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Background: The speech-evoked frequency following response (FFR) has shown to be
useful in assessing complex auditory processing abilities and in different age groups.
While many aspects of FFR have been studied extensively, the effect of timing, as
measured by inter-stimulus-interval (ISI), especially in the older adult population, has yet
to be thoroughly investigated.

Objective: The purpose of this study was to examine the effects of different ISIs on
speech evoked FFR in older and younger adults who speak a tonal language, and to
investigate whether the older adults’ FFR were more susceptible to the change in ISI.

Materials and Methods: Twenty-two normal hearing participants were recruited in our
study, including 11 young adult participants and 11 elderly participants. An Intelligent
Hearing Systems Smart EP evoke potential system was used to record the FFR in four ISI
conditions (40, 80, 120 and 160 ms). A recorded natural speech token with a falling tone
/yi/ was used as the stimulus. Two indices, stimulus-to-response correlation coefficient
and pitch strength, were used to quantify the FFR responses. Two-way analysis of
variance (ANOVA) was used to analyze the differences in different age groups and
different ISI conditions.

Results: There was no significant difference in stimulus-to-response correlation
coefficient and pitch strength among the different ISI conditions, in either age groups.
Older adults appeared to have weaker FFR for all ISI conditions when compared to their
younger adult counterparts.

Conclusion: Shorter ISIs did not result in worse FFRs from older adults or younger
adults. For speech-evoked FFR using a recorded natural speech token that is 250 ms in
length, an ISI of as short as 40 ms appeared to be sufficient and effective to record FFR
for elderly adults.
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INTRODUCTION

The frequency-following response (FFR) recorded from the human scalp is an electrophysiological
potential which follows the periodicity of the stimuli (Moushegian et al., 1973). It is a far-field
potential recorded from surface electrodes, reflecting the synchronous activity of axonal and
dendritic potentials generated primarily by populations of neurons in the lateral lemniscus and
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inferior colliculus of the brainstem (Smith et al., 1975; Møeller,
1998). In recent years, the FFR has seen a renewed interested
in the research realm due to its unique ability to assess various
auditory functions using complex stimuli (Skoe and Kraus,
2010). One reason that the FFR has been successful in this regard
is that the frequency information that is extracted from the
FFR waveform corresponds to the spectrum of the stimulus. By
examining the spectral property of FFR, one can have a means to
assess the processing of complex sounds in the auditory system
(Cunningham et al., 2001; Aiken and Picton, 2008; Skoe and
Kraus, 2010;White-Schwoch et al., 2013). For example, Krishnan
et al. (2004, 2005) used four different Mandarin Chinese tones
to evoke FFR in young adult native speakers of Mandarin to
examine the effect of language background on pitch processing.
Another application of FFR is to use a consonant-vowel (CV)
complex, typically /da/, to evaluate various aspects of the auditory
processing function, such as the effect of maturation (Anderson
et al., 2010), auditory training (Song et al., 2008), music training
(Musacchia et al., 2008), language and/or reading issues (Banai
et al., 2009) and speech perception in noise (Banai et al., 2009).
Germane to the current study, the FFR has been utilized to assess
how aging affects the physiological process of auditory function.
For example, Clinard et al. (2010) demonstrated that older adults,
even with normal hearing sensitivity, have auditory perceptual
deficits relative to their young counterparts. Similarly, Wang
et al. (2016) demonstrated that pitch processing ability at the
brainstem level of the elderly were not as strong as younger adults
in tonal language speakers.

Results from previous FFR studies in older adults showed
that aging may lead to the degradation of the FFR. However,
poor FFR stimulus representation in the elderly might stem
from age-related neural degeneration, or simply because of the
overlapping response caused by the inter-stimulus interval (ISI)
used in those studies. As the cumulative neural fatigue, adaption
time and incomplete recovery involving hair-cell-cochlear nerve
junctions and synaptic transmission in the elderly may be more
inferior than that of the young, longer ISIs may be required.

The purpose of this study is to expand on our previous work
on the speech-evoked FFR in older adults who speak a tonal
language, and to examine the effect of different ISIs on the older
adults’ FFR. Results from this study should help answer the
important question of whether ISI has a different impact on older
adults’ FFR compared to its impact on younger adults. It can also
help bridge the gap between the laboratory research and clinical
utility of FFR by recommending an appropriate length of ISI for
future FFR usage in the clinical application, especially for the
older population.

