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Abstract

Background: In this study we applied the extreme groups/selective genotyping approach for identifying copy
number variations in high and low fertility breeding boars. The fertility indicator was the calculated Direct Boar
Effect on litter size (DBE) that was obtained as a by-product of the national genetic evaluation for litter size
(BLUP). The two groups of animals had DBE values at the upper (high fertility) and lower (low fertility) end of the
distribution from a population of more than 38,000 boars. Animals from these two diverse phenotypes were
genotyped with the Porcine SNP60K chip and compared by several approaches in order to prove the feasibility of
our CNV analysis and to identify putative markers of fertility.

Results: We have identified 35 CNVRs covering 36.5 Mb or ~1.3% of the porcine genome. Among these 35 CNVRs,
14 were specific to the high fertility group, while 19 CNVRs were specific to the low fertility group which overlap
with 137 QTLs of various reproductive traits. The identified 35 CNVRs encompassed 50 genes, among them 40 were
specific to the low fertility group, seven to the high fertility group, while three were found in regions that were
present in both groups but with opposite gain/loss status. A functional analysis of several databases revealed that
the genes found in CNVRs from the low fertility group have been significantly enriched in members of the innate
immune system, Toll-like receptor and RIG-I-like receptor signaling and fatty acid oxidation pathways.

Conclusions: We have demonstrated that our analysis pipeline could identify putative CNV markers of fertility,
especially in case of low fertility boars.
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Background
Pork is the most consumed meat in the world [1], thus
high prolificacy of breeding animals represent a very im-
portant economic factor for the industry. As pigs are
polytocous species, litter size is a direct measure of effi-
cient fertilization and successful breeding. As a conse-
quence, various litter size related traits are incorporated
into genetic improvement programs with high economic
importance. Genetic variability in genes with predicted
reproductive functions and genotypes of linked SNP
markers have been explored to identify hundreds of
QTLs [2] and these markers have been successfully used
to increase the rate of genetic gains. It is also known
that large structural variations, such as chromosome
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rearrangements are major etiologic factors behind re-
productive dysfunction and eradication of carriers could
help in efficient and economical breeding [3]. Smaller
sized genome rearrangements, such as deletions or du-
plications that disrupt the balance in genome integrity
and result in copy number variations (CNVs) represent
a novel type of molecular marker [4]. This class of struc-
tural variations have become the focus of research since
its discovery [5,6] and in particular the recognition that
a surprisingly high proportion of the human genome is
involved in CNVs, potentially affecting gene expression
and phenotype [7]. Since then, numerous studies de-
scribed CNV in human populations and the current
Database of Genomic Variants contains ~110,000 CNVs,
covering 71.5% of the human genome. Also, the 90% of
transcripts and 79% of microRNA loci are overlapped
by CNVs [8]. Association of CNVs to disease states
have also been attempted leading to the identification
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of putative markers involved in the development of
various cancers, neurological disorders, recessive dis-
eases, etc. [9,10].
Recently, this level of genome variability has also

been investigated in domestic animals including cattle,
pig, goat, sheep, horse, dog and chicken [11] and hold
promise to become useful markers for genetic selection
[4,12]. The first insight into CNV content of the por-
cine genome was from a study that involved only four
chromosomes due to the difficulty of array CGH
(aCGH) platform design [13]. Recently, with the avail-
ability of a more refined genome assembly, genome-
wide high density oligonucleotide CGH arrays could be
designed and used to investigate pigs from many differ-
ent breeds[14,15], but it also opened the possibility of
investigating CNVs from individual whole genome se-
quences [16,17].
The applicability of SNP genotyping arrays for the esti-

mation of DNA copy numbers have made the Porcine
SNP60k chip [18] the method of choice for several other
research projects. Ramayo-Caldas et al. [19] have identi-
fied 49 CNVRs in 55 pigs, while 565 CNVRs have been
described in a study of nearly 1700 pigs from 18 popula-
tions [20]. Wang et al. [21] investigated a large popula-
tion of Large White x Minzhu pigs and described 249
CNVRs, while Fernandez et al. [22] investigated a highly
inbred Iberian strain and found 65 CNVRs. Based on
the studies using the SNP60k chip, CNVs cover 16.08%
of the porcine genome [22]. This is a fraction of CNVR
length reported in humans, most probably due to the
smaller number of animals investigated and the less re-
fined genome assembly and screening tools available,
leaving much to discover.
Most of the available porcine CNV studies contain

