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Abstract

Background

Tick-borne encephalitis virus (TBEV) is the most prevalent arbovirus, with a tentative esti-

mate of 10,000 to 10,500 infections occurring in Europe and Asia every year. Endemic in

Northeast China, tick-borne encephalitis (TBE) is emerging as a major threat to public

health, local economies and tourism. The complicated array of host physiological changes

has hampered elucidation of the molecular mechanisms underlying the pathogenesis of this

disease.

Methodology/Principle findings

System-level characterization of the serum metabolome and lipidome of adult TBEV patients

and a healthy control group was performed using liquid chromatography tandem mass

spectrometry. By tracking metabolic and lipid changes during disease progression, crucial

physiological changes that coincided with disease stages could be identified. Twenty-eight

metabolites were significantly altered in the sera of TBE patients in our metabolomic analysis,

and 14 lipids were significantly altered in our lipidomics study. Among these metabolites,

alpha-linolenic acid, azelaic acid, D-glutamine, glucose-1-phosphate, L-glutamic acid, and

mannose-6-phosphate were altered compared to the control group, and PC(38:7), PC(28:3;1),

TAG(52:6), etc. were altered based on lipidomics. Major perturbed metabolic pathways

included amino acid metabolism, lipid and oxidative stress metabolism (lipoprotein biosynthe-

sis, arachidonic acid biosynthesis, leukotriene biosynthesis and sphingolipid metabolism),

phospholipid metabolism and triglyceride metabolism. These metabolites were significantly

perturbed during disease progression, implying their latent utility as prognostic markers.

Conclusions/Significance

TBEV infection causes distinct temporal changes in the serum metabolome and lipidome,

and many metabolites are potentially involved in the acute inflammatory response and
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immune regulation. Our global analysis revealed anti- and pro-inflammatory processes in

the host and changes to the entire metabolic profile. Relationships between metabolites and

pathologies were established. This study provides important insight into the pathology of

TBE, including its pathology, and lays the foundation for further research into putative mark-

ers of TBE disease.

Author summary

Tick-borne encephalitis virus (TBEV) with extreme contagiousness is a key danger to

public health systems in Europe and Asia. To date, little information is obtained about the

molecular mechanism underlying infection, and although commercial vaccines against

TBEV exist, there is no specific treatment for the disease. Metabolomics and lipidomics

offer multiple-visions of metabolome and lipidome sights and help elucidating metabolic

to disease phenotype. Serum metabolism and lipidome analysis were performed based on

mass spectrometer (MS) platform on a cohort of TBEV patients. About 400 metabolites

performed crucial shifts in TBEV patients compared with healthy subjects. This study

revealed that in the stage of infection, the host metabolome is tightly regulated, with anti-

inflammatory processes modulating pro-inflammatory processes implying the self-limit-

ing phenotype of TBEV and the inherent regulation in humans. The crucial perturbed

metabolic pathways contained amino acid metabolism, fatty acid metabolism and phos-

pholipid metabolism. This study provides a powerful and new approach to decipher the

interactions between host and virus. These potential metabolites provide high sensitivity

and specificity and have the capacity to function as biomarkers for disease surveillance

and estimation of therapeutic interventions.

Introduction

Tick-borne encephalitis (TBE) is a severe central nervous system infection caused by tick-
borne encephalitis virus (TBEV), a single-stranded, positive-sense RNA virus of the genus Fla-
vivirus [1]. TBE was first reported in Australia and Russia in 1930 [2].TBE is a natural infec-

tious disease that is prevalent in Europe and the northeast of China [3,4] in spring and

summer (mainly from March to July). TBEV is divided into three distinct serotypes: Far-East-

ern, Siberian and European subtypes. The severity of disease varies among the serotypes [5,6],

with the Far-Eastern subtype being more serious and having a higher probability of neurologi-

cal sequelae and a higher fatality rate than the other two subtypes. The dominant TBEVs iso-

lated from China are of the Far-Eastern subtype. In nature, TBEV is transferred by ticks

parasitizing wild vertebrate hosts, primarily small mammals such as rodents and hedgehogs.

Large animals, such as deer and horses are non-preferred hosts for TBEV. Over the last few

years, TBEV infections occurred most commonly in forest zones or far from city centers. With

the continued development of the west of China and rejuvenation of the northeast of the coun-

try through ecological tourism, tick activity has increased and tick-borne disease now poses a

threat to local residents [7]. Over the past 30 years, the incidence of TBE has increased by

almost 400% in Europe, and is rising in China and elsewhere, thus making it a growing public

health concern worldwide [8,9]. Progression of TBEV infection generally follows two courses:

the first course is characterized by sudden-onset fever accompanied by nausea, fatigue, head-

ache, joint pain and other symptoms, with a duration of about 8 days [10,11]. The second
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course of TBE occurs in 20–30% of infected patients and is marked by central nervous system

symptoms of varying severity [1].

TBEV can generally be controlled by self-regulation, but its clinical symptoms can be weak-

ening, including considerable brain damage and even death. In a small percentage of patients,

TBEV evolves into a more severe form during the acute phase (AP), which is characterized by

damage to the central nervous system. At present, no specific diagnostic test or antiviral ther-

apy is available for TBEV. Therefore, it important to reveal the molecular mechanism of

TBEV. Both viral and host immune elements appear to be referred, but the roles of each are

not entirely understood.