MATERIALS AND METHODS

This research has received approval from the Ethics Committee
of Beijing Tongren Hospital Affiliated to Capital Medical
University and Beijing Institute of Otolaryngology. All subjects
participated in this research on their own accord. They had
signed the informed consent and were compensated for their
participation. All operations throughout the research did no
harm on the subjects.

Participants
Eleven young adults (five males) and eleven elderly (four
male) participants were recruited from Beijing Tongren
Hospital. The younger adults were 20–26 years old
(mean ± SD = 22.90 ± 2.79) and the elderly adults were
60–65 years old (mean ± SD = 62.83 ± 2.82). All participants
were native speakers of Mandarin Chinese, reported no
neurological or otological symptoms or illnesses. They all
presented normal tympanometric measurements (Type A
tympanograms and present acoustic reflexes). The older adult
group had slightly elevated thresholds at higher audiometric
frequencies. Still, all participants were considered to have
clinically normal hearing, defined as thresholds ≤25 dB HL
at octave frequencies from 250 Hz to 4000 Hz (Figure 1). All
participants had normal click ABR latencies and thresholds,
measured with a 100 µs click stimulus at a rate of 20.1 Hz.

Experiment Equipment, Stimulation and
Recording
All experiments were conducted in a sound-treated chamber with
anechoic walls with an ambient noise ≤20 dB(A). The Smart
EP instrument (Intelligent Hearing Systems, Miami, FL, USA)
was used to record FFR. An electromagnetically shielded insert
earphone (ER-3) was used for monoaural stimulation to the
right ear. A recorded natural speech stimulus /yi/ with a falling
fundamental frequency contour whose f0 ranged from 185 Hz to
135 Hz was presented at the level of 70 dB SPL. The stimulus had
a duration of 250 ms, including a 5 ms rise time at the onset and
a 5 ms fall time at the end. Four different ISIs (40, 80, 120 and
160 ms) were used in this study. For each ISI condition, one of

FIGURE 1 | Averaged audiograms for the young (black) and older (red)
participants on the right ears. Air conduction audiometric hearing threshold
were denoted by circles, where error bars represent the standard deviations.
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the four ISIs was inserted between presentations of the speech
stimulus, which resulted in an effective stimulation rate of 3.45,
3.03, 2.70 and 2.44 samples/s, respectively.

Throughout recording sessions, participants laid in bed with
their eyes closed and in a calm and steady state. Three gold-plated
recording electrodes were placed accordingly: high forehead as
non-inverting, right mastoid as inverting and low forehead as
ground (all impedances kept ≤3kΩ). The four ISI conditions
were presented in random order for each participant. In each ISI
condition, there were two repetitions of 2,000 accepted sweeps
of the speech stimulus. The artifact rejection criteria were set
at ±30 µV and the band-pass filter was set between 70 Hz and
1,500 Hz.

At the end of each experiment session, a control condition
(earphone tube occluded and removed from the participant’s
ear while stimulation was still present) was conducted. The
recordings from the control conditions were analyzed to detect
and eliminate any potential stimulus artifact.

Data Analysis
All data were analyzed using MatLab (Mathworks, Natick, MA,
USA). EEGs were filtered through a 100–1500 Hz bandpass filter
with a linear phase of 500 poles. After averaging the EEG, a cross-
correlation between the stimulus and recorded waveforms was
carried out to identify the time shift point, that corresponds to the
maximum cross-correlation value. Starting from this time point,
a segment of 250 ms was extracted from the averaged data as the
FFR response.

Two indices were used in this study, namely, stimulus-to-
response correlation coefficient and pitch strength. The stimulus-
to-response correlation coefficient, ranging from 0 to 1, is the
result of cross-correlation function of stimulus waveform and
FFR waveform, representing the faithfulness of pitch tracking.
For discrete signals, the cross-correlation function is defined
as R(n) = (1/N)∗

∑
([x(m)∗y(m+n)]), where n is time, N is

the number of sampling points and m ranges from 0 to
N − 1. The maximum of R(n) is defined as the stimulus-
to-response correlation coefficient. The other index is the
pitch strength of FFR, ranging from 0 to 1 too. It is the
result of the autocorrelation function to the FFR waveform
itself, representing the robustness of neural phase-locking. Pitch
strength is defined as the distance between of the maximum
of and the minimum of the autocorrelation function. For
detailed discussion on these two indices, please refer to our
previous work in Jeng and Warrington (2011) and Wang et al.
(2016).