functional annotations of the gene content of identified
CNVRs and provide important descriptions of new indi-
vidual or breed specific variants with slightly different
estimates of this level of genome variation in pig popula-
tions. Furthermore, Chen et al. [20] has associated sev-
eral meat and carcass quality traits (QTL) with CNVRs
and identified seven candidate genes potentially affecting
these traits. Also, six CNVRs contained significant SNPs
for several meat quality traits after merging genome-
wide SNP association data with the copy number vari-
ation map [21]. To our knowledge, only one study has
initiated CNV discovery in pigs that were selected from
the two ends of the fat/lean estimated breeding value
spectrum, in an attempt to identify candidate CNVs as-
sociated with fatness [23].
The goal of this study is to investigate the feasibility of

identifying candidate CNVs related to fertility in a se-
lected population of high and low fertility boars. Gene
content and reproduction QTLs that are mapped to the
positions of identified CNVs were analyzed.
Results
CNV analysis
Prior to CNV analysis several quality control steps were
carried out. We have not identified any samples with
outlier noise in the log R ratio values. We also checked
another type of noise, the so called ’genomic waves’, that
are variations of the signal intensity related to the gen-
omic position of the probe, thus the composition of the
DNA [24], and found no outlier wavy sample. The ani-
mals were selected from a large set of samples, which
were not all genotyped at the same time, thus we per-
formed principal component analysis to investigate poten-
tial batch effects. The PCA identified clear stratification of
the data based on the date of array procedure. The effect
of the fertility status and breed of animals were also PCA
tested and no clustering was observed with any of these
two parameters.
We chose to apply the two available segmentation op-

tions in the SVS software to explore putative CNVs.
This algorithm - although widely used in human studies
[25] - has not yet been applied to any data set generated
on the Porcine SNP60k platform.
The first segmentation method (Univariate CNAM)

searches individual genomes. Segments with significantly
different log R ratio from its neighbors are identified as
CNVs, which were then sorted according to the fertility
status. Figure 1a shows a region of the genome where
four CNVs of slightly different lengths were identified in
four low fertility animals and marked by red bars repre-
senting losses. The overlapping region could then be
merged to a low fertility specific CNVR. This method
identified 48 CNVs in individual genomes, which were
then compared to their fertility status and merged into
24 overlapping CNVRs. Among these, 10 were specific
to the high fertility and 12 to the low fertility group,
while two CNVR - although present in both groups -
showed the opposite copy number status (loss in low
fertility and gain in high fertility, or vice versa).
The second multivariate CNAM segmentation does

not scan individual genomes, but rather checks if the
segment cut-point is present in all samples for successful
CNVR calling. We have used this approach to identify
CNVRs specific for each fertility status by grouping the
samples into low fertility or high fertility group and a
3rd control group contained all samples. As it is repre-
sented in Figure 1b, an acceptable high fertility group
specific CNVR would be identified in all members of the
given group, but should not be present in the low fertility
group, neither in the control group. As the PCA identified
samples clustering according to the date of genotyping,
those two clusters were separated before multivariate
CNAM to provide the maximal homogenous set of sam-
ples without confounding batch effects. We have discov-
ered 11 CNVRs that fulfilled these criteria of multivariate



Figure 1 Examples for the two CNV identification options in SVS software. a) 21 individual animals genomes were subjected to the
Univariate CNAM segmentation option. A red bar represents a segment with significantly lower log R ratio, as compared to its surrounding
regions, thus identified as genomic loss. Slightly different length CNVs were identified in different low fertility samples, thus the overlapping
region could be merged to a low fertility specific CNVR. b) The Multivariate CNAM method segments a group of samples together and segments
are called only if present in all samples. In order to identify CNVs specific for either the high fertility or the low fertility group, the samples were
segmented together, as well as grouped according to the fertility status. Only those CNVs were accepted that were present in only one group,
but neihter in the other phenotypic group or in all samples together. Here the red bar identifies a CNVR specific for the high fertility group.
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CNAM, among those, four were specific to the high fertil-
ity group and seven to the low fertility group.
All together the two different strategies of CNAM