Metabolomics and lipidomics are rapidly emerging fields of ‘omics’ research that design to

quantify and characterize dynamic changes in all metabolites at the system level in response to

an internal stimulus or external disturbance [12–14]. Metabolites serve as direct signatures of

biochemical activity that are chemically transformed during metabolism and are therefore eas-

ier to correlate with phenotype [15]. Lipidomics, a branch of metabolomics, focuses on lipid

constituents, which are involved in signaling and infection processes. Cellular homeostasis is

disturbed under various disease conditions, and the human body may attempt to maintain

homeostasis of the cellular environment through up- or down-regulation of endogenous

metabolites. Metabolomics provides a record of the metabolomic status of organisms, and thus

offers valuable insight into the mechanisms underlying disease processes. Metabolomics has

been applied to infectious diseases to elucidate the interactions between host and virus [16,17].

In recent years, more attention has been paid to lipidomics, including research into how lipids

regulate and control the alterations required for viral entry, replication and release [18,19]. To

understand the complex and dynamic virus-host interactions of TBEV in vitro, detailed

images are essential. However, few omics studies to date have described how the human host

responds, biochemically and physiologically, to TBEV and other flaviviral infections, or how it

handles other exotic invasions.

Using gas chromatography coupled to mass spectrometry, to identify significant difference

in the metabolic profile among uninfected I.scapularis nymphal ticks, B. burgdorferi-infected

nymphal ticks and B. mayonii-infected nymphal ticks, and the difference in the abundance of

metabolism suggest that different Lyme disease spirochetes may have different metabolic capa-

bilities. The underlying variable metabolites could aid development of novel methods to con-

trol spirochete transmission [20]. Villar et al. carried out an integrated metabolomic,

transcriptomic and proteomic study that provided an extensive “map” of physiological changes

in TBEV patients and characterized the metabolic pathways essential to the tick response to

infection, as well as the associated cellular response and molecular mechanisms [21]. Research

into tick-borne flaviviruses in the omics era has provided insight into tick biology and patho-

gen transmission at the genomic level, but more research on tick–virus metabolomics is

needed [22,23].Therefore we analyzed serum samples using liquid chromatography quadru-

pole time-of-flight mass spectrometry (LC-QTOF-MS) to identify the metabolites associated

with the human response to TBEV.

In the present study, metabolomic and lipidomic analyses were conducted using untargeted

and targeted approaches on serum samples with the purpose of identifying metabolic pathways

correlated to disease progression and understanding the mechanisms of TBEV infection. Our

results showed that TBEV infection caused significant serum metabolome- and lipidome-wide

changes in TBEV patients. Potential metabolites were confirmed via metabolomics and lipido-

mics, and the results revealed that TBEV infection quickly induced an acute immune and

inflammatory response from the host. We propose that changes to the host metabolome and

lipidome play crucial physiological roles in the anti-inflammatory and pro-inflammatory pro-

cesses during the response to tick-borne virus infection to maintain global homeostasis.
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Materials and methods

Ethics statement

The protocol of this study was approved by the ethics committee of Inner Mongolia Forestry

General Hospital, and all eligible individuals provided written informed consent. All informa-

tion about the participants was anonymized.

Study design

The study criteria were strictly aligned with the diagnostic criteria for forest encephalitis [24].

The patients were divided into acute phase (AP) and recovery phase (RP) according to their

course and clinical manifestations. In brief, adult tick bite patients (>21years) showing acute

onset symptoms (�38.0˚C for <72 h, accompanied with nausea, fatigue and joint pain), and

without other diseases such as heart, brain, liver, kidney and autoimmune diseases, were

included in the study as AP patients. Meanwhile, RP patients presented with an influenza-like

illness involving fever, nausea, and fatigue at fever days 3–8. “Fever days” refers to the number

of days post onset of fever. Young teenagers were excluded in consideration of differences in

the response to TBEV according to age. The diagnosis of forest encephalitis was made based

on serology based on an IgG:IgM antibody ratio� 1:20. The ratio of IgG:IgM is an indicator

of virus infection and the algorithm rule has been adopted in the diagnostic criteria for forest

encephalitis. Venous blood samples were collected on admission after tick bite and fever onset.

It should be noted that some patients had been treated by themselves or at a clinic before going

to the hospital for treatment. The final classification of TBEV was based on clinical test results

and symptoms of the 50 TBEV patients that were finally enrolled in this study (May 2018-

through September 2019); the patients tested positive for dengue IgG and IgM antibodies in

the acute sera using a commercially obtained enzyme-linked immunosorbent assay kit (Pan-

Bio, Brisbane, Australia). These patients were deemed to have TBEV infection and were thus

included in this study. A detailed hematological analysis was also carried out. Additionally, 39

asymptomatic age-matched healthy subjects participating in an annual hospital staff examina-

tion were used as controls. The detailed sample information is listed in S1 Table.

Sample collection and preparation

Serum samples were collected according to the ethical standards of Inner Mongolia Forestry

General Hospital. Five milliliters of venous blood werecollected into a blood tube in the morn-

ing under fasting conditions and stored without anticoagulant. The whole-blood sample was

left at room temperature to clot (~30 min) and then centrifuged to remove the clot. The pro-

cessed samples were aliquoted and frozen at −80˚C.

For metabolomic analysis, 300 μL of each serum sample was thawed at 4˚C. Serum samples

were deproteinated with 1,200 μL ice-cold acetonitrile in purified water (4:1, V:V). After vor-

texing, the mixture was centrifuged at 11,000 rpm for 10 min at 4˚C. Then, the supernatant

was vacuum-dried and re-dissolved with the initial gradient of the mobile phase. To prevent

batch effects, assays were conducted in random order. To evaluate the stability of the experi-

mental procedure, quality control (QC) samples were prepared containing equal volumes of

all analyzed samples. Eighteen control serum samples were injected randomly in sequence.

For lipidomic analysis, lipids were extracted from serum using a revised version of the

Bligh and Dyer method [25]. Briefly, 100-μL serum samples were extracted with 480 μL

methanol-chloroform solution (5:1, V:V). After vortexing for 60 min and incubation at 4˚C,

the sample mixture was centrifuged at 12,000 rpm and 4˚C for 15 min. The supernatant was

dried and then recovered with 100 μL dichloromethane-methanol (1:1, V:V), vortexed for 30
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s and ultrasonicated for 10 min on ice, and then centrifuged at 12,000 rpm and 4˚C for 15

min prior to analysis. The preparation of QC samples and the injection batch processing

were conducted as described in the metabolomics procedure above. Six random control

serum samples were injected at the start and end of each analytical batch to condition the

analytical platform.

Metabolomic analysis using liquid chromatography-mass spectrometry

(LC-MS)

High-performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF-MS)

analysis was performed using a Jasper HPLC system coupled with a TripleTOF 5600 mass

spectrometer (AB Sciex, Framingham, MA, USA) equipped with an electrospray ionization

source (ESI). Based on polarity, the compounds were separated using an HSS T3 column

(1.8 μm, 2.1×100 mm; Waters, Milford, MA, USA) and an Acquity UPLC BEH Amide column

(3 μm, 2.1×100 mm; Waters). The oven temperature was set to 40˚C. Analyses were performed

in both positive and negative ionization modes over a mass range of 50 to 1200 m/z (mass-to-

charge ratio). Both the detailed parameters of the gradient elution program and the MS param-

eters are listed in S2 Table. The stability of the analytical platform and LC-MS method was

evaluated using the QC samples. The relative standard deviations of the peak areas in the QC

group were below 10%, showing good repeatability and consistency of chromatographic sepa-

ration throughout the batch.

Lipidomic analysis using liquid chromatography tandem mass

spectrometry (LC-MS/MS)

To identify serum lipid changes, an LC/MS platform was used. A Kinetex C18 column

(2.6 μm, 2.1 ×100 mm; Phenomenex, Torrance, CA, USA) operating at 300 μL/min was used

to separate 1-μL amounts of lipids into aliquots prior to MS. The column oven temperature

was set to 40˚C. The optimized mobile phase consisted of 10 mM NH4Ac in H2O-MeOH-ace-

tonitrile (1:1:1) (solvent A) and10 mM NH4Ac in isopropyl alcohol (solvent B). The gradient

was as follows: initial condition of 20% solvent B; 0–3 min, 20–40% B; 3–6 min, 40–60% B;

6–13 min, 60–80% B; 13–17 min, 80–100% B; 17–19 min, 100–100% B; 19–19.1 min, 100–20%

B; maintenance of 20% B until the next injection.

Data pretreatment and statistical analysis

The metabolomics datasets obtained by LC-MS analysis were converted to mzData format via

the open-source software MS-Dial 3.82 for peak finding. The output files of the QTOF runs

were aligned using various forms of chromatography mass spectrometry (XCMS version

1.26.0), an R-based platform for raw LC-MS data processing and visualization, following reten-

tion time correction, data filtering and feature extraction. For MS peak list alignment, the

parameters of mass tolerance and retention time (RT) tolerance values were set to 0.25 Da and

30 s, respectively. The aim of this procedure was to reduce the shift in RT and avoid redundant

signals. The algorithm and parameters used for peak detection were as follows: minimum peak

width, 5 s; maximum peak width, 20 s; ppm deviation, 5 ppm; signal-to- noise threshold

(snthresh), 4. Then, the report table was imported into MetaboAnalyst (version, 4.0), a set of

online software packages for multivariate data analysis. Sum, log-transformation, and pareto-

scaled algorithms were sequentially applied for normalization to reduce any systematic bias

and improve overall data consistency to ensure that biological comparisons could be obtained.

Principal component analysis (PCA) was used as an unbiased statistical method to observe the
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clustering situation of healthy controls and TBEV patients. PCA analysis was used to confirm

the quality of the datasets and to visualize differences between groups of samples in the unsu-

pervised analysis. To achieve the distinction between TBEV patients and the control group,

supervised multivariate analysis and orthogonal partial least squares data analysis

(OPLS-DA) were employed to identify potential metabolites. The selecting algorithms for

potential differential metabolites were based on variable importance in projection (VIP) val-

ues; variables with a VIP>1 made a significant contribution to the separation of samples in

the OPLS-DA analysis. Student’s t-test was performed to verify whether the differential

metabolites acquired from OPLS-DA model were statistically significant among groups (p<
0.05). In addition, the fold change (FC) threshold was also used as an indicator to differenti-

ate the groups.

For lipidomics datasets, information-dependent acquisition (IDA) coupled with dynamic

background subtraction was used to obtain comprehensive MS and MS/MS spectra and to

automatically deduct the background spectrum to ensure the validity of the data. The commer-

cial software LipidView and SCIEX OS (AB Sciex) were employed to extract signals and fur-

ther discriminate and quantify lipids. The statistical analysis followed the protocol for

metabolomics data. The detailed workflow is shown in S3 Table.

Metabolite identification

The identification of lipid molecules and metabolites followed an established strategy[26]. The

SWATHtoMRM method first captures the profile from one pooled biological sample and then

acquires the MS/MS spectra for all metabolites, increasing the credibility of biomarker identifi-

cation. The identification process is described here using phosphatidylethanolamine (PE) as

an example. First, the elemental composition C39H75NO8P was calculated for the m/z 716.52

ion based on its exact mass, the nitrogen rule and the isotope pattern. Then, the elemental

composition and exact mass were used to search open-source databases, including the

METLIN Metabolite and Chemical Entity Database (https://metlin.scripps.edu/), the Kyoto

Encyclopedia of Genes and Genomes (KEGG; https://www.kegg.jp/), and an in-house data-

base. Next, MS/MS spectral information was obtained to assess fragmentation of the metabo-

lite. Taking PE for example, m/z 141.02 is the characteristic neutral loss ion of PE, and m/z

255.2327 and m/z 279.2319 are the daughter ions of PE; their presence enhanced confidence in

the identification. An example of the identification procedure of PE (34:2) as a differential is

shown in S1 Fig. Although the identification we obtained was putative since most markers

were searched without authentic standards, the program SWATHtoMRM acquired MS/MS

spectra for all samples, then extracted a set of multiple-reaction monitoring transitions for tar-

geted analysis, demonstrating the advantages of this technology.

Pathway analysis and interaction networks

To comprehensively examine the metabolomics profiles, all relevant detected metabolites were

mapped to metabolic pathways using MetaboAnalyst 4.0 (www.metaboanalyst.ca) [27]and the

LIPID MAPS Lipidomics Gateway (http://www.lipidmaps.org/) [28]. The enrichment analysis

was performed using a topology analysis that takes into account the positions of significant

metabolites in metabolic pathways. Two indexes were estimated in the topology analysis: the

centrality and the pathway impact. The centrality measures the number of shortest paths going

through the target metabolite, which is employed to assess the significance of each metabolite

within a specific pathway. The pathway impact is the cumulative value of the significant

metabolites.
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Results

Serum metabolomics and reproducibility of the analysis

The serum metabolic markers obtained through metabolomics and lipidomics are displayed in

S2 Fig. The filtered and normalized datasets obtained via LC-MS analysis were used to create

PCA models to visualize the sample groupings (Fig 1). The reliability of the experimental pro-

cedures and the stability and reproducibility of the analysis were determined using QC sam-

ples, as shown in the PCA plots. The cluster of QC samples verified the reliability of the

analysis method by showing that it did not affect the grouping of samples; different sample

groups should be biologically distinct. PCA scores representing TBEV samples and healthy

samples were obtained using the T3 column and BEH Amide column; the PCA results

obtained through lipidomics are shown in S3 Fig.

Global metabolomic changes with TBEV infection

For a comprehensive understanding of metabolite coverage during TBEV infection, both the

T3 and BEH amide columns were used to obtain a wide range of metabolites. The T3 column

focuses on metabolites with low polarity, and the amide column on compounds with high

polarity. PCA and OPLS-DA mode were used to compare the experimental and control

groups. The PCA score plot (Fig 1) was used to visualize metabolomic changes in TBEV

patients. Healthy controls (n = 39), patients in RP (n = 31) and patients in AP (n = 19) were

compared. The strongest response of patients to TBEV infection occurred in the first 4 days of

infection, and homeostasis recovery (RP) appeared around the fourth day of fever, accompa-

nied by mild clinical symptoms, such as fever and headache; the AP accompanies with the

course of encephalitis, which has been observed to come to a head during early febrile phase.

PCA showed that healthy and disease groups were well distinguished, but the unique metabo-

lome profile between AP and RP was not revealed, suggesting the complexed duration time of

illness, and a majority of patients recover, which could hint the metabolome similarities

between patients at AP and RP in the PCA score plot. The small number of samples also con-

tributed to the phenomenon. Partial least squares data analysis (PLS-DA) and OPLS-DA, a rig-

orous supervised analysis method, revealed distinct separation of the healthy controls and

Fig 1. PCA models created using data obtained through LC-ESI-TOF-MS analysis in positive ionization mode on a T3 column (PC1 = 26.7%, PC2 = 8.8%),

amide column (PC1 = 40.1%, PC2 = 9.4%), and in negative mode on an amide column (PC1 = 17.6, PC2 = 12.5%). Red, purple, blue, and yellow solid circles

correspond to AP, healthy, QC, RP patients, respectively.

https://doi.org/10.1371/journal.pntd.0009172.g001
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TBEV patients; however, AP patients and RP patients were overlapped. The OPLS-DA algo-

rithm was adopted to analyze the degree of separation of patients in two courses (S5 Fig). The

usage of R2Y and Q2 parameters evaluated the quality of the OPLS-DA model to show the fit-

ness and predictive ability of the model, respectively. The R2 and Q2 values of the OPLS-DA

data were both<0.3, suggesting the imperfect performance of the model. Generally, R2(Y) and

Q2 values of>0.4 are acceptable limits for clinical samples. Therefore, in subsequent experi-

ments, we focused mainly on the control group and an overall disease group. In future studies,

we aim to collect more samples to enable grouping based on disease course, to aid in elucidat-

ing the mechanism of TBEV development.

Identification of significantly altered metabolites and pathways

Approximately 529 differential metabolites were identified via LC-MS using T3 and amide col-

umns, in positive and negative mode; 181 and 182 features of those metabolites were identified

on the amide column in positive and negative mode, respectively, and 166 were identified on

the T3 column in positive mode (S5 Table). After eliminating repeats, 440 metabolites were

retained. Based on the criteria- of a VIP value>1 in the OPLS-DA and a p value<0.05 on the

t-test, 144 of these metabolites were structurally identified with LC-MS/MS analysis, based on

discriminant analysis of the healthy control and TBEV groups. The metabolites belonged to

classes such as acylcarnitine, free fatty acid (FFA), free amino acid (FAA) and their derivatives,

phosphatidylcholine (PC), purine, sphinganine and carbohydrate. Detailed information is

listed in S6 Table. These potential biomarkers showed different trends; some exhibited

increased expression, while others showed decreased expression. The metabolites in the TBEV

group showed greater changes compared to those of the control group, indicating that they

might serve as potential biomarkers of viral infection and thus could help to elucidate the path-

ological mechanism.

Interestingly, metabolites within the same category generally showed similar trends. Amino

acids, including D-glutamine, pyroglutamic acid, and L-cystine, showed a downward trend,

consistent with a previous report of a total reduce in plasma amino acid levels (S6 Fig)[11,29].

Leukotriene (LT) A4 and arachidonate levels were elevated in TBEV samples. These metabo-

lites are involved in lipoxin biosynthesis which is in turn involved in the host immune

response. Sphingomyelin (SM) metabolism intermediates, such as sphingosine 1-phosphate,

sphinganine 1-phosphate, sphingosine and serine showed decreased levels in TBEV patients

(S7 Fig).

We used MetaboAnalyst to integrate our datasets and reveal the pathways in which the

identified metabolites are involved. The data revealed that the dominant disordered metabolic

pathways included amino acid metabolism, sphingolipid metabolism, lipoxin biosynthesis and

aspirin-triggered resolvin E biosynthesis. The metabolite network manifested that the most

vital changes occurred in lipid metabolism and energy supply pathways; the major altered

pathway are summarized in Fig 2.

Global serum lipid changes with TBEV

PLS-DA revealed obvious serum lipidome changes in the TBEV group (S4 Fig). To identify

potential lipid biomarkers and intermediates for differentiating the healthy control and disease

groups, we referred to the OPLS-DA score plot. PCs, SMs and triacylglycerols (TAGs) were

best able to distinguish the groups (Table 1). We observed clear negative correlation between

PC and TAG expression levels. The downward trend of SM levels in TBEV patients was domi-

nated by TAG60:10|TAG 18:0_20:4_22:6. All of the SMs identified were decreased in the dis-

ease group (Fig 3).
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Fig 2. Major altered lipid and energy metabolic pathways in TBEV patients.

https://doi.org/10.1371/journal.pntd.0009172.g002

Table 1. Potential biomarkers between TBEV patients and the healthy control group.

Lipid p-value Log2 (FC) VIP Trend

PC 36:5|PC 16:0_20:5 1.44E-14 10.54 6.43 "

PC 28:3;1 4.33E-17 1.89 2.18 "

PC 36:2;1 1.44E-12 8.07 5.03 "

PC 38:3;2 1.60E-11 1.21 1.53 "

PC 38:7 9.07E-15 9.67 6.48 "

CE 18:3;1 4.4266E-19 3.65 3.15 "

LPE O-16:1 2.88E-09 1.24 1.57 "

TAG 60:10|TAG 18:0_20:4_22:6 0.001 −1.08 1.01 #

PE O-37:5|PE O-17:1_20:4

TAG 60:11 TAG 16:0_22:5_22:6 2.46E-05 −1.10 1.03 #

DAG 40:8|DAG 18:2_22:6 1.09E-05 −1.06 1.25 #

PC 30:1 5.44E-05 1.02 1.27 "

PC 38:3;2 3.02E-06 1.04 1.18 "

PC 28:3;1 4.23E-13 2.04 2.15 "

PC 36:5|PC 16:0_20:5 8.23E-39 10.54 6.51 "

PC 38:7 4.84E-41 9.83 6.41 "

CE 18:3;1 6.94E-18 3.68 2.93 "

TAG 42:0|TAG 10:0_16:0_16:0 0.012673 1.20 1.17 "

TAG 52:6 0.001648 −1.03 1.12 #

LPE O-16:1 5.01E-9 1.34 1.63 "

PC 36:2;1 3.02E-06 7.92 4.77 "

TAG 54:7(18:2/18:2/18:3) 0.001 −1.17 1.13 #

TAG 54:8|TAG 18:2_18:3_18:3 0.005 −1.66 1.44 #

TAG 58:10(18:2/18:2/22:6) 0.0001 −1.04 1.14 #

TAG 59:7 0.0001 −1.22 1.37 #

DAG 40:8|DAG 18:2_22:6 6.56E-05 −1.08 1.20 #

https://doi.org/10.1371/journal.pntd.0009172.t001
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Dominant pathway analysis revealed nine metabolic pathways potentially related to TBEV

(Fig 4). Four of these pathways are closely linked to lipid metabolism (arachidonate metabo-

lism, LT metabolism, lipoprotein biosynthesis and sphingolipid metabolism), and two others

to phospholipid metabolism and triglyceride metabolism. The other three (D-glutamine

metabolism, pyroglutamic acid metabolism and L-cystine metabolism) are closely associated

with amino acid metabolism. A graphical representation of the pathway analysis results is

shown in Fig 4. A comprehensive schematic diagram of the TBEV-induced network of molec-

ular interactions was constructed, which shows the relationships among the identified metabo-

lites (Fig 2).

Discussion

TBEV is a self-limiting febrile illness from which complete recovery is generally made, with lit-

tle to no sequelae, which clearly suggests effective protective mechanisms in humans against

TBEV. In a few serious cases, TBEV causes nerve damage in the brain, inducing encephalitis.