Statistical analysis was carried out with a two-way analysis of
variance (ANOVA), where aging (young and older adults) and
the duration of inter-stimuli intervals on FFR (40, 80, 120 and
160 ms) were evaluated as independent variables, and stimulus-
to-response cross correlation coefficient and pitch strength as
dependent variables.

RESULTS

In the older adult group, grand averaged results of stimulus-
to-response correlation coefficient under the four different ISIs

(40, 80, 120, 160 ms) were 0.7 ± 0.24, 0.68 ± 0.20, 0.65 ±

0.23, 0.69 ± 0.23, respectively. Similarly, grand averaged results
of pitch strength under the four different ISIs were 0.38 ±

0.09, 0.45 ± 0.07, 0.39 ± 0.09, 0.39 ± 0.09, respectively. In the
younger group, grand averaged results of stimulus-to-response
correlation coefficient under the four different ISIs were 0.95 ±

0.03, 0.94 ± 0.04, 0.95 ± 0.07, 0.96 ± 0.03, respectively. In the
same age group, grand averaged results of pitch strength under
the four ISIs were 0.57 ± 0.13, 0.61 ± 0.11, 0.59 ± 0.13, 0.60 ±

0.14, respectively.
Comparisons among the ISI levels and age groups, as well as

their interactions, were calculated using two-way ANOVA. For
the index stimulus-to-response correlation coefficient, two-way
ANOVA showed that the four levels of ISI were not significantly
different (F(3,80) = 0.13, p > 0.05) from each other (Figure 2),
while there was a significant different tween the two age groups
(Figure 3, F(1,80) = 61.59, p < 0.01), and there was no significant
interaction between factors age and ISI (F(3,80) = 0.08, p > 0.05).
Similarly, for pitch strength, there was no significant difference
among the four ISI levels (Figure 4, F(3,80) = 0.95, p > 0.05),
while a significant difference was found between the two age
groups (Figure 5, F(1,80) = 68.8, p < 0.05), and there was no
significant interaction between factors age and ISI (F(3,80) = 0.15,
p > 0.05).

DISCUSSION

Effect of ISI in Older Adults
Results from this study suggest that different ISIs, at least for
those used in the study, did not seem to impact the speech-
evoked FFR. Our data revealed that although the responses were
weaker than the younger adults, older adults’ FFR did not appear
to be more susceptible to differing ISI lengths, some as short

FIGURE 2 | The stimulus-to-response correlation coefficients obtained under
the four different inter-stimulus intervals (ISIs) of 40 ms (blue), 80 ms (cyan),
120 ms (amber) and 160 ms (crimson), respectively, and divided into the
young (left) and older (right) adult groups.
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FIGURE 3 | The stimulus-to-response correlation coefficients obtained from
the young (yellow) and the elderly (green) groups, grouped by different ISIs.

FIGURE 4 | Pitch strength results obtained under different ISIs of 40 ms (blue),
80 ms (cyan), 120 ms (amber) and 160 ms (crimson), respectively, and divided
into the young (left) and older (right) adult groups.

as 40 ms. The 40 ms ISI has been widely used in the FFR
literature for Mandarin Chinese speech stimuli in younger adults
(Krishnan et al., 2004, 2005; Jeng et al., 2011; Wang et al., 2016).
In the current study, it did not seem to be too short for the older
adults’ FFR, reflected by the two indices, stimulus-to-response
correlation coefficient and the pitch strength.