resulted in the identification of 35 CNVRs. Fourteen
CNVR were specific to the high fertility and 19 to low
fertility boars (Additional file 1: Table S1). Only 14 of
the 18 autosomes harbour CNVRs, as none was identi-
fied on chromosomes 4, 5, 7 and 15 (Figure 2). The
name of each region, such as CNVR18L, is composed of
’CNVR’ followed by a number and ‘L’ for being specific
to the low fertility group or ‘H’ in case of the high fertil-
ity group.
Chromosome 2 had the highest number of CNVRs (8)
and the largest region involved in them (~12 Mb), while
5 other chromosomes had only 1–1 CNVR (Additional
file 1: Table S2). We observed an excess of copy losses
(28) and five gains and two regions where both gains
and losses were found (Additional file 1: Table S3). The
total length of CNVRs is approximately 36.5 Mb, which
is distributed in a ratio of 4:1.5:1 among losses, gains
and gain/loss regions.
Quantitative real-time PCR (qPCR) was used to validate

the identification of CNVRs. The results for all eight tested
loci were in agreement with our predictions (Figure 3).



Figure 2 Location of the detected CNVRs on the porcine chromosome ideograms. The size of each ideogram is proportional to that of the
chromosomes. The sex chromosomes were excluded from the analysis and no CNVR was detected on chromosome 4, 5, 7 and 15. The brown
bars in the middle of each chromosome represent the positions of CNVRs. The purple columns in the left are the positions of QTLs and RefSeq
genes are marked by red bars on the right side of the ideograms.
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Every animal from the group showed the predicted CNVR
status in five CNVRs (CNVR18L, CNVR27L, CNVR28H,
CNVR34L, CNVR36H), while five out of six samples tested
positive at two loci (CNVR15H, CNVR37H) and two out
of four samples were confirmed at CNVR38L.
Another aspect of validating the predicted CNVRs

was to investigate an independent set of high and low
fertile animals whether the same regions could be iden-
tified. In fact, 26 CNVRs were present. Seven of them
have maintained significant association with the fertility
status (CNVR5L, 7L, 10L, 18L, 45L, 50L, 62L). Interest-
ingly, we found two regions (CNVR7L, 45L) where
samples with both gain and loss status were present, al-
though the original predictor set of animals represented
only one of them.

CNVRs overlapping reproduction QTL regions
The genomic positions of the 35 identified CNVRs were
used to search for reproduction QTLs mapped to the same
positions in the Animal QTLdb including the endocrine,
litter size, reproductive organ and reproductive trait cat-
egories. The majority of CNVRs (30) overlapped with 137
QTLs from 16 traits and only five CNVRs are situated in
regions of the porcine genome that have no reproduction
QTL mapped (Figure 2, Additional file 1: Table S4). The
chi-square test with Yates correction (p < 0.05) showed sig-
nificant enrichment of reproduction QTLs among all QTL
categories within the boundaries of the identified CNVRs.
The most abundant QTLs were the “teat number:

TNUM” and “age at puberty:AGEP”. Thirty-eight TNUM
and 26 AGEP were mapped to regions where CNVRs were
detected. Twelve traits had QTLs mapped to chromosome
regions where either low or high fertility group specific
CNVRs were found, however the following 4 QTLs were
found to be specific for only one of the fertility groups. A
QTL for ‘plasma FSH concentration’ (QTL #646, [26])
was found to overlap with CNVR43H and CNVR44H
from high fertility group animals. Two low fertility
group specific CNVRs (CNVR13L and CNVR39L) over-
lapped with two different QTLs for ‘gestation length’
(#21837, [27]; and #452, [28]). One QTL for ‘testicular
weight’ (#6527, [29]) harboured CNVR5L, a low fertility
group CNVR. And at last, a ‘uterine capacity’ QTL
(#523, [30]) lie together with the low fertility group spe-
cific CNVR34L.