Because of the influence of heterotypic infection, the unraveling of protective mechanism is

complex and difficult to understand. The study of recovery from TBEV a physiological point

of view is therefore crucial in deepening our understanding of how humans defend against

and recover from TBEV infection and potentially other flavivirus-induced illnesses. In this

study, metabolomics and lipidomics were applied to understand the global metabolomic

changes that occur in TBEV patients, through which we identified metabolic pathways that are

altered during TBEV infection. The sample cohort size (59 patients and 30 healthy controls) at

Fig 3. Relative abundances of differential metabolites in serum samples collected from patients and controls based on

lipidomics. (red box: acute phase patients; blue box: recovery phase patients; green box: control group).

https://doi.org/10.1371/journal.pntd.0009172.g003
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two-dimensional time points of infection, including AP and RP patients, seized dynamic

changes in metabolites and the excavation of reliable differential information that were closely

related with TBEV pathophysiology. By using multiple separation methods, we found that

approximately 500 serum metabolites were significantly changed, of which 144 were identified

by LC-MS/MS. Lipids, which constitute a biochemically important subclass of metabolites,

were also studied and verified. These metabolites included a number of pro- and anti-inflam-

matory mediators, indicating a rapid response by the host to excessive inflammation to prevent

further damage from TBEV infection. The altered metabolites may serve as diagnostic markers

of the disease and provide insights into its progression. Although these proof-of-concept diag-

nostic metabolites are encouraging, they were identified based on a small number of samples;

additional studies with more patients are needed to confirm the results. It must also be noted

that the results were restricted to non-pediatric patients from the local area. Further studies

will be necessary to determine if these (and other) metabolites are predictive of the progression

from RP to AP in different patient populations.

PCA revealed surprisingly weak clustering of samples from RP and AP TBEV patients (Figs

1 and S3). Many factors have been shown to affect TBEV disease severity, including TBEV

serotype, geographical latitude and individual sample differences[7,30,31]; such factors could

have confounded our analysis, contributing to the lack of clear clustering.

These results provide proof-of-concept that differential perturbation of the serum metabo-

lome is associated with TBEV infection and disease outcome, and that the trends of altered

metabolites are associated with TBEV type (AP or RP). However, in this retrospective proof-

of-concept study, no detailed serological information was collected to facilitate grouping of the

TBEV patients according to disease status (Figs 1 and S3). Thus, the metabolites identified in

this retrospective study may represent metabolic perturbations after TBEV infection, rather

Fig 4. Graphical representation of the pathway analysis of significantly altered metabolites in the three groups (A:

metabolomic results; B: lipidomic results). A:D-glutamine and D-glutamate metabolism; B: glycine, serine and threonine

metabolism; C: aminoacyl-tRNA biosynthesis; D: arginine metabolism; E: sphingolipid metabolism; F: linoleic acid metabolism; G:

arginine and proline metabolism; H: taurine and hypotaurine metabolism. LPC: lysophosphatidylcholine; SM: sphingomyelin; TAG,

triacylglycerol. Dark bule circle: cluster of LPC metabolites; red circle: cluster of SM metabolites; light blue circle: cluster of TAG

metabolites.

https://doi.org/10.1371/journal.pntd.0009172.g004
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than metabolic phenomena reflecting disease status. Despite the small sample size, 144 metab-

olites differentiated the TBEV patients from the healthy group, including structurally con-

firmed metabolites involved in amino acid metabolism, lipoxin biosynthesis and aspirin-

triggered resolvin E biosynthesis. Twenty-eight biomarkers with an area under the receiver

operating characteristic curve (AUROC) value >0.9 were identified (S4 Table); these candi-

date biomarkers are not specific to TBEV disease, but when combined with a TBEV-positive

serological test (eg., IgG:IgM antibody ratio>1:20) may be useful for diagnosing and predict-

ing the prognosis of TBEV infection based on serum specimens.

A few recent studies have applied metabonomics approaches to discover new diagnostic

and prognostic markers for TBEV and to understand the mechanism of disease development.

Transcriptomic and proteomic analyses have been used to identify metabolic pathways, and

some investigations have focused on serological testing[20,21,32,33].

TBEV infection in humans causes early and significant immunological reactions that are

initially pro-inflammatory, and then anti-inflammatory[34]. While the acute inflammatory

reaction is a prerequisite for initiating the pathogen-killing process, the accompanying anti-

and pro-inflammatory processes are vital, as they prevent excessive pathological injury to the

host. Many biochemical reactions take place throughout the body, along with the response to

anti- and pro-inflammatory processes.

Arachidonic acid (AA) is liberated from cell membrane phospholipids through phospho-

lipid hydrolysis of AA -derived compounds such as prostaglandins, LTs and thromboxanes,

which are crucial mediators of the inflammatory response and participated in regulating both

the response intensity and durability of the inflammatory response [35,36]. In contrast to the

influence of AA, omega-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid

(DHA) and its derivate (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenote, are known for their anti-

inflammatory response, which inhibits the formation of inflammatory precursors [37,38].Our

results indicated an ascending trend of pro- and anti-inflammatory PUFAs during the pyreto-

genic phase of TBEV infection, including both AA and DHA. Such positive effects of active

resolution, the early AA-related inflammation is subsequently resolved by DHA-derived anti-

inflammatory media and inhibiting the production of pro-inflammatory cytokines, is deemed

to maintain human health and tissue homeostasis, in which AA also regulates and controls the

flexibility and fluidity of cell membranes, serves as a lipid second messenger in cellular signal-

ing, acts as an inflammatory intermediate and induces vasodilatation [39,40]. As documented

previously, oxidative stress is also associated with AA metabolism [41]. The biosynthesis of

LTs, which are derived from AA, occurs through two steps involving 5-lipoxygenase. LTs are

inflammatory mediators that play a role in normal host defense; they have also been found to

be markers of disease outcome[41,42]. Upregulated or downregulated LT expression and an

excessive response to LTs contribute to disease pathophysiology. The downregulation of LTs

in TBEV patients revealed decreased defense ability in host cells. We observed lower levels of

SM in TBEV patients versus the control group. SM plays important roles in cell membranes

and is crucial to human metabolism. Barceló-Coblijn et al. demonstrated that in some cancer

cells, the endogenous level of SM is reduced compared to non-malignant cells [43]. Cortisol,

which also has powerful anti-inflammatory and immunosuppressive properties, a cytokine-

activated glucocorticoid possessing the ability of anti-inflammatory and immunodepressive

properties, also showed an elevated trend in the febrile stage of TBEV. Viral infections have

the ability to induce an increase in serum cortisol levels during TBEV infection; cortisol levels

at the pyretogenic stage were notably higher than in the control group. To inhibit the produc-

tion of cytokines and other pro-inflammatory mediators is the effective way to control inflam-

matory and immune responses which may impair the immune response and protect patients

with TBEV from cytokine-mediated damage[44].The increase of serum inosine in the
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pyretogenic stage was consistent with the increase in oxidative stress of TBEV in the inflamma-

tory state and the change in extracellular inosine concentration[45]. Inosine has been verified

to generate a wide range of anti-inflammatory cytokine production including the enhanced

production of interleukins (ILs)4, -6, and 10 [46]. In general, our metabolomics data sets show

a dynamic metabolite flow in TBEV where acute inflammation is controlled, weakening the

immune response and maintaining homeostasis.

On the one hand, the mechanism of immune system for host immunity has been the subject

of TBEV pathogenesis. Dendritic cells and B-lymphocytes belonged to immune cells serve

dominating roles in viral clearance and as objects of TBEV infection. We explored the inherent

relationships between SM concentrations and immune cells and found multidimensional early

molecular characters of sphingolipids in mediating the host response to TBEV. The core of

sphingolipid enzymes is acidic sphingomyelinase, which has been involved in multiple

immune responses including entry of measles virus dendritic cells [47] and exocytosis of cyto-

lytic granules by T cells [48]. Our finding that sphingolipids are linked with lymphocytes dur-

ing TBEV which may further clarify the importance of B-cell responses and merits deep

research. Considering their roles in platelet activation, the lacking of phosphatidic acid and its

lyso derivatives was intriguing. Evidence for altered phospholipid metabolism in TBEV

patients, in particular the expression of SM, was found in our study. In a study of rhesus

macaques with simian immunodeficiency virus-induced central nervous system disease, a

global approach provided deep insight into cerebrospinal fluid [49].

On the other hand, simultaneously, pathogenic invasions to the host may be the other ele-

ment of the underlying mechanism. Extensive changes in serum eicosanoid (e.g., leukotriene

A4) and linolenic acid levels were detected. A most common FFA, linolenic acid also showed

significant changes to virus infection (e.g., H1N1 and dengue) [50]. Another plausible distinc-

tive metabolome change is the xanthinine derivations. Xanthinine functions to elicit anti-

inflammatory immunomodulators that attenuate the damaging effects of the host response

[50]. Inosine and hypoxanthine levels are elevated in the febrile period, during which systemic

inflammation may need to be taken into account[51,52].The same trend was also confirmed in

the chronic systemic inflammation model; it is noteworthy that similar phenomenon are

noticed in infections disease where acute inflammation occurs. In the process of inflammation,

the increase of adenosine to inosine editing in cytokine mRNA may affect on the degradation

of transcripts, supporting the necessary early pro-inflammatory and decomposition reactions

in the stage of TBEV. This may be embodied in a fusion of pro- and anti-inflammatory cyto-

kines such as IL-17A, interferon gamma, tumor necrosis factor alpha, IL-4 and IL-8 that show

increased levels during the febrile phase.

In addition to the aforementioned metabolite changes in the host during virus invasion,

changes in certain metabolites may be more common in different pathogen infections.

Łuczaj et al. demonstrated perturbation of the lipid profile of TBEV patients during the

course of infection [53]. In this study, multiplatform metabolomics and advanced statistical

methods were utilized to evaluate the serum metabolomic signature of TBEV. The metabolites

showing significant alterations were mainly involved in pathways related to amino acid metab-

olism, lipoprotein biosynthesis, AA biosynthesis, LT biosynthesis, and sphingolipid and TAG

metabolism. Some altered metabolites are linked to lipid metabolism and the regulation of

inflammatory processes via the control of fatty acids and phospholipids, while others are asso-

ciated with immune regulation, cell apoptosis and the maintenance of cellular homeostasis

[54–56].

TBEV replication is dependent on host cell lipid biosynthesis and metabolism. Viral repli-

cation complexes are present in subcutaneous tissues[57]. Dendritic cells in the skin are

thought to be the initial cells involved in replication, by transporting the virus to nearby
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draining lymph nodes via the lymphatic system. After replication in the lymphatic organs,

TBE virus spreads through efferent lymphatics and the thoracic duct resulting in viremia [58].

Phospholipids are normally minor constituents of cell membranes and include C16, C28, C36

and C38 unsaturated acyl chains, the levels of which were elevated in our TBEV group relative

to the control group. Phospholipids are precursors of lipid mediators, such as platelet activat-

ing factors (PAFs) and eicosanoids, which are involved in inflammatory responses [16,59,60].

Increased phospholipid biosynthesis is reasonable given that host cell phospholipid metabo-

lism is influenced by TBEV replication in both tick and human cells. These single fatty acid

chain lipids are involved in alterations of membrane structures, mediation of acute inflamma-

tion and regulation of pathophysiological events, throughout the vasculature and at local tissue

sites[21,61,62]. Interestingly, PCs play key roles in membrane-mediated cell signaling. Due to

their presence in the cell membrane, PCs may disrupt homeostasis of the vascular endothe-

lium, causing physiological and pathological changes, as well as impairing barrier function

[63]. Recent studies have shown that lipid metabolism is related to various functions in living

organisms. For example, disordered lipid metabolism has been shown to be involved in the

pathogenesis of several human diseases, including obesity, cancer and viral diseases [64,65].

Our results showed TAG (TAG16, TAG18, TAG54, TAG59 and TAG60) expression during

the febrile stage of TBEV infection. As the main energy reserves of the human body, TAGs are

involved in metabolic processes that determine the rate of fatty acid oxidation, the biosynthesis

of lipid molecules, and the metabolic fate of lipoproteins. Viral infection activated intracellular

biochemical reactions with high energy demands, resulting in the lipolysis of TAG. The pool

of endogenous TAGs provides a constant source of fuel for mitochondrial β-oxidation and

biochemical reactions in the body.

In the present study, we found that phospholipid levels were significantly increased in

TBEV plasma, while TAGs showed the opposite trend. TAGs serve as energy reserves to fuel

dynamic metabolic processes. The metabolism of TAGs involves both intracellular and extra-

cellular mechanisms[66]. The metabolism of TAGs is activated by TBEV invasion of the

human body, so TAG levels were monitored in our study.

TBE also affects energy metabolism. In our study, the level of acylcarnitine was increased in

the disease group. Acylcarnitine plays crucial physiological roles in lipid metabolism, and par-

ticularly in fatty acid β-oxidation (FAO), which is needed to transport long-chain fatty acids

into mitochondria for lipid oxidation. Changes in serum acylcarnitine levels may indicate

mitochondrial dysfunction, which is associated with a disturbance in fatty acid transport [67].

Elevated levels of acylcarnitines suggest an impairment of FAO in TBEV patients, similar to

the impaired tricarboxylic cycle seen in an endothelial cell line infected with dengue virus

DENV[68]. Notably, such alterations may not be unique to pathological conditions induced

by a virus. Using a rat model, Wu et al. demonstrated that these changes may also be related to

the development of hypertension [69]. On the other hand, other acylcarnitines are pro-inflam-

matory cytokine inducers closely associated with inflammation [70].

Some amino acids are useful as biomarkers of the response to pathogenic invasion. In this

study, increased activity in the D-glutamine and D-glutamate metabolism pathways, as well as

increased alanine, aspartate and glutamate metabolism, and valine, leucine and isoleucine bio-

synthesis, were observed. Porcheray et al. demonstrated that the concentration of glutamate

decreased during viral replication, and also investigated the consequences of human immuno-

deficiency virus (HIV) infection on glutamine synthetase; this key enzyme showed functional

expression in macrophages[71]. Glutamate metabolism is sensitive to both HIV infection and

inflammation, and thus could be a therapeutic target in HIV encephalitis[72]. Taurine, a sul-

fur-containing amino acid and organic osmolyte involved in various physiological processes,

exhibits anti-oxidative and anti-inflammatory activities[73]. A relationship between
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phenotypes and molecular mechanisms was identified in a mouse model of taurine transporter

deficiency, indicating the role of taurine in maintaining physiological homeostasis[73]. There-

fore, we hypothesized that serum taurine depletion during TBEV infection may lead to inflam-

mation and affect cellular homeostasis. Serum concentrations of leucine and isoleucine were

significantly lower in our TBEV patients relative to the control group. This suggests enhanced

cellular demand for these metabolites, as viruses infecting humans require the host body to

produce substances that support viral replication and proliferation. A study focused on

changes in metabolites in patients undergoing tumor resection showed that leucine and isoleu-

cine are involved in disordered cellular growth [74].Cho et al. elucidated the mechanisms

underlying metabolic responses to viral hemorrhagic septicemia virus (VHSV) infection in

olive flounder, and suggested that the metabolism of amino acids such as leucine and isoleu-

cine was suppressed [75]. Cao et al. analyzed alanine, aspartate and glutamate metabolism in

primary hepatocellular carcinoma (HCC) tumors from alcoholic liver disease (ALD), hepatitis

B virus (HBV)-infected, and hepatitis C virus (HCV)-infected cirrhotic patients, and found

that the metabolism of all three of these amino acids was useful for differentiating the ALD

patients from the HCV and HBV patients, demonstrating that the metabolic phenotypes of

primary HCC tumors vary significantly across ALD, HBV-infected, and HCV-infected cir-

rhotic patients [76].

Aminoacyl-tRNA biosynthesis was observed after infection in our study. Aminoacyl-tRNA

biosynthesis may participate in biochemical processes that stimulate synthesis of the viral pro-

teins required for replication. Thus, the present study highlighted the importance of aminoa-

cyl-tRNA biosynthesis in TBEV infection.

Conclusions

The metabolic changes observed in this study may improve our currently limited understand-

ing of the molecular basis of TBEV. Conventional metabolomics coupled with lipid metabolo-

mics and advanced statistical analysis appears to be a robust approach for multiparametric

analysis of TBEV infection, to identify both diagnostic and prognostic markers. This is the first

study to use lipid metabolism data to illustrate the interaction between TBEV and its host, and

provides new insights into TBEV. However, integrating metabolomics results with those

obtained using other omic platforms, such as proteomics, and transcriptomics, is crucial for

comprehensive evaluation of the pathological mechanisms of TBEV. In future studies, more

samples and integration of genetic and metabolomics data would be useful to detect more

alternations that may be unique to TBEV. This study had some notably limitations. First, the

sample sizes, especially for the AP group, were small. In addition, the serological data were

incomplete. To obtain reliable diagnostic and prognostic biomarkers, further studies are

needed. The metabolic biomarker candidates identified here must be validated using larger

sample sizes and more advanced analytical techniques.
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