This is an interesting finding in that one might think
due the aging effect, the auditory pathways in older adults
might need a longer ISI than their younger counterparts.
Since FFR are evoked by longer and more spectro-temporally
complex stimuli, which are strongly influenced by rostral
brainstem and midbrain generators (Swaminathan et al., 2008),
a different ISI may have been needed for older adults, as

FIGURE 5 | The pitch strength result obtained from the young (yellow) and the
elderly (green) groups, under different ISIs.

they may have decreased neural timing during transmission
and processing auditory information. However, our data does
not seem to support that thought. One possibility might
have been that 40 ms is still long enough for the older
adults to have adequate neural adaptation during the FFR
recordings. Perhaps, with an ISI that is even shorter than
40 ms, one might be able to observe degraded FFR in
the older groups, which can only be answered in future
studies.

The result from this study is also somewhat in contrast with
previous works on cortical response (Tremblay et al., 2004),
where older adults showed prolonged N1 and P2 latencies
when speech stimuli were presented at a higher rate. One
possible explanation may be that cortical responses such as
N1/P2 are compound far-field potentials that may origin from
multiple neuro generators (Lightfoot, 2016). Increased stimulus
rate may negatively impact the activation and transmission
in some or all of those neural generators, especially in an
aged auditory system. The collective result of such negative
impact may manifest as a reduced evoked potential, like
the N1/P2 in older adults. On the other hand, brainstem
responses like the FFR have comparably simpler sources of
neural activities, and that may be part of the reason why
the older adults in our study did not appear to be more
susceptible to the change in ISI. Our results are also a little
different from Clinard and Cotter (2015), where they found
that using tonal-sweep to elicit FFR, older adults seemed
to have weaker responses when the stimulus rate is higher.
This may be explained by the fact that the older adults
in our study were all native speakers of Mandarin Chinese,
and this population has been shown to have enhanced pitch
processing ability and stronger FFR, which may in turn help
them become less sensitive to a fast stimulus rate or a shorter
ISI. Regardless, more research is needed to find out the
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effect on ISI or stimulus rate for different electrophysiological
tests in the older adult populations, with different language
backgrounds.

In short, the fact that with longer (80 ms, 120 ms and
160 ms) ISI, older adults still had poorer speech-evoked FFR
compared to the younger adults, suggest that the effect of ISI,
at least as short as 40 ms for speech-evoked FFR, may have
played little, if any, role in the reduced response reported in
this study and previous studies. Although the current study
did not find significant differences in the ISIs in older adults,
it does not mean that isn’t one that is too short for them.
Further, there may also be one ISI where the older adults
would start to have degraded response, while the younger
adults still present relatively robust FFR. Future studies are
need to answer these questions, as well as to compare the ISI
used in FFR to those used in other auditory evoked potential
tests.

Effect of Aging on the FFR
The significant difference in older adults’ and younger adults’
FFR reaffirmed our previous work (Wang et al., 2016) and
those of others (Anderson et al., 2012). These studies have
demonstrated the effect of aging on the auditory system,
even with ‘‘normal’’ audiogram, and many theories have
been proposed to explain such effects. For example, elderly
population have shown to have degraded temporal processing
ability (Gordon-Salant and Fitzgibbons, 1999), which had
been proposed to contribute to why they often complain
of hearing the sounds without desired clarity, especially
in the presence of background noise (Anderson et al.,
2012). One explanation for poor speech discrimination and
impaired speech understanding is that aging adversely affects
synchronized nerve fiber firing, temporal processing and
phase-locking ability (Frisina and Frisina, 1997; Burkard and
Sims, 2001; Clinard et al., 2010). Other studies (Schatteman
et al., 2008; Bidelman et al., 2014) showed that both
brainstem and cortical speech-evoked brain responses were
impacted by the aging process too, resulting in the atypical
neural information processing and speech information
transformation between functional levels of the auditory
neural system.

Our results revealed that after controlling for the ISI, older
adults still showed significantly weaker pitch processing ability
at the brainstem level compared to the younger adults. Future
research on FFR in older adults is needed to further investigate
the underlining reason of such deficit.

Choosing an Appropriate
Inter-Stimulus-Interval for Recording
Speech-Evoked FFR in Older Adults
As previously mentioned, the choice of ISI for voice-evoked
FFR is an important consideration to ensure the separation
of adjacent responses and completing a testing within a
reasonable time frame. For recorded speech tokens such as
the Mandarin Chinese syllable /yi/, which is typically 250 ms,
a recording session with 2,000 repetitions can last as short
as nearly 10 min with an ISI of 40 ms, and as long as

14 min with an ISI of 160 ms. In a real clinical setting,
14 min per recording session for an electrophysiological test
would be too long. Fortunately, as the results of this study
suggested, a 40 ms ISI yield similar responses to those longer
ISIs, which means that within 10 min, a speech FFR can
be obtained from typical clinical population such as older
adults.