Functional annotation of CNVR gene content
Sequences - with RefSeq IDs - mapped to positions of
CNVRs were retrieved from the UCSC Table browser. The
identified 35 CNVRs encompassed 50 genes (Additional
file 1: Table S1, S5). The majority of these were specific to
the low fertility group (40), seven to the high fertility group,
while three were found in regions that were present in both
groups. Most of the genes, 27 and 10 respectively, were
found on chromosomes 2 and 12, not surprisingly these
two are covered with the longest, approximately half of the
total size of CNVRs. CNVRs identified on chromosomes 3,
6, 11, 13 contain no genes.
A functional analysis of several databases revealed that

the genes found in CNVRs from the low fertility group
have been significantly enriched in members of the innate
immune system, Toll-like receptor and RIG-I-like receptor
signaling and fatty acid oxidation pathways (Table 1). The
seven genes from the high fertility group CNVRs and the
ones present in both groups do not specify any pathways
with significant enrichment p-value.
Five micro RNAs (miRNAs) were also found to position

within CNVRs: miR-21, miR-142, miR-143, miR-145, miR-
202 (Table 2). The latter was detected in both high and low
fertility groups with opposite copy number status (deletion



Figure 3 Results of validation experiments for 8 CNVRs by qPCR. Relative quantity of target amplicons were calculated against the
control sample (C) after normalization to the beta-actin locus.
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and gain, respectively), while the other four were only
found in the low fertility group CNVRs, as deletions.

Discussion
In this study we applied the extreme groups/selective
genotyping approach [31] for identifying copy number
variations in high and low fertility breeding boars. These
two groups of animals representing approximately 10%
of both the upper and lower ends of the distribution
from a large population of boars had mean DBE values
of −2.7 and 2.8. One represents outstanding high fertil-
ity, while the others having high negative DBE values
are considered low fertility. Animals from these two di-
verse phenotypes were compared by several approaches



Table 1 Functional enrichment analysis of genes encompassing the identified CNVRs

Database PathwayName ID Statistics* Adjusted p-value

KEGG Toll-like receptor signaling pathway 04620 C = 102;O = 3;E = 0.10;R = 28.83; 0.0014

rawP = 0.0002

Fatty acid metabolism 00071 C = 43;O = 2;E = 0.04;R = 45.59; 0.0032

rawP = 0.0009

RIG-I-like receptor signaling pathway 04622 C = 71;O = 2;E = 0.07;R = 27.61; 0.0036

rawP = 0.0024

WikiPathways Fatty Acid Beta Oxidation WP143 C = 73;O = 3;E = 0.07;R = 40.28; 0.0005

rawP = 5.86e-05

Toll-like receptor signaling pathway WP75 C = 116;O = 3;E = 0.12;R = 25.35; 0.0008

rawP = 0.0002

Regulation of toll-like receptor signaling pathway WP1449 C = 154;O = 3;E = 0.16;R = 19.09; 0.0013

rawP = 0.0005

Pathway Commons Immune System 522 C = 532;O = 6;E = 0.54;R = 11.05; 0.0012

rawP = 1.62e-05

Innate Immune System 1094 C = 190;O = 4;E = 0.19;R = 20.63; 0.0012

rawP = 4.32e-05

RIG-I/MDA5 mediated induction of IFN-alpha/
beta pathways

1115 C = 67;O = 3;E = 0.07;R = 43.89; 0.0012

rawP = 4.53e-05

Interferon Signaling 1123 C = 98;O = 3;E = 0.10;R = 30.00; 0.0013

rawP = 0.0001

Toll Receptor Cascades 1095 C = 90;O = 3;E = 0.09;R = 32.67; 0.0013

rawP = 0.0001

Interferon alpha/beta signaling 1122 C = 77;O = 3;E = 0.08;R = 38.19; 0.0013

rawP = 6.87e-05

Toll Like Receptor 9 (TLR9) Cascade 1084 C = 65;O = 2;E = 0.07;R = 30.16; 0.0089

rawP = 0.0020

Toll Like Receptor 2 (TLR2) Cascade 1136 C = 65;O = 2;E = 0.07;R = 30.16; 0.0089

rawP = 0.0020

TRIF mediated TLR3 signaling 1074 C = 56;O = 2;E = 0.06;R = 35.01; 0.0089

rawP = 0.0015

*where C = number of reference genes in the category, O = observed number of genes in the gene set from the category, E = expected number in the category,
R = Ratio of enrichment, rawP = p value from hypergeometric test, adjusted p-value = p value adjusted by the multiple test adjustment.
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in order to prove the feasibility of our CNV analysis and
to identify putative markers of fertility.
It should be noted that using a small subset of ani-

mals from the extreme ends of the phenotypic distribu-
tion not only reduce the cost of genotyping, but could
Table 2 Summary of micro RNAs found within CNVRs

