 0.4). That is, all other strategies with rv ≥ 0.4 produce
similar infection dynamics. We note that the pandemic is not eradicated over the 5-year simulation window, but it
remains as a permanent viral outbreak without significant waves. We believe this happens because the vaccination
does not render total immunity (rather 75% reduction in ineffectiveness), and because the global vaccination is most
likely going to be a very slow process.

Fig. 4. (a) Estimation of the infected proportion for variable vaccination rates rv ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The result snapshot is focused on the
second half of the simulation period, i.e., t = 1000 − 2000 which roughly translates to the 3-year interval from Jan/2023 to Dec/2025. We observe
that all vaccination rates converge towards an infected proportion of 0.15–0.2%, but a rate of rv ≥ 0.4 yields better results than rv = 0.2 in the earlier
stages (2022-2024). (b) Estimation of the recovered proportion for the same variable vaccination rates. Results reinforce the idea that a rv = 0.2
is non-ideal (too small), but as rv ≥ 0.4, we obtain similar mid-term results. Note that the set of recovered individuals decreases since we model a
patient relapse (back to susceptible) after an average timeout period δr .
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Supporting the same observations is Figure 4b, which depicts the recovered proportion for all vaccination rates,
during the whole simulation period t = 0 − 2000. Note that the recovered population does not grow constantly, as in
the case of SIR, because our SIR-V epidemic model implies a continuous relapse from R→ S . Plotting the recovered
proportion gives clearer insights into the efficacy of vaccination strategies. To that end, by focusing on the early to mid
vaccination period (t > 400), we can consider only the rates rv ≥ 0.4 as effective, in terms of keeping the recovered
proportion below 3% at any time. When rv = 0.2 (orange line) we measure a duration of almost two years until the
recovered proportion drops permanently below 3%. For the reference scenario, without vaccination (dark blue line),
the recovered proportion converges to an alarming 4.5% of the total population.

Our simulations show irregular, non-deterministic dynamics in the early part of the vaccination period (t ≈ 500 −
1000), a characteristic that has been so far confirmed during the 2020–2021 COVID-19 pandemic. In this early post-
vaccination period, we observe spikes in infection ratio which tend to disappear towards the moderate-term period. To
better quantify the distinct dynamics of these two periods, and also relate them to the vaccination rate rv, we provide
Figure 5. As such, we measure the maximum (Max) value of the infected and recovered waves, as well as the final
(End) value of convergence (i.e., average value of infected and recovered during the period t = 1500 − 2000).

Figure 5a suggests that, as the vaccination rate rv increases, the difference between the maximum and end values
of infected increases from about ×2 to ×4. Also, we notice that starting with rv ≥ 0.2 the amplitude of the maximum
infection wave (orange line) remains the same. Nevertheless, the end value of the infection proportion (blue line)
decreases steadily as rv increases, up to rv ≈ 0.6. Since we address a long term epidemic, we should strive for a
stronger vaccination policy.

Figure 5b suggests that the proportion of recovered individuals is reduced more significantly starting from rv ≥ 0.5.
Thus, the difference between the maximum recovered and end value of recovered proportions increases to ×1.8 when
a stronger vaccination is adopted.

Fig. 5. The relationship between three relevant epidemic metrics and the vaccination rate rv. (a) Maximum (peak during whole simulation period)
and End (average convergence value when t → 2000) proportions of infected individuals. (b) Maximum and End proportions of recovered individ-
uals. Vertical arrows suggest a multiplicative reduction from Max to End values. (c) Estimated daily number of cases (% and per 10K individuals)
as the vaccination rate is increased. Vertical arrows suggest a multiplicative reduction compared to no vaccination (rv = 0).

Finally, we depict in Figure 5c the daily number of cases, as influenced by the vaccination rate rv. We notice that the
number of cases drops with rv. This rate is non-linear, but may be fitted by a logarithmic downward trend. Based on
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the strength of the vaccination strategy, we may reduce the daily number of cases by ×1.5 up to ×2.5, which translates
into (partial to total) dampening the effect of COVID-19 waves.

All the results depicted in Figures 3-5 are based on 100 repeated computer simulations. We did not include addi-
tional error bars or confidence intervals in order not to over-complicate the visualizations, and because the convergence
results (t > 1000) are highly stable in all presented scenarios.

4. Conclusions

Current scientific efforts to predict and control the COVID-19 pandemic represent global-scale efforts and include
the customization of available SIR/SEIR models [15, 18, 30, 22]. However, the predominant usage of underlying
homogeneous mixing models, which adopt a single population scale [6, 27, 5, 4, 12], impede the reproduction of
meaningful characteristics of real-world epidemic outbreaks. Conversely, Network Science inspired approaches can
contribute to better modeling of complex systems in general [23, 31, 32], by considering network topology, community
structure, and human mobility patterns [24, 25, 26].

This paper proposes an original intelligent information system which provides a qualitative assessment of the
performance of vaccination strategies, in the COVID-19 context, summarizing an overview over the moderate-term
period 2021–2025. To replicate real-world conditions, we adopt a heterogeneous population model with mobility,
based on creating stochastic blocks, according to the size and geographical location of each settlement inside a chosen
country [28]. Also, we propose a SIR-V epidemic model, which, unlike the classic SIR, considers patient relapse
from R → S based on a relapse timeout δr in accordance to recent epidemiological studies [34, 14, 37]. Also, SIR-V
implements individual vaccination with a variable rate rv. Nevertheless, in accordance to recent studies [2], vaccination
does not offer long term immunity, rather it reduces the probability of becoming infected and the infectious rate in
case of infection. This new rate λv is updated for all vaccinated individuals. Finally, we only start the vaccination
strategy after a timeout of t = 365 iterations (1 year), in compliance with the real-world situation.

We employ computer simulations of epidemic outbreaks over a ≈ 6-year period (t = 2000 iterations/days) at
country level for GPM models of Romania, Germany and South Korea. The experiments reveal a high variability
in the early stages of the simulation (t = 0 − 400), that suggest a correlation with the population density. Namely,
denser countries have a higher chance of developing larger initial waves in case no strict isolation is imposed. After
the first simulation year, and after vaccination starts (t > 400), the proportion of infected individuals has a declining
convergent trend, regardless of country density. By testing different vaccination rates rv = 0 − 1 we find that during
the early vaccination period (roughly 2021–2022), waves of infection are still probable for moderate vaccination
strategies (rv ≤ 0.3), while stronger strategies manage to dampen subsequent waves better. During the moderate-term
period (roughly 2023-2025), most vaccination strategies (rv ≥ 0.2) converge similarly, and keep the infected ratio
much smaller than without any vaccination.

In favor of adopting vaccination strategies worldwide, our results suggest that, without a vaccination policy (rv = 0),
the infected count would maintain a high, pseudo-constant proportion of 0.4–0.5%, that is comparable to a permanent
infection wave. Weaker vaccination, at a rate of just rv = 0.2 − 0.4 (i.e., 20-40% of the total population, over 5
years), will still converge slowly towards the dynamical characteristics of the other stronger strategies. All vaccination
strategies with rv ≥ 0.4 produce similar infection dynamics by maintaining the infected proportion below 0.2%,
compared to 0.4–0.5%, in case of no vaccination. We observe that the pandemic is not eradicated over the 5-year
simulation window, but remains as a permanent viral outbreak without significant waves (i.e., in case we implement
vaccination). We believe this happens because the current vaccination is not able to offer total immunity, because
of the inevitable patient relapse, and because the global vaccination is a very slow process. Finally, we quantify the
reduction in daily number of cases to drop by ×1.5 up to ×2.5 for vaccination rates rv = 0.2 − 1. In general, the
results offered by our realistic epidemic model encourage stronger (i.e., faster, at rv ≥ 0.4) vaccination strategies to be
adopted worldwide.

Indeed, our study is still limited by our full understanding of the COVID-19 pandemic, on the performance of
available vaccines, on the evolving new viral strains, and on in-depth global contact tracing data. As a future direction,
we consider the update of the SIR-V model with new epidemiological findings, addition of an E (exposed) state, and
heterogeneous (regional) vaccination policies. Also, real and simulated epidemic dynamics, based on time series data,
could be further compared using a multi-variable similarity metric such as the statistical fidelity [29]. Overall, we
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believe that our study, based on the synergy of the original GPM and SIR-V models, represents a timely contribution
for tackling the current COVID-19 pandemic and supporting global decision makers.
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