The only other study to date on the effect of ISI on speech-
evoked FFR was conducted by Jeng et al. (2011), where they
suggested a 35–45 ms ISI to be used in younger adults when
FFR is evoked using Mandarin Chinese syllable /yi/. Our data
suggest a similar recommendation: that an ISI around 40 ms is
appropriate for the same FFR technique, and it can be extended
to be used in both younger and older adults. With future studies,
this finding fills the gap in current understanding of speech-
evoked FFR, andmay help paving the way for speech-evoked FFR
into wilder clinical utility.

LIMITATIONS

Although both groups had clinically normal hearing thresholds
(defined as ≤25 dB HL at octave frequencies from 250 Hz to
4000 Hz), there was a difference at higher frequencies, whichmay
have affected our result. However, had the older adults in our
study actually had ‘‘better’’ thresholds, it would only have helped
them process speech sounds better and become even less sensitive
to the shorter ISIs. Regardless, since such limitations have also
been reported in similar studies where auditory brainstem and
cortical responses were utilized to examine the effect of aging
(Tremblay et al., 2004; Anderson et al., 2012; Clinard and
Cotter, 2015; Wang et al., 2016), the difference in peripheral
hearing should definitely be carefully examined, considered
and/or controlled for future studies in the field.

Last but least, the recommended 40 ms ISI should only be
considered for speech tokens, e.g., Mandarin Chinese syllables,
that are around 250 ms long. Considering that there are many
types of stimuli that can licit FFR, such as CVs, tonal sweeps or
even simple tones, this recommendation has its limitation in its
ability to be generalized into other FFR tokens.

CONCLUSION

As previously demonstrated, under different ISI conditions, older
adults have weaker neurophysiological responses compared to
their younger counterparts. Thus, an ISI around 40 ms could
serve as a reasonable choice for future studies in the field of
speech-evoked FFR in the elderly population.

AUTHOR CONTRIBUTIONS

DL was in charge of collecting data, analyzing statistics and
writing the article. JH was in charge of designing the research and
correcting the article. RD and JC were in charge of contacting the
subjects and collecting data. GM were in charge of proofreading
the manuscript for several times. The corresponding author SW
was in charge of designing the research and correcting the article.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 November 2018 | Volume 10 | Article 357

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Liu et al. Frequency-Following Response Recordings in Elderly Adults

FUNDING

This work was funded in part by grants from the National
Natural Science Foundation of China (81200754, 81870715),

the 2012 Beijing Nova Program (Z121107002512033), Beijing
Natural Science Foundation (7122034, 7154190), the Capital
Health Research and Development of Special from the Beijing
Municipal Health Bureau (2011-1017-04).

REFERENCES

Aiken, S. J., and Picton, T. W. (2008). Envelope and spectral frequency-following
responses to vowel sounds. Hear. Res. 245, 35–47. doi: 10.1016/j.heares.2008.
08.004

Anderson, S., Parbery-Clark, A., White-Schwoch, T., and Kraus, N. (2012). Aging
affects neural precision of speech encoding. J. Neurosci. 32, 14156–14164.
doi: 10.1523/JNEUROSCI.2176-12.2012

Anderson, S., Skoe, E., Chandrasekaran, B., Zecker, S., and Kraus, N. (2010).
Brainstem correlates of speech-in-noise perception in children. Hear. Res. 270,
151–157. doi: 10.1016/j.heares.2010.08.001

Banai, K., Hornickel, J., Skoe, E., Nicol, T., Zecker, S., and Kraus, N. (2009).
Reading and subcortical auditory function. Cereb. Cortex 19, 2699–2707.
doi: 10.1093/cercor/bhp024

Bidelman, G. M., Villafuerte, J. W., Moreno, S., and Alain, C. (2014). Age-related
changes in the subcortical-cortical encoding and categorical perception of
speech. Neurobiol. Aging 35, 2526–2540. doi: 10.1016/j.neurobiolaging.2014.
05.006