Name Transcript ID Chromosome

miR-21 NR_038508 12

miR-142 NR_038555 12

miR-143 NR_038529 2

miR-145 NR_038484 2

miR-202 NR_035399 14
retain the power of analysis as proven by simulation
[31] and numerous QTL mapping studies [32]. Re-
cently, it was also applied for CNV discovery as well,
based on animals sampled from the distribution of fat-
ness EBV [23].
CNVR ID Fertility CNV status

CNVR50L Low DEL

CNVR50L Low DEL

CNVR16L Low GAIN

CNVR16L Low GAIN

CNVR59HL High & Low GAIN/DEL
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We have identified 35 CNVRs covering 36.5 Mb
or ~1.3% of the 2800 Mb porcine genome. The size range
distribution of CNVRs is similar to that of other publica-
tions using the same SNP60k chip. There are numerous
software tools available, such as PennCNV, cnvPartition,
QuantiSNP, GADA to name a few which employ very dif-
ferent algorithms for the identification of CNVs from SNP
array data [33-35]. A comparative analysis of several of
these have found highly variable CNV calls due to this in-
herent difference [36]. Previous studies into porcine CNVs
from SNP array data have chosen from these four soft-
wares with slight preference to PennCNV [19-21,23].
However, we opted for the SNP and Variation Suite (SVS,
GoldenHelix Inc.), mainly because the extensive tools
available for quality assurance and the unique multivariate
segmentation option providing the detection of associated
regions across samples. Our motivation was to combine
the advantages of using the extreme groups for the DBE
phenotype and the increased analytical power of marker-
level CNV test in detecting smaller common CNVs, as the
latter was tested by Breheny et al. [37].
In fact, among the identified 35 CNVRs, 14 were spe-

cific to the high fertility animals, while 19 CNVRs were
specific to the low fertility group, thus worth investigat-
ing their putative roles in fertility.
The quality of CNVR analysis was assessed by qPCR

validation of four CNVRs specific for the low fertility
and four for the high fertility group. All of the qPCR as-
says confirmed the CNV calls and 90% of the tested ani-
mals gave results in agreement with the prediction, that
represents among the highest validation rate published
to date in pigs [20]. We have also validated the identifi-
cation of CNVRs using an additional independent set of
high and low fertile boars. Our further analysis steps in-
volved the comparison of CNVRs to already mapped
reproduction QTLs, then the functional characterization
of transcript content. Visual representation of these two
comparisons is given in Figure 2, where the chromo-
somal positions of discovered CNVRs are aligned with
QTLs and genes.
The identified CNVRs overlap with 137 QTLs of various

reproductive traits (Additional file 1: Table S4.). QTLs
generally represent the first estimation of the link between
the genetic component of an important phenotypic vari-
ation and a smaller or larger segment of the genome [38].
These QTLs were identified and mapped with statistical
significance by using various methods from microsatellite
markers to whole genome scan on very different popula-
tions. The experiments led to the mapping of these 137
reproductive QTLs were published in more than a hun-
dred studies, that could not be cited in this article, but
could be accessed from the PigQTLdb [39]. Additional
file 1: Table S1. contains all corresponding CNVR IDs
and QTL IDs. The described CNVRs fall into the 7 kb
to 1.6 Mb size range, that is in many cases much smaller
than the current QTL region, thus could facilitate nar-
rowing down the real functional locus and help the
identification of the causative gene. It should also be
mentioned that CNVRs described here were not tested
for statistical association with QTLs, simply the overlap-
ping genomic positions of the latter was used as one in-
dicator of the potential function. Nonethless we found
that reproduction QTLs were over-represented within
CNVR boundaries.
As the porcine genome sequence and annotation are

available in public databases [40], we attempted to
characterize the functional content of CNVRs. One of
the common result of pathway analysis using the various
databases was the significant enrichment of elements of
the innate immune system in low fertility samples (Table 1).
A well-known connection exists between infections of ei-
ther the female or male reproductive tract and impaired
fertility. The innate immune system exhibits the non-
specific response against pathogens, as the first-line of
defense and then helps to activate the adaptive immune
system. It is comprised of specific cell types, pattern
recognition receptors and antimicrobial peptides, etc.
Among these, we have identified CNVRs containing
various components of the Toll-like receptor (TLR) sig-
naling and RIG-I/MDA5 mediated induction of inter-
feron signaling pathways. TLRs are transmembrane
proteins that recognize pathogen associated molecular
patterns. TLR2 binds those of microbes, while TLR3 is
involved in cytoplasmic binding of viral nucleic acids
[41], as well as RIG-I and MDA5 receptors [42]. These
proteins are all localized throughout the male and female
reproductive tract in humans and domestic species [41,43].
The balance of TLR response is required for physiological
function of the reproductive organs - in order to protect
against infections, and disturbed response has documented
adverse effects on endometritis, ovulation, pregnancy out-
come and sperm production [44,45].
Another significant pathway among the genes localized

within CNVRs was the fatty acid metabolism. The pres-
ence and balanced metabolism of fatty acids are con-
nected to a plethora of cellular functions, including the
mitochondrial energy production, oxidative stress, cyto-
plasmic and membrane functions. These biological pro-
cesses all affect fertility through the development of
germ cells and their ability for successful fertilization.
Fatty acids are metabolized in the mitochondria to pro-
duce acetyl-coA that enters the citric acid cycle and thus
result in ATP. Motility of spermatozoa requires substan-
tial energy resources [46] but the ATP level of the ma-
tured oocyte is also essential to provide energy for the
developing embryo [47]. The cellular availability of dif-
ferent types of fatty acids contribute to the fluidity of
plasma membrane, that is essential for cell fusion events,
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such as fertilization [48], but is also key to protect the
cellular integrity from oxydative damage [49]. Three
different CNVRs contain the following three members
of this metabolic pathway. PNPLA2 codes an enzyme in
the initial steps of lipid metabolism by catalyzing the hy-
drolysis of triglycerids and its impaired function was
shown to result decreased plasma fatty acid levels [50].
Similarly, the product of CPT1A gene is key to the mito-
chondrial transport of long-chained fatty acids [51],
while ECHS1 is the hydrolase in the second step of the
beta oxidation, thus their functional imbalance affects
the rate of fatty acid metabolism [52].
MicroRNAs (miRNAs) are key players in gene expres-

sion regulatory networks, as such, they might be strong
candidates for disease-causing non-coding sequences. The
variable dosage of miRNA genes due to their involvement
in CNVs is affecting their expression profile and regula-
tory role [53]. Wu et al. [54] suggested an evolutionary
mechanism that could correct for this by increasing the
diversity of acting miRNAs on their targets and/or adjust-
ing the copy numbers of their major target genes accord-
ing to the CNV of the miRNA. The CNVRs found here
harbor five miRNA genes (miR-21, miR-142, miR-143,
miR-145, miR-202), the first four of them specific for the
low fertility animals. Interestingly, none of their predicted
target genes are situated within the boundaries of the 35
CNVRs described in this study. This would theoretically
suggest the impaired function of these miRNAs and their
putative role in the phenotype, although laboratory valid-
ation of their expression level is necessary to prove this. It
is also interesting that these are among the most abundant
miRNAs expressed in the male and female reproductive
tissues [55,56]. miR-21 is present in testicular germ cells
[57] and linked to the maintenance of spermatogenic stem
cell population [58]. Furthermore, it is also localized in
granulosa cells of pre-ovulatory follicles and plays a role in
the follicular-luteal transmission, proven by its increasing
level of expression [59]. Similarly, miR-142 shows variable
expression levels between follicular and luteal phases [55].
miR-143, miR-145 are found to co-express and function
in the regulation of cell proliferation [60], smooth muscle
[61] and adipocyte development [62]. Some studies
found these to be preferentially expressed in the male
gonads [63] and epididymis [64] while others reported
abundant expression in the ovary [56] and functions re-
lated to endometriosis [60].
miR-202 was identified as copy number gain in low