Burkard, R. F., and Sims, D. (2001). The human auditory brain-stem response
to high click rates: aging effects. Am. J. Audiol. 10, 53–61. doi: 10.1044/1059-
0889(2001/008)

Clinard, C. G., and Cotter, C. M. (2015). Neural representation of dynamic
frequency is degraded in older adults. Hear. Res. 323, 91–98. doi: 10.1016/j.
heares.2015.02.002

Clinard, C. G., Tremblay, K. L., and Krishnan, A. R. (2010). Aging alters
the perception and physiological representation of frequency: evidence from
human frequency-following response recordings. Hear. Res. 264, 48–55.
doi: 10.1016/j.heares.2009.11.010

Cunningham, J., Nicol, T., Zecker, S., Bradlow, A. R., and Kraus, N. (2001).
Neurobiologic responses to speech in noise in children with learning problems:
deficits and strategies for improvement. Clin. Neurophysiol. 112, 758–767.
doi: 10.1016/s1388-2457(01)00465-5

Frisina, D. R., and Frisina, R. D. (1997). Speech recognition in noise and
presbycusis: relations to possible neural mechanisms. Hear. Res. 106, 95–104.
doi: 10.1016/s0378-5955(97)00006-3

Gordon-Salant, S., and Fitzgibbons, P. J. (1999). Profile of auditory temporal
processing in older listeners. J. Speech Lang. Hear. Res. 42, 300–311.
doi: 10.1044/jslhr.4202.300

Jeng, F.-C., Hu, J., Dickman, B., Montgomery-Reagan, K., Tong, M., Wu, G., et al.
(2011). Cross-linguistic comparison of frequency-following responses to voice
pitch in american and chinese neonates and adults. Ear Hear. 32, 699–707.
doi: 10.1097/aud.0b013e31821cc0df

Jeng, F.-C., and Warrington, R. P. (2011). Effects of silent interval on human
frequency-following responses to voice pitch. J. Acoust. Soc. Am. 130:2545.
doi: 10.1121/1.3655173

Krishnan, A., Xu, Y., Gandour, J. T., and Cariani, P. A. (2004). Human frequency-
following response: representation of pitch contours in chinese tones. Hear.
Res. 189, 1–12. doi: 10.1016/s0378-5955(03)00402-7

Krishnan, A., Xu, Y., Gandour, J. T., and Cariani, P. A. (2005). Encoding of pitch
in the human brainstem is sensitive to language experience. Cogn. Brain Res.
25, 161–168. doi: 10.1016/j.cogbrainres.2005.05.004

Lightfoot, G. (2016). Summary of the N1–P2 cortical auditory evoked potential to
estimate the auditory threshold in adults. Semin. Hear. 37, 1–8. doi: 10.1055/s-
0035-1570334

Møeller, A. R. (1998). Neural generators of the brainstem auditory evoked
potentials. Semin. Hear. 19, 11–27. doi: 10.1055/s-0028-1082955

Moushegian, G., Rupert, A. L., and Stillman, R. D. (1973). Laboratory note.
Scalp-recorded early responses in man to frequencies in the speech range.
Electroencephalogr. Clin. Neurophysiol. 35, 665–667. doi: 10.1016/0013-
4694(73)90223-x

Musacchia, G., Strait, D., and Kraus, N. (2008). Relationships between behavior,
brainstem and cortical encoding of seen and heard speech in musicians and
non-musicians. Hear. Res. 241, 34–42. doi: 10.1016/j.heares.2008.04.013

Schatteman, T. A., Hughes, L. F., and Caspary, D. M. (2008). Aged-related
loss of temporal processing: altered responses to amplitude modulated tones
in rat dorsal cochlear nucleus. Neuroscience 154, 329–337. doi: 10.1016/j.
neuroscience.2008.02.025

Skoe, E., and Kraus, N. (2010). Auditory brain stem response to complex sounds:
a tutorial. Ear Hear. 31, 302–324. doi: 10.1097/aud.0b013e3181cdb272

Smith, J. C., Marsh, J. T., and Brown, W. S. (1975). Far-field recorded
frequency-following responses: evidence for the locus of brainstem sources.
Electroencephalogr. Clin. Neurophysiol. 39, 465–472. doi: 10.1016/0013-
4694(75)90047-4

Song, J. H., Skoe, E., Wong, P. C. M., and Kraus, N. (2008). Plasticity in the adult
human auditory brainstem following short-term linguistic training. J. Cogn.
Neurosci. 20, 1892–1902. doi: 10.1162/jocn.2008.20131.