fertility and deletion in the high fertility group, which
would imply a negative role in fertility regulation. This is
in agreement with the observations of its marked upreg-
ulation in various testicular hystopathologic conditions
[65] and also in premature ovarian failure patients [66].
Similar to miR-202, we have found one gene with gain/

deletion copy number status in CNVR1HL. However, it is
a deletion in the low fertility and a gain in the high fertility
group. Although this status distribution would make it an
optimal marker for fertility, it was only found in 1 ani-
mal from each group. Furthemore one gene, the Glutha-
tione S-transferase mu2 (LOC780435, NM_001078684),
is mapped to this region of chromosome 1. The superfam-
ily of these metabolic enzymes functions as important
players in protecting the cells from oxidative damage and
endogenous toxicity [67]. Interestingly, in humans it lies
in a hypervariable region, where structural rearrangements
and deletions are frequent. The resulting variability in
gene copy number, structure and enzyme activity thought
to contribute to the individual’s stress response and strong
association has been found with sperm production and
male infertility [68].

Conclusions
We have demonstrated that our analysis pipeline could
identify putative CNV markers of fertility, especially in
case of subfertile boars. Their relevance was demonstrated
by analyzing the nature of co-localized reproductive QTLs
and genes.

Methods
Animals and array genotyping
The Canadian Centre for Swine Improvement Inc. [69],
as a non-profit organization, collects and manages pedi-
gree, breeding and performance information, as well as
SNP genotypes of breeding animals from numerous major
breeders across Canada to calculate and provide estimated
breeding values for various traits. This integrated database
was screened to identify boars with exceptional high and
low fertility. The fertility indicator was defined as the cal-
culated Direct Boar Effect on litter size (DBE) that can be
obtained as a by-product of the national genetic evalu-
ation for litter size (BLUP). DBEs are more accurate than
only considering litter size averages in mates, since the es-
timated boar effects are then corrected for all identified
environmental effects and breeding values of their mates
[70]. The DBE value precisely shows how many more or
less piglets a given boar produces per litter on average, as
compared to the overall average of the population. The
database contained 16,959 Yorkshire, 14,188 Landrace
and 7366 Duroc boars with calculated DBE values. From
these more than 38,500 boars we catalogued animals from
the most extreme 10% on both sides of the distribution,
that would be equal to approximately ±2 more or less
piglets than herd average. Among these high and low
fertile boars we have selected the ones which had the
Porcine SNP60k array genotypes available, generated at
the genomics facility in DNA LandMarks Inc. (QC,
Canada), as part of large genotyping projects. For the
purpose of CNV prediction 11 high fertility boars hav-
ing 2.83 ± 0.61 (mean ± SD) DBE value and 10 low fertile
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boars with −2.72 ± 0.79 DBE value were randomly se-
lected. Moreover, eight high fertile (DBE 2.38 ± 0.36)
and 9 low fertile boars (DBE −3.38 ± 0.97) were randomly
chosen to be used for validation of the CNV predictions.
Distribution of DBE values of the various groups are pre-
sented in Figure 4. All together, the selected 19 high fertile
and 19 low fertile animals represent various breeds, such
as Yorkshire (21), Landrace (14) and Duroc (3).

CNV analysis
Each probe-pair on the Illumina SNP60k genotyping
array (for alleles A and B) marks a specific location in
the porcine genome and its signal intensity could be re-
lated to the amount of DNA at that locus. In order to
estimate DNA copy numbers, the observed normalized
probe signals in each samples were compared to an ex-
pected signal intensity calculated from the Illumina de-
fined reference sample cluster, thus generating a log R
ratio value (log2(Robserved/Rexpected), as described by Peiffer
et al., [71]). This procedure was done using the Illumina
GenomeStudio software, before being transferred into the
SNP and Variation Suite version 7.7.8 (SVS, GoldenHelix)
for quality control and CNV analysis.
Noise in the log R ratio values, inherent from the sam-

ple preparation or genotyping procedure could cause
faulty identification of CNVs or confounding associa-
tions. Thus, our quality assurance workflow consisted of
several different steps to identify potentially low quality
samples. The X and Y chromosomal data were excluded
from the data. Initial quality controls for noisy samples
were done by testing for outliers in the median derivative
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Figure 4 Descriptive statistics (mean ± SD) of the Direct Boar
Effects (DBE) in the high and low fertile animals, the validating
groups and all together.
log ratio values. Genomic wave factors were detected
using the correction algorithm developed by [24] Diskin
et al., as implemented in SVS. Potential batch effects were
tested by principal component analysis (PCA) of logR
values. SNP marker locations were annotated on the latest
genome build, Sscrofa 10.2/susScr3 (2011).
There are two different Copy Number Analysis Methods

(CNAM) in SVS, implementing the same segmenting al-
gorithm two different ways. The Univariate CNAM scans
each sample separately and ideal for identifying larger
segments in individual genomes, while the Multivariate
CNAM segments all samples simultaneously, thus gener-
ally smaller but common CNVs could be identified. We
have applied both segmentation methods on our dataset
to predict CNVs with maximum pairwise segment p
value being 0.005, the min number of markers/segment
value either 1 or 3 and the segment means were filtered
to be < −0.15 for losses or >0.1 for gains. Overlapping
CNVs were then merged to a CNV region (CNVR). The
high and low fertility groups were also separated for the
Multivariate CNAM, thus facilitating to identify CNVs
specific for only one phenotype. The validation set of
high and low fertile animals were segmented with the
Univariate and Multivariate methods using the same
conditions. The two-sided Mann–Whitney U-test were
used to detect significant (p < 0.05) differences between
the high and low fertile groups.

qPCR validation
Eight CNVRs among the ones present in the largest num-
ber of animals (four CNVRs specific for the high and four
CNVRs for the low fertility group) were validated by quan-
titative real-time PCR (qPCR). The DNA samples of the
animals - in which the CNVRs were predicted - were re-
trieved from the DNA collection at our industry partner.
No experiments were carried out on animals, thus no eth-
ical approval was required. Primers were designed using
the Primer3 plug-in of Geneious software. The primers by
Chen et al. [20] were used for the beta-actin control region.
Primer sequences and product sizes are in Additional
file 1: Table S6. qPCR was performed using a CFX96
Touch™ Real-Time PCR Detection System (Bio-Rad) under
the following thermal profile: 98°C, 2 min; 45 × (98°C,
10 sec; 59°C, 10 sec) followed by the registration of a melt-
ing curve between 68°C to 95°C in 0.5°C/sec increments.
The 10 μl reaction was composed of 1× SsoFast EvaGreen
Supermix (Bio-Rad), 3 mM primers and 20 ng genomic
DNA. Samples were run in triplicate. Primer efficiencies
were calculated as the average of individual well efficiencies
determined by linear regression of amplification curves
using the LinRegPCR software [72]. The relative quantity
of each locus was determined against to the control sample
after normalization to the beta-actin signal using the for-
mula described by Pfaffl et al. [73].
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Functional annotation of CNVRs
Genomic locations of QTLs and the ones involved in re-
productive traits (reproduction QTLs) were downloaded
from the Animal Genome Database [39]. Enrichment of
the latter in CNVR regions were tested using the Chi-
square test with Yates correction. The RefSeq gene list was
downloaded from the UCSC Table browser [74]. The
resulting list of annotated genes was further analyzed for
functional enrichment in Gene Onthology (GO) terms
using the various tools implemented in the WEB-based
Gene SeT AnaLysis Toolkit (WebGestalt, [75]). The por-
cine gene names were converted to the corresponding hu-
man ones and the resulting list was contrasted against the
human genome as reference set for the default statistical
test (Benjamini-Hochberg, adjusted p-value <0.01).

Availability of supporting data
The data set supporting the results of this article is avail-
able in the NCBI's Gene Expression Omnibus [76] reposi-
tory [GEO Series accession number GSE66170, http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66170].

Additional file

Additional file 1: Table S1. Details of the identified CNVRs. Table S2.
Numbers and length of CNVRs are represented by chromosome. Table
S3. Summary of CNVRs according to the copy number states. The
number and length of CNVRs identified as Gain, Deletion or Gain/Del
are given. Tabel S4. Summary of the number of reproduction QTLs
overlapping with CNVRs. Table S5. Summary of gene content (RefSeq
genes) within CNVRs specific for high fertility, low fertility animals or
present in both. Table S6. Primer squences used for the qPCR validation
experiments.
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