Swaminathan, J., Krishnan, A., Gandour, J. T., and Xu, Y. (2008). Applications
of static and dynamic iterated rippled noise to evaluate pitch encoding
in the human auditory brainstem. IEEE Trans. Biomed. Eng. 55, 281–287.
doi: 10.1109/tbme.2007.896592

Tremblay, K. L., Billings, C., and Rohila, N. (2004). Speech evoked cortical
potentials: effects of age and stimulus presentation rate. J. Am. Acad. Audiol.
15, 226–237. doi: 10.3766/jaaa.15.3.5

Wang, S., Hu, J., Dong, R., Liu, D., Chen, J., Musacchia, G., et al. (2016). Voice
pitch elicited frequency following response in Chinese older adults. Front.
Aging Neurosci. 8:286. doi: 10.3389/fnagi.2016.00286

White-Schwoch, T., Woodruff Carr, K., Anderson, S., Strait, D. L., and Kraus, N.
(2013). Older adults benefit from music training early in life: biological
evidence for long-term training-driven plasticity. J. Neurosci. 33, 17667–17674.
doi: 10.1523/JNEUROSCI.2560-13.2013

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Liu, Hu, Dong, Chen, Musacchia and Wang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 6 November 2018 | Volume 10 | Article 357

https://doi.org/10.1016/j.heares.2008.08.004
https://doi.org/10.1016/j.heares.2008.08.004
https://doi.org/10.1523/JNEUROSCI.2176-12.2012
https://doi.org/10.1016/j.heares.2010.08.001
https://doi.org/10.1093/cercor/bhp024
https://doi.org/10.1016/j.neurobiolaging.2014.05.006
https://doi.org/10.1016/j.neurobiolaging.2014.05.006
https://doi.org/10.1044/1059-0889(2001/008)
https://doi.org/10.1044/1059-0889(2001/008)
https://doi.org/10.1016/j.heares.2015.02.002
https://doi.org/10.1016/j.heares.2015.02.002
https://doi.org/10.1016/j.heares.2009.11.010
https://doi.org/10.1016/s1388-2457(01)00465-5
https://doi.org/10.1016/s0378-5955(97)00006-3
https://doi.org/10.1044/jslhr.4202.300
https://doi.org/10.1097/aud.0b013e31821cc0df
https://doi.org/10.1121/1.3655173
https://doi.org/10.1016/s0378-5955(03)00402-7
https://doi.org/10.1016/j.cogbrainres.2005.05.004
https://doi.org/10.1055/s-0035-1570334
https://doi.org/10.1055/s-0035-1570334
https://doi.org/10.1055/s-0028-1082955
https://doi.org/10.1016/0013-4694(73)90223-x
https://doi.org/10.1016/0013-4694(73)90223-x
https://doi.org/10.1016/j.heares.2008.04.013
https://doi.org/10.1016/j.neuroscience.2008.02.025
https://doi.org/10.1016/j.neuroscience.2008.02.025
https://doi.org/10.1097/aud.0b013e3181cdb272
https://doi.org/10.1016/0013-4694(75)90047-4
https://doi.org/10.1016/0013-4694(75)90047-4
https://doi.org/10.1162/jocn.2008.20131
https://doi.org/10.1109/tbme.2007.896592
https://doi.org/10.3766/jaaa.15.3.5
https://doi.org/10.3389/fnagi.2016.00286
https://doi.org/10.1523/JNEUROSCI.2560-13.2013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Effects of Inter-Stimulus Interval on Speech-Evoked Frequency-Following Response in Elderly Adults
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Experiment Equipment, Stimulation and Recording
	Data Analysis

	RESULTS
	DISCUSSION
	Effect of ISI in Older Adults
	Effect of Aging on the FFR
	Choosing an Appropriate Inter-Stimulus-Interval for Recording Speech-Evoked FFR in Older Adults

	LIMITATIONS
	CONCLUSION
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES


