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Thyroid hormones take major part in normal growth, development and metabolism.

Over a century of research has supported a relationship between thyroid hormones

and the pathophysiology of various cancer types. In vitro studies as well as research

in animal models demonstrated an effect of the thyroid hormones T3 and T4 on cancer

proliferation, apoptosis, invasiveness and angiogenesis. Thyroid hormones mediate their

effects on the cancer cell through several non-genomic pathways including activation

of the plasma membrane receptor integrin αvβ3. Furthermore, cancer development and

progression are affected by dysregulation of local bioavailability of thyroid hormones.

Case-control and population-based studies provide conflicting results regarding the

association between thyroid hormones and cancer. However, a large body of evidence

suggests that subclinical and clinical hyperthyroidism increase the risk of several solid

malignancies while hypothyroidism may reduce aggressiveness or delay the onset of

cancer. Additional support is provided from studies in which dysregulation of the thyroid

hormone axis secondary to cancer treatment or thyroid hormone supplementation was

shown to affect cancer outcomes. Recent preclinical and clinical studies in various cancer

types have further shown promising outcomes following chemical reduction of thyroid

hormones or inhibition or their binding to the integrin receptor. This review provides a

comprehensive overview of the preclinical and clinical research conducted so far.
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INTRODUCTION

Thyroid hormones (TH) are key regulators of essential cellular processes including proliferation,
differentiation, apoptosis, and metabolism. Hypothalamic thyrotropin-releasing hormone (TRH),
activates the pituitary gland to synthesize and secret thyroid stimulating hormone (TSH), which in
turn acts at the thyroid gland to stimulate TH synthesis and secretion (1). Tetraiodothyronine (T4),
the main hormone synthesized in the thyroid gland, is catalyzed to the Triiodothyronine (T3) by
specific iodothyronine deiodinases (2). T3 acts as the principal THmediating metabolic activity, via
formation of complexes between T3 and nuclear thyroid hormone receptors alpha (TRα) and beta
(TRβ). This nuclear T3-receptor complex binds to thyroid hormone response elements on specific
genes, regulating their transcription (3). Diseases associated with excess of TH (hyperthyroidism)
and lack of TH (hypothyroidism) are common and present with distinct clinical symptoms.
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More than a century ago the association between thyroid
hormones and malignancies was first suggested (4). Later,
Hercbergs and Leith (5) hypothesized that TH deficiency may
affect cancer outcome. This assumption was supported by
numerous clinical studies, demonstrating that hypothyroidism
inhibits tumor growth, while hyperthyroidism produces an
opposite effect (6). A great deal of research has been conducted
in recent decades to determine how thyroid hormones exert their
growth-promoting effect (7). These mechanisms are now better
understood following the discovery of a non-genomic pathway
for TH action. αvβ3 is a plasma membrane integrin which acts
as a membrane receptor for TH (3). This receptor was shown
to contain two distinct binding sites for the hormones, S1 and
S2, each translating unique signaling cascades (8). While the
S1 site binds solely physiological levels of T3, leading to PI3K
activation, the second site, S2, binds T4, and with a lower affinity,
T3, activating the ERK1/2 pathway (9). αvβ3 integrin binding
facilitates the hormones proliferative action on cancer cells as
well as blood vessel cells (3).

In this review, we will provide a summary of studies which
examined the link between thyroid hormones and cancer. We
will first present the preclinical research on the effects of
TH in various cancer models, both in vitro and in vivo. We
will then outline clinical studies examining various aspects of
this association including the effect on cancer risk, behavior
and outcome.

IN VITRO STUDIES OF THE
THYROID-CANCER ASSOCIATION

This section summarizes the in vitro studies on thyroid hormone-
cancer association, presented in Table 1. A comprehensive list
of the in vitro studies, including cancer cell lines and thyroid
hormone concentrations, is presented in Supplemental Table 1.

Breast Cancer Cell Models
In vitro, thyroid hormones were shown to induce proliferation of
breast cancer cells (10, 11, 14). These growth promoting effects
were comparable to that of estrogen (E2) and the proliferative
effects of T3 or T4 were blocked by co-administration of an
estrogen receptor (ER) antagonist, suggesting a significant cross-
talk between the two hormones (11, 12, 14). T3 is able to
activate estrogen response elements-mediated gene expression
in cancer cells (11). In addition, T3 induces the mRNA
expression of the growth factors TGFα and TGFβ in ER
positive breast cancer cells, while the ER modulator tamoxifen
reverts this effect (13, 101). T3 treatment of ER positive
ductal carcinoma cells leads to an increase in P53 and Rb
phosphorylation, while an ER antagonist blocks these effects
(12). T4 induces serine phosphorylation of ERα, which leads to
DNA binding and transcriptional activation by the receptor (14).
TH also demonstrates tumor promoting effects irrespective of
ER signaling. In aggressive triple negative breast cancer cells,
T3 enhances aerobic glycolysis (Warburg effect), a hallmark of
transformed cells (22). Via a rapid signaling pathwaymediated by
the integrin αvβ3, T3 was also shown to regulate actin remodeling

and to stimulate breast cancer cell migration and invasion (15).
T4 was recently shown to stimulate PD-L1 gene expression and
increase PD-L1 protein through activation of ERK1/2, thereby
supporting the activity of this defensive checkpoint against
immune destruction in breast cancer cells (16). In ER negative
breast cancer cells, the αvβ3 inhibitor tetraiodothyroacetic acid
(tetrac) hinders thyroid hormone cellular actions initiated via
themembrane receptor. Nanoparticulate tetrac induces apoptosis
through downregulation of apoptosis inhibitors such as XIAP
and MCL1 and upregulation of apoptosis promotors such as
CASP2 and BCL2L14. Nanotetrac also increases the expression
of angiogenesis inhibitor THBS1 as well as the expression of
CBY1, a catenin activity inhibitor, and attenuates Ras-oncogene
family members (17). It also reduces the effect of T4 on
PDL1 gene and protein expression (16). This further supports
the assumption that the growth promoting effects of thyroid
hormones in breast cancer are mainly mediated through the
membrane receptor αvβ3.

Prostate Cancer Cell Models
Thyroid hormones have shown disparate effects in prostate
cancer cells, depending on the thyroid hormone involved
(T3 or T4) and cell line investigated. The proliferation of
androgen-dependent, but not androgen-independent prostate
cancer cells was enhanced by T3. In androgen-dependent cell
lines T3 downregulated the expression of the anti-proliferative
protein, BTG2 (34). In low invasive prostate cancer cells,
but not in highly invasive cancer cells, T4 induced the
acquisition of neuroendocrine-like morphology, VEGF secretion
and invasive capacity (35). In these cells, while T3 itself
had no effect, isoproterenol-stimulated neuroendocrine-like
morphology and invasiveness were prevented in the presence of
T3. In another study, migration was enhanced and detachment-
induced apoptosis was inhibited by T4 in prostate cancer
cells, while tetrac, the αvβ3 inhibitor, reversed these effects
through diminished activity of the MAPK pathway and inhibited
expressions of XIAP, MMP2 and VEGF, suggesting involvement
of the integrin in these effects (36).

Lung Cancer Cell Models
T4 at physiologic concentrations and T3 at supraphysiologic
concentrations increase abundance of proliferating cell nuclear
antigen (PCNA) and ERK1/2 activation, markers of cell
proliferation, in small cell and non-small cells lung cancermodels
(39). Interestingly, thyroid hormones led to phosphorylation
of ERα, while an ERα antagonist blocked T4 induced PCNA
expression, ERK1/2 activation and ERα phosphorylation. This
suggests, as demonstrated in breast cancer cells, that thyroid
hormone mitogenic effects mediated via the plasma membrane
may involve an ERα dependent pathway. Tetrac, as well as
pharmacologic inhibition of the MAPK pathway, blocked lung
cancer cell proliferation in response to thyroid hormones (39,
40). Moreover, in human non-small cell lung cancer cells,
T4 at physiological concentrations enhanced internalization
and nuclear translocation of the integrin αv monomer. αv
monomer then binds inside the cell nucleus promoters of
central cancer-related genes, such as ERα, cyclooxygenase-2,
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TABLE 1 | Preclinical studies on thyroid hormones and cancer.

Cancer

type/model

Preclinical

studies

Thyroid hormones/Inhibitors effect Proposed mechanism

Breast in vitro T3 (10–13) and T4 (14) promoted proliferation

T3 stimulated cell migration (15). T4 stimulated PDL1 expression (16). Nanotetrac sensitized to

apoptosis and increased angiogenesis inhibitors (17) and reduced PDL1 expression (16)

ER mediated (11–13), TR

mediated (10), Membrane

receptor (14), Integrin αvβ3

(15–17)

T3 enhanced apoptosis (18). T3 (19–21) and T4 (19, 21) decreased proliferation. T3 enhanced

chemosensitization (22, 23)

SMP30 downregulation

(18), c-fos upregulation (19)

,ER expression (20),

sensitization of

mitochondrial metabolism

(22)

in vivo T3 treatment increased tumor incidence (24). Hyperthyroidism increased tumor incidence

(25, 26) and aggressiveness (26). Hypothyroidism decreased tumor incidence (25–31),

increased latency (30), slowed tumor growth (30–32), decreased tumor volume (29) and

resulted in disease remission (33)

Hypothyroidism enhanced invasiveness and metastases (32)

Prostate in vitro T3 induced proliferation (34). T4 induced cell migration (35, 36) Downregulation of BTG2

(34), integrin αvβ3 (36)

T3 and T4 inhibited proliferation (19) c-fos upregulation (19)

in vivo Hypothyroidism reduced growth rate (37, 38). T3 reduced tumor growth (35)

Lung in vitro T4 and T3 induced proliferation (39, 40). T4 induced HIF-1α expression (41) Integrin αvβ3 (39–41)

in vivo T4 increased tumor growth (42, 43), angiogenesis (43) and metastases (42). Hypothyroidism

slowed tumor growth (38). Tetrac suppressed tumor growth (40)

Ovary in vitro T3 (44, 45) and T4 (44–46) induced proliferation. T4 induced HIF-1α expression (41). T3 and T4

involved in EMT (47) and induced MAPK and PI3K gene expression (48). Tetrac, Triac, and

T1AM inhibited proliferation and induced apoptosis (49)

Akt pathway (45), integrin

αvβ3 (41, 44, 46–49)

T3 and T4 inhibited proliferation (21, 45)

Cervix in vitro T4 induced MAPK (50–52) Membrane receptor (50–52)

Glioma/

glioblastoma

in vitro T3 and T4 induced proliferation (9, 53), and inhibited apoptosis (54) Integrin αvβ3 (9, 53, 54)

T3 induced re-differentiation and inhibited proliferation (55) Akt pathway (55)

in vivo Nanotetrac reduced tumor size and decreased vascularity (56) Integrin αvβ3(56)

Neuroblastoma in vitro T3 inhibited ras-induced proliferation (57) TR mediated (57)

Renal in vitro T3 stimulated proliferation (58) TR mediated (58)

in vivo Tetrac reduced tumor size (59) Integrin αvβ3 (59)

Gastric in vitro T3 induces VEGF and HIF1α (60) Akt pathway (60)

in vivo Hyperthyroidism increased cancer incidence (61)

Pancreas in vitro T3 increased cell proliferation, migration, and invasion (62)

T3 (45, 63) and T4 (45) inhibited proliferation Cyclin-CDK inhibition(63)

in vivo Tetrac inhibited tumor growth and angiogenesis (64) Integrin αvβ3 (64)

Colon in vitro T3 promoted cell growth and differentiation (65). T4 promoted cell proliferation (66). T3 and T4

up regulated MDR-1 protein (67). T4 stimulated PDL1 expression (16)

Integrin αvβ3 (16, 66)

in vitro T3 reduced cell proliferation and increased differentiation (68) E-cadherin induction (68)

in vivo T4 increased cancer incidence (69)

Hepatocellular in vitro T3 increased migration and invasion (70, 71), and activated MAPK and Akt pathway (72)

T4 promoted HCC cell self-renewal (73)

TR mediated (70, 71, 73),

αvβ3 integrin (72)

T3 inhibited cell proliferation (74–76) and invasion (77) TR mediated (74–77)

in vivo Hypothyroidism reduced tumor growth (32, 78), number and size of metastases and prolonged

survival (78). Hyperthyroidism increased invasion and lung metastases (71)

Hyperthyroidism associated with preneoplastic nodule regression (79). Hypothyroidism

enhanced invasiveness and metastases (32)

TRβ1 up-regulation (79)

Adrenocortical in vitro T3 and T4 Induced proliferation (45)

T3 and T4 inhibited proliferation (45)

Thyroid in vitro T3 and T4 induced proliferation (80) Integrin αvβ3 (80)

(Continued)
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TABLE 1 | Continued

Cancer

type/model

Preclinical

studies

Thyroid hormones/Inhibitors effect Proposed mechanism

in vivo Hypothyroidism reduced tumor growth (81). Tetrac inhibited tumor growth (82, 83) Integrin αvβ3 (82, 83)

Melanoma in vivo Hypothyroidism increased tumor latency and survival (84)

Basal cell

carcinoma

in vitro T3 reduced growth and induced apoptosis (85) PKA induction (85)

in vivo T3 reduced tumor growth (85)

Ehrlich tumor in vivo Hyperthyroidism increased tumor size (86) and ascitic volume (87)

Sarcoma in vivo Hyperthyroidism increased tumor size and metastases (88)

Multiple

myeloma

in vitro T3 and T4 induced proliferation and viability (89, 90) and increase cell migration and invasion

(91)

Integrin αvβ3 (89–91)

in vitro Tetrac inhibited proliferation and induced apoptosis (92) Integrin αvβ3 (92)

Leukemia in vitro No direct effect of T3 and T4 (93)

Lymphoma in vitro T3 and T4 induced proliferation and VEGF expression (94) Integrin αvβ3 (94)

in vivo Hyperthyroidism increased tumor growth (95, 96) and reduced survival (96)

Angiogenesis ex vivo (CAM

model)

T3 (97, 98) and T4 (97–100) induced angiogenesis. Tetrac arrested tumor related angiogenesis

(40, 59, 82, 83)

Membrane receptor (98),

integrin αvβ3

(40, 59, 82, 83, 97, 99, 100)

hypoxia-inducible factor-1α (HIF1α), and thyroid hormone
receptor β1 (41).

Gynecological Cancer Cell Models
In ovarian cancer cells T3 at supra physiological and T4 at
physiological concentrations induced cell proliferation, survival
and viability and led to αvβ3 mediated ERK up-regulation
(44, 46). Genes that constrain cell cycle (p21, p16), promote
mitochondrial apoptosis (Nix, PUMA), and tumor suppression
(GDF-15, IGFBP-6) were inhibited by TH, while a hypothyroid
environment attenuated ovarian cancer growth (44). TH were
also shown to be involved in αvβ3 mediated epithelial to
mesenchymal (EMT) transition in ovarian cancer cells, inducing
mesenchymal markers zeb-1, slug, and vimentin, and inhibiting
the epithelial markers, e-cadherin and zo-1 (47). This suggests
a possible implication for TH in ovarian cancer metastases.
The αvβ3 inhibitor tetrac induced ovarian cell apoptosis as
well as upregulation of ATM and PARP-1, proteins that
coordinate recognition of DNA damage (49). As demonstrated
for lung cancer models, αv monomer internalization and nuclear
translocation were induced by T4, activating multiple genes
involved in cancer promotion (41). Importantly, and comparable
with results from breast cancer, crosstalk between integrin
αvβ3 and ERα promoted the proliferation of ovarian cancer
cells by TH, mimicking functions of E2. Both T4 and E2
promoted nuclear translocation of the integrin αv monomer as
well as the phosphorylation of ERα, while the presence of an
antagonist for ERα blocked T4-induced ERK1/2 activation, ERα

phosphorylation, PCNA expression and cell proliferation (46).
In cervical cancer cells (HeLa), T4 was demonstrated to

rapidly induce phosphorylation and nuclear translocation of
MAPK (50) and to potentiate EGF and TGFα-induced MAPK
activation (51). These effects could not be mediated through TR,
as HeLa cells lack these receptors. These effects were reproduced

by T4-agarose and blocked by tetrac, suggesting a membrane
receptor involvement (50–52).

Central Nervous System Tumor Cell
Models
In glioma cells T4 caused proliferation and upregulation
of PCNA and MAPK. This effect was inhibited by tetrac,
suggesting mediation by the αvβ3 integrin (53). In another
study in glioma cells, T3 and T4, acting on the αvβ3
integrin, induced proliferation and activation of ERK1/2,
while only T3 activated Src kinase and its downstream
PI3-kinase signaling cascade. These findings suggested that
the integrin contains two iodothyronine receptor domains,
activating different pathways (9). Resveratrol-induced-apoptosis
was inhibited in glioblastoma cells by T4, through interference
with nuclear COX-2 and ERK1/2 interaction. This effect was
prevented by tetrac (54). Other studies demonstrated conflicting
results. In both astrocytoma and glioblastoma cells, T3 promoted
re-differentiation. T3 increased cell proliferation and phospho-
Akt levels in astrocytoma cells, yet suppressed cell proliferation
in glioblastoma cells, suggesting differing effects related to
cancer aggressiveness (55). In neuroblastoma cells, T3 inhibited
ras-induced proliferation and blocked induction of cyclin D1
expression by the oncogene (57). T3 strongly antagonized the
transcriptional response mediated by the Ras/MAPK signaling
pathway in neuroblastoma cells expressing TRs.

Renal Cancer Cell Models
Renal cancer is associated with multiple aberrances of thyroid
hormone signaling pathway. These includemutations and altered
expression of thyroid hormone receptors, decreased intratumoral
concentrations of T3, as well lowered expression and disturbed
alternative splicing of type 1 iodothyronine deiodinase (102–
106). In contrast to normal kidney cells, which decrease
proliferation in response to T3, divisions of renal cancer cell
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lines are stimulated by TH (58). These different T3 effects are
the result of distinct, cell type specific regulation of genes that
control cell cycle progression. In renal cancer cells T3 attenuates
expressions of E2F4, p107, and p130, while in healthy kidney
cells the expression of p107 is stimulated by T3. p107 and p130
are proteins of the retinoblastoma family which enable binding
of E2F4 and E2F5 to form CERC (cyclin E repressor complex).
During G1 phase, CERC interacts with and negatively affects
the activity of promoter of CCNE1, encoding cyclin E1, thus
repressing proliferation (107). In consequence of these disparate
effects on gene expression, T3 accelerates cell cycle progression in
renal cancer cells, triggering progression to S phase. In contrast,
in normal kidney cells, cell cycle progression is attenuated by T3
(58). These pro-proliferative T3 effects on renal cancer cells were
confirmed by an independent study (108).

Gastrointestinal Cancers Cell Models
T4 and T3 differently influence gastrointestinal cancer cells.
In contrast to renal tumors, gastric cancers accumulate T3,
possibly due to overexpressed transthyretin that mediates cellular
T3 import (60). The increased intracellular T3 concentration
directly contributes to cancer progression, by inducing the
expression of HIF1α, which in turn activates the expression of
proangiogenic VEGF. Interestingly, these T3 effects are mediated
by accumulation of fumarate, one of the key intermediates of
TCA cycle, acting as an inhibitor of HIF1α degradation. These
T3 effects are mediated by rapid non-genomic mechanisms,
involving PI3K signaling (60). T4, acting on αvβ3 receptors,
stimulates colon cancer cell proliferation and activation of PCNA,
cyclin D1, and c-Myc (66). These pro-cancerous T4 effects
can be prevented by tetrac and nanotetrac. Furthermore, tetrac
and nanotetrac potentiate antiproliferative activity of cetuximab,
an anti-EGFR antibody, suggesting potential beneficiary effects
of these drug combinations in colon cancer patients (66).
These pro-mitogenic effects of extracellular T4 are in sharp
contrast to mechanisms initiated by T3. Dentice et al. showed
that treatment of colon cancer cells with T3 induces their
differentiation with concomitant reduced proliferation (68).
T3 activated tumor-suppressive E-cadherin, triggering plasma-
membrane localization of beta-catenin, thus preventing its
nuclear mitogenic activity. These protective T3 actions are
prevented by activated beta-catenin which stimulates expression
of type 3 deiodinase and downregulates type 2 deiodinase,
thereby reducing intracellular T3 pool. In colon cancer cells,
T4 mediated the activation of MDR1, suggesting that thyroid
hormones may promote drug resistance mechanisms (67, 109).

The effects of T3 in pancreatic tumor cells depend on
tumor type. Proliferation of some, but not all, cell lines
derived from highly aggressive pancreatic adenocarcinoma was
suppressed by T3 (63). Mechanistically, T3 changed expressions
of cell cycle regulators, leading to downregulation of cyclins
D1 and E, and upregulation of cdk inhibitors, p21cip1 and
p27kip1. Furthermore, T3 attenuated the activity of cyclin-CDK
complexes, which resulted in reduced pRb phosphorylation and
G1 cell cycle arrest. In contrast, the proliferation, migration,
and invasion of pancreatic cancer cells was stimulated by T3
in vitro (62). These results fit observations of patients in which

hypothyroidism treated with TH supplementation correlated
with increased risk of tumor progression and poor prognosis
(62). Thyroid hormones were shown to potentiate cytotoxic
effects of chemotherapeutics in pancreatic cancer cells (63).

Conflicting in vitro results exist regarding the effect of thyroid
hormones in hepatocellular carcinoma (HCC). Several studies
demonstrated that T3, acting on the TR, leads to inhibition of
cancer cell growth. In HCC cells, T3 downregulated oncogenes
CDK2, cyclin E and phospho-Rb (74) and up regulated the
tumor suppressor p21 and endoglin (74, 75). T3 also induced
DKK4, which suppresses cell invasion and metastatic potential
via reduction of matrix MMP2 (77) and downregulated ELF2,
a transcription factor associated with tumor growth and cell
proliferation (76). In vitro experiment confirmed that TRβ1
silencing enhanced proliferation and migration of human HCC
cells (79). Conversely, T3 action on TR may increase HCC
aggressiveness. A high frequency of somatic point mutations of
TRα and TRβ were identified in human HCC samples (110, 111).
T3 was associated with increased HCC invasiveness through up
regulation of furin (70) and lipocalin 2 (71) in a TR dependent
manner. Lipocalin 2 and TRα were both overexpressed in HCC
patient samples and correlated with cancer grade, stage, and
survival (71). T4 action on TRα promoted HCC cells self-
renewal, increased cancer stem-like cells and drug resistance and
upregulated NF-kB (73). Finally, T3 binding to integrin αvβ3 in
HCC cells, induced growth-promoting effects via ERK1/2 and
Akt phosphorylation (72).

Hematological Malignancies Cell Models
T4 and T3 stimulate proliferation and viability of multiple
myeloma (MM) cells by activating αvβ3 integrin receptor, leading
to rapid activation of the MAPK signaling pathway (89, 90). This
in turn, results in activation of genes involved in proliferation
(PCNA), and reduced expression of genes encoding apoptotic
regulators such as apafl, caspase-3, puma, and noxa (90).
Remarkably, the integrin-mediated TH actions may contribute
to progression of MM by changes in adhesion and remodeling of
extracellularmatrix. Specifically, T3 and T4 increased adhesion of
MM cells to fibronectin and activated expression of MMP-9 via a
mechanism involving αvβ3 andMAPK (91). These in vitro results
are of potential clinical importance, since tetrac inhibited MM
cell proliferation and induced apoptosis. Furthermore, tetrac
sensitized patient-derived MM cells to bortezomib, providing
a potential new therapeutic option (92). Tetrac also blocked
TH-mediated induction of MMP-9 (91).

TH affect proliferation of T-cell lymphoma (TCL) cells
by simultaneous induction of genomic and non-genomic
mechanisms (112, 113). The non-genomic mechanisms involve
rapid membrane translocation of PKC ζ isoform and activation
of ERK and NF-κB. One of the downstream targets of PKC ζ

signaling is inducible nitrix oxide synthase (iNOS), a well-known
activator of TLC proliferation. Barreiro Arcos et al. showed
that intracellular activity of TH is prerequisite for activation
of iNOS expression, along with enhanced expression of TRα

(113). Non-genomic TH actions also contributed to survival
and progression of TCL. Specifically, binding of TH to αvβ3
receptors, triggered pro-proliferative, and proangiogenic signals

Frontiers in Endocrinology | www.frontiersin.org 5 February 2019 | Volume 10 | Article 59

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Krashin et al. Thyroid Hormones and Cancer

including enhanced expression of cyclins, PCNA, and VEGF.
This TH-induced secretion of VEGF stimulated proangiogenic
activity of endothelial cells, possibly contributing to TCL
progression (94). In another study, in vitro treatment of
lymphoma cells with T3 and T4 activated proliferation, as
indicated by increased expressions of PCNA, as well as cyclins
D, A2, and B (95).

In vitro Studies in Other Cancer Models
The cancers originating from thyroid gland are influenced by
its own secretory products. Specifically, T4 and T3 promote
proliferation of follicular and papillary thyroid cancers in vitro
(80). These effects are largely mediated by non-genomic
signaling involving αvβ3 receptor as indicated by tetrac blockade
of the TH-induced proliferation. Furthermore, T4 treatment
blocked pro-apoptotic signaling induced by external stimuli
such as resveratrol (80). Altogether, this data indicates pro-
cancerous and anti-apoptotic role of TH in thyroid cancers. An
inhibitory role of TH was reported for skin cancer. T3 inhibited
proliferation and induced apoptosis in basal cell carcinoma
cells (85). Mechanistically, T3 reduced protein stability and
transcriptional activity of Gli2, an oncogenic transcription factor,
that promotes G1/S cell cycle phase transition.

Moriggi et al. tested TH influence on six cell lines derived from
various types of cancer that differed by the profile of mutations
in genes involved in PI3K and beta-catenin signaling pathways.
Remarkably, for each cancer type, T3 exerted dual effect,
either stimulating or attenuating proliferation. Unfortunately,
the presented data did not clarify the cause of this differential T3
effects (45). The results of this study underscore the complexity
of mechanisms involved in TH-mediated effects in cancer cells.

Taken together, the results of the in vitro studies suggest that
effects of thyroid hormones in cancer are mediated by complex
genomic and non-genomic signal transduction pathways and
are highly dependent on cell type and molecular context. These
biological pathways were extensively summarized in a recent
review by Goemann et al. (114).

The complex and often contradictory T4 and T3 effects
observed in vitro underline the importance of in vivo studies,
which can provide valuable information on the net TH effects in a
living organism. On the other hand, in vitro experiments provide
a unique opportunity to reveal mechanistic details of intra- and
extracellular processes initiated by T4 and T3 in cancer cells.
Inevitably, both types of studies are required to clarify the role
of TH in cancer development and progression.

IN VIVO STUDIES OF THE
THYROID-CANCER ASSOCIATION

This section summarizes the in vivo studies on the thyroid
hormone-cancer association, presented in Table 1. A
comprehensive list of in vivo studies is presented in
Supplemental Table 2.

Breast Cancer Animal Models
One of the earliest reports analyzing in vivo the link between
thyroid hormones and breast cancer was published in 1946.

Treatment of mice with the thyroid synthesis inhibitor, thiourea,
delayed development of spontaneous breast tumors (115).
Similar results were achieved when mice were treated with
another compound, thiouracil (116). These results were further
validated by Vonderhaar et al., who found that thiouracil-
induced hypothyroidism delayed development and decreased
incidence of spontaneous breast tumors in mice (27). The study
suggested that hypothyroidism could contribute to local atrophy
of mammary glands, resulting in reduced tumor formation.
Contrasting results were obtained on experimental Ehrlich
tumors (ET) that arise from mouse mammary adenocarcinoma
(86). In that study, hyperthyroidism decreased metabolic
activity and proliferation of ET as evidenced by lowers nuclear
diameter, mitotic index, and number of nucleolus organizer
regions. TH effects were also tested in vivo in models of
chemically induced breast tumors. Early studies brought
inconclusive results, showing that both thyroidectomy and
thyroxine supplementation reduced incidence of breast tumors
(117). However, a series of later reports clearly demonstrated
the protective effect of PTU (propylthiouracil)-induced
hypothyroidism. PTU given at a dose that produced severe
hypothyroidism in rats, dramatically reduced the incidence
of 7,12-dimethylbenz(a)anthracene (DMBA) (28) and N-
methyl-N-nitrosourea (MNU) (29) induced breast tumors. A
more recent study further demonstrated that PTU-induced
hypothyroidism delayed development and reduced incidence
of DMBA-induced mammary tumors by activating apoptosis
(30). The protective effects of hypothyroidism were also shown
in a model of breast tumor xenografts. Treatment with PTU
inhibited growth of inoculated mammary adenocarcinomas
and improved survival of mice (31). Spectacular effects of
PTU treatment were reported by Shoemaker and Dagher
who demonstrated complete remission of mammary tumor
xenografts in 77% of PTU-treated mice (33). Confounding
reports on the influence of thyroidal status in human cancer was
partially explained by Martínez-Iglesias et al. (32). Their study
revealed that while the growth of breast cancer cells inoculated
into hypothyroid hosts was delayed, the tumors were more
invasive and metastatic. The tumors grown in hypothyroid
animals were more undifferentiated, with reduced expression of
epithelial markers (e.g., keratin 8/18, β-catenin) and enhanced
expression of mesenchymal markers (vimentin). However,
the same study demonstrated that hypothyroidism reduces
cancerous proliferation and stimulates necrosis in tumors,
resulting in retarded tumor growth (32). In a parallel study, the
same group showed that overexpression of thyroid hormone
receptor β (TRβ) attenuated growth of breast tumor xenografts
in mice, indicating its tumor suppressive activity (118). These
studies demonstrated that intracellular and extracellular effects
of thyroid hormones can differently contribute to development
and progression of breast cancer, affecting both cancer cells and
tumor stroma.

Prostate Cancer Animal Models
Consistently with results described above, PTU-induced
hypothyroidism attenuated growth of prostate cancer xenografts
in athymic mice (37, 38). The latter study clearly demonstrated
that PTU did not affect the proliferation of prostate cancer
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cells in vitro, supporting the conclusion that anticancer effect
was the result of hypothyroid state of the animals (38). In
contrast to these suppressive effects of hypothyroidism, a more
recent study reported that treatment with T3 (2.5 µg/day)
inhibited growth of prostate tumors inoculated in nude
mice (35).

Lung Cancer Animal Models
One of the early in vivo studies on TH effects on lung cancer
was performed using a model of Lewis lung carcinoma (3LL),
an undifferentiated squamous cell carcinoma that spontaneously
developed in the lung of C57/BL6 mouse (42). Hyperthyroidism
induced by T4 administration significantly increased growth
of tumors inoculated by subcutaneous injections of 3LL cells
in mice. In contrast, hypothyroidism triggered by methimazole
treatment attenuated tumor growth and increased survival
of the animals. Remarkably, T3 and T4 differently affected
progression of the disease. The number of pulmonary metastases
was reduced by treatments with T3 or methimazole while it
was increased by treatment with T4. The reduction of tumor
growth by methimazole was probably a result of its direct
inhibitory effect on cancer cells, since in vitro experiments
revealed that methimazole suppressed growth of 3LL cells
(42). However, another study showed that hypothyroidism
itself can also suppress growth of lung tumors. Treatment
with PTU significantly suppressed growth of lung tumors
subcutaneously inoculated in mice. This PTU effect was
possibly not the result of suppressive effect on cancer cells
since in a parallel experiment PTU did not affect growth
of prostate cancer cells in vitro (38). Interestingly, it was
suggested that TH may also affect cancer progression by
influencing immune response. In the abovementioned study
both T4 and methimazole suppressed the activity of NK cells,
while alveolar macrophages were activated by T4 and T3
(42). This data indicates that T4 and T3 have broad effects
on lung cancer development and progression, not only via
direct effects on cancer cells but also by influencing tumor
environment and elements of the immune system. The direct
effects of T4 on lung cancer cells are probably the result
of non-genomic actions. Interesting data was provided by a
large study involving 100 mice with Lewis lung carcinoma
tumors in which interactions between thyroid hormone and
nitric oxide signaling were analyzed (43). Treatment of mice
with T4 resulted in a remarkable increase of tumor weight
compared to euthyroid animals. These effects were associated
with increased expression of VEGF, suggestive of enhanced
vascularization. Furthermore, intraperitoneal injections of tetrac,
an antagonist of T4 binding to integrin αvβ3, significantly
reduced tumor growth and VEGF expression. These results
suggested that pro-tumorous T4 effects in 3LL cells are mediated
by αvβ3 integrin receptor (43). Similar data was obtained in
non-small cell lung cancer cells in which pro-proliferative T4
actions were blocked by antibody directed against integrin
αvβ3 as well as by tetrac (40). These promising therapeutic
effects of tetrac were also confirmed in studies involving other
tumors (56, 64, 82).

In vivo Studies of Gastrointestinal Cancers
Several lines of evidence indicate that high T4 levels promote
gastrointestinal carcinogenesis in vivo. In rats, T4 administration
increased incidence of chemically induced tumors of colon
and stomach (61, 69). TH effects were comprehensively
analyzed in models of liver neoplasia. It was shown that
hypothyroidism delays progression of experimental Morris
hepatoma tumors implanted in female Buffalo Rats (78).
Specifically, hypothyroidism induced within 2 weeks from tumor
implantation not only attenuated growth of localized tumors but
also decreased the number of lung metastases and prolonged
survival of the animals. These results were further supported
by later studies demonstrating tumor suppressive role of TRβ1
in the progress of hepatocellular carcinoma (HCC). Using rat
model of HCC, Frau et al. (79) showed that expressions of
TRα1 and TRβ1, along with downregulated expressions of their
targets, are decreased in tumors. Notably, downregulation of
TRβ1 expression was associated with high proliferative activity
of liver cells. TRβ1 expression was also decreased in human
HCC tissue samples. In contrast, induction of hyperthyroidism
in rats bearing nodules resulted in increased TRβ1 expression
and regression of preneoplastic lesions. These results clearly
suggest a tumor suppressive role of TRβ1 in HCC. However,
contrasting results were published on the role of TRα1 in
HCC (71), showing that TRα1 is overexpressed in human HCC
and stimulates migration and invasion in vitro and in vivo.
Under hyperthyroid conditions HCC cells expressing TRα1
induced invasion andmetastases formation in mice. These effects
were mediated via MET/FAK pathways. These results were
further confirmed by analysis of human HCC tissue samples
in which high expressions of TRα1 were associated with lower
patients’ survival. Remarkably, no such correlation was observed
for TRβ1. The authors suggested that T3/TR could play a
dual, oncogenic or tumor suppressive role, depending on the
molecular background and stage of the disease. So far, this
hypothesis was not supported by experimental data. Curiously,
the same research group published contrasting results on the
expression of TRs in human HCC tissue samples. In a study
published in 2012 they reported decreased expressions of TRs
(including TRα1) in HCC specimens and concluded that TRs
play a tumor suppressive role (119). Clearly, the role of T3 and
TRs in HCC requires further elucidation in independent studies
involving both human tissue samples and in vivo experiments
in mice.

In vivo Studies of Hematological
Malignancies
The earliest in vivo studies exploring the relations between TH
and leukemia brought inconsistent results. One study reported
decreased incidence of spontaneous lymphatic leukemia in
mice with T4-induced hyperthyroidism when compared with
hypothyroid mice treated with PTU (120). The hypo- and
hyperthyroid leukemic animals did not differ in their survival
rates. However, interpretation of these results is challenging,
mainly due to limited information on methods and criteria
used for leukemia diagnosis in the animals. In contrast, Morris
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et al. showed that PTU-induced hypothyroidism attenuated
lymphomatous infiltrations in rats compared with euthyroid
animals (121). Furthermore, hypothyroidism prolonged survival
of mice and rats with transplanted lymphomas, while T4
treatment of euthyroid animals resulted in the opposite
effects. Different results were obtained in a study focused on
progression of acute stem-cell leukemia in rats. The animals
were rendered hypothyroid by several methods, including
thyroidectomy and thyroid gland ablation with radioactive
iodine. Apparently, none of these treatments influenced growth
of subcutaneously inoculated tumors nor affected survival of the
animals (122).

Non-genomic TH effects were reported for T-cell lymphomas
(TCL), defined as a group of heterogeneous lymphoproliferative
disorders. TH stimulated TCL proliferation and angiogenesis by
acting through αvβ3 integrin receptor (94). TH binding to αvβ3
triggered activation of VEGF and NF-κB pathways, resulting
in stimulation of angiogenesis and proliferation. This study
further showed that selective inhibition of αvβ3 with cilengitide
attenuates growth of TCL xenografts in mice. An interesting
study providing the link between TH, stress, and cancer was
published by Frick et al. (93). They showed that chronic stress
led to suppression of TH plasma levels which was associated
with attenuation of T-cell proliferation in response to mitogens,
suggestive of impaired immune functions. Supplementation
with T4 protected T-cells against stress-induced suppression of
proliferation. More importantly, treatment with T4 prevented
stress-induced growth of lymphoma tumors subcutaneously
inoculated in mice. The study also suggested that TH antitumor
effects could be mediated by PKC isoforms θ and α. Exposition
of the animals to stress diminished activation of these PKC
isoforms. In contrast, T4 supplementation counteracted stress-
induced attenuation of PKC activation.

Thyroid hormone status can have dual effect on lymphoma
growth and metastasis as shown by a study in which
hyperthyroidism stimulated local tumor growth while
hypothyroidism fostered formation of metastatic lesions in
kidneys (95). Interestingly, these dual effects of TH on primary
and secondary malignancies seem to be a more generalized
mechanism since similar observations were made in the above
mentioned mouse model of breast cancer. Lymphoma cells
inoculated in hyperthyroid animals grew faster, with enhanced
tumoral and peritumoral vasculogenesis, and increased
expression of PCNA and caspase 3 (96). These effects were
associated with shorter survival of hyperthyroid animals
when compared with eu- and hypothyroid mice. Similar to
the effects described in vitro (95), enhanced expressions of
PCNA and cyclins D and E was described in tumors grown in
hyperthyroid animals, when compared with eu- and hypothyroid
animals. Surprisingly, hyperthyroidism stimulated apoptosis, as
demonstrated by activation of caspase 3 and Bax. The enhanced
metastasis observed in hypothyroid animals could be the effect
of changes in immune responses. Hypothyroidism increased
the percentage of CD4+CD25+FoxP3+ Treg cells in tumor
draining lymph nodes (TDLN). Tregs suppress activation and
proliferation of CD4+ and CD8+ T lymphocytes. Likewise,
activated CD8+ T cells (CD8+CD69+ or CD8+CD44hi) were

decreased in TDLN of hypothyroid animals. The presence
of immunosuppressive Tregs in hypothyroid TLDN possibly
contributed to metastatic progression, since depletion of CD8+
cells resulted in enhanced metastasis in mice (95). In contrast,
TH could prevent metastasis by activation of apoptosis. Indeed,
tumors grown in hyperthyroid animals showed increased
presence of apoptotic cells when compared with eu- and
hypothyroid mice. Remarkably, no signs of apoptosis were
found in highly proliferative regions of tumors, explaining
their intense growth. Altogether these results suggest that
hypothyroidism creates an immunosuppressive milieu that
allows for immune tolerance toward metastasizing tumor
cells. Another indication of immune tolerance is reduced
accumulation of NK cells in spleens from hypothyroid animals
suggestive of reduced ability to remove tumor cells by NK
cells (95).

In vivo Studies in Other Cancer Models
Protective effect of hypothyroidism was also shown for uveal
melanoma, one of the most common and highly metastatic
intraocular malignancies (84). PTU-induced hypothyroidism
significantly improved survival of mice with ocular melanoma,
in contrast to hyperthyroid animals that demonstrated
significantly shorter survival when compared to euthyroid
animals. Remarkably, uveal melanoma cells expressed high levels
of αv and β3 subunits of the integrin receptor, thus providing
the platform for binding of T4 and activation of pro-proliferative
intracellular signaling cascades.

Studies on the effects of TH on sarcoma brought conflicting
results with early studies demonstrating that thyroid
radioablation did not change growth of fibrosarcomas in
mice (123), while in another reporting that hyperthyroidism
attenuated growth of sarcoma tumors in mice (124). However,
these results were later negatively verified by independent studies
which showed that T4-induced hyperthyroidism stimulated
growth and metastatic progression of sarcoma xenografts in
mice, while tumor growth was attenuated in mice rendered
hypothyroid by radioablation of the thyroid gland (88).

Antitumor effects of T3 were shown for basal cell carcinoma
(BCC), the most common human cancer. Topically applied T3
significantly reduced tumor growth in mouse model of BCC
(85). Intracellular T3 levels are regulated by activity of type 3
deiodinase (D3) which degrades T3. Depletion of D3 in skin
of BCC bearing mice significantly reduced the occurrence of
tumors, suggesting that antitumor T3 actions are mediated via
its intracellular activity and not mediated by αvβ3 integrin
receptor (125).

In contrast, plasma membrane-initiated TH signaling is well-
documented in a mouse model of follicular thyroid carcinoma
(FTC). FTC tumors are spontaneously developed by ThrbPV/PV

mice in which both alleles of thyroid hormone receptor β bear
PVmutation that initially was identified in a patient with thyroid
hormone resistance. TRβ with PV mutation are unable to bind
T3 and activate transcription. Treatment of ThrbPV/PV mice with
PTU reduced the expression of integrin αv subunit, thus leading
to attenuation of TH-plasma membrane signaling, including the
cascade involving PI3K, AKT, and β-catenin (81). This in turn
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resulted in inhibition of cancerous proliferation and reduction of
tumor growth.

In conclusion, the in vivo studies in animal models indicate
that TH have broad effects on cancer development and
progression. On one hand, local intracellular changes in TH
concentrations contribute to proliferation of cancer cells,
stimulating tumor growth. On the other hand, extracellular
hypothyroid milieu may support cancer progression by
attenuating immune responses. Several lines of evidence strongly
indicate that non-genomic T4 actions can trigger cancerous
proliferation and that interference with T4-αvβ3 integrin binding
can provide efficient therapeutic option for patients.

CLINICAL STUDIES OF THE
THYROID-CANCER ASSOCIATION

This section summarizes clinical studies on the thyroid hormone-
cancer association, presented in Table 2. A detailed list of clinical
studies, including study design and number of patients, is
presented in Supplemental Table 3.

Effect of Thyroid Status on Cancer Risk
Effect on the Overall Risk of Cancer
Hellevik et al. conducted a prospective population based study
of 26,691 people without a previously diagnosed thyroid disease
(153). Baseline TSH levels were measured and 9 years of
follow up of cancer incidence was recorded. Compared to
euthyroid reference group, increased cancer risk (HR 1.34) was
associated with low TSH levels (<0.5 mU/l), a risk driven
by lung cancer (HR 2.34) and prostate cancer (HR 4.99). In
another population based cohort study, 17,034 patients with
newly diagnosed hyperthyroidism were matched with 34,066
patients without hyperthyroidism. Over a 4 year follow up period,
patients with hyperthyroidism were at higher overall risk of
cancer (Adjusted HR 1.2, p < 0.05) and thyroid cancer (Adjusted
HR 6.8, p < 0.05), with extended duration of hyperthyroidism
associated with greater risk of thyroid cancer (195). The
Rotterdam study prospectively included 10,318 patients with
baseline measurements for free T4 and TSH, followed for a
median of 10.4 years. Higher free T4 levels were associated with
higher risk of solid cancers (HR 1.42 per unit increase in free T4),
lung cancer (HR 2.33), and breast cancer (HR 1.77), although
no association were found for TSH levels (126). Collectively,
these prospective studies support a causal association between
disorders in thyroid hormones and cancer risk.

Effect on the Risk of Breast Cancer
In a population based case control study including 676 breast
cancer patients and 680 controls (127), free T4 levels were
associated with a high overall risk of breast cancer (OR 1.4
for free T4 above vs. below the median). This increase was
later attributed to a higher incidence rate of less aggressive
breast cancer subgroups (128). Another prospective cohort study
conducted by the same group included 2,185 women followed
for an average of 19.3 years for breast cancer incidence (135).
An association was demonstrated between T3 and breast cancer

TABLE 2 | Clinical studies on thyroid function and cancer.

Cancer type Thyroid function/

Treatment

Clinical outcome

Breast Hyperthyroidism Increased risk (126–129), higher mortality

(130, 131). Higher T3 (132, 133) and T4

(23, 132–134) in cancer patients. T3

associated with cancer risk (135, 136),

large tumors (135), lymph node

metastases (135), and cancer death

(137, 138)

No effect on cancer risk (139–141)

Hypothyroidism Decreased risk (129, 142, 143), longer

progression free survival (144), later

diagnosis (142), more localized disease

(142), less lymph node involvement (142).

Lower mortality (145). Decreased risk of

triple+ BC with higher TSH (146)

Increased risk (147)

No effect on cancer risk

(139–141, 148, 149)

LT4 treatment Increased risk (147, 150)

Lower all-cause mortality (151)

No effect on cancer risk (152)

Prostate Hyperthyroidism Increased risk (153, 154), T3 associated

with risk of recurrence (155). Higher T3 in

cancer patients (156)

Hypothyroidism Lower risk (154, 157)

Lung Hyperthyroidism Increased risk (126, 153). Higher T4 and

lower TSH in cancer patients (158)

Hypothyroidism Longer survival (159, 160) and later

diagnosis (159)

LT4 treatment Increased risk (161)

Ovary Hyperthyroidism Increased risk (162), higher mortality

(130, 163). Higher T4 in cancer patients

(164)

Uterine Hypothyroidism Increased mortality (165), Elevated TSH

associated with lower survival (166)

Central

nervous

system

Hyperthyroidism Increased risk (167)

T3 treatment Prolonged survival (168)

Induced

hypothyroidism

Prolonged survival (169, 170)

Renal Hypothyroidism Increased survival (171–178), increased

remission (173), tumor regression (179),

and response to treatment (180)

Increased risk (167)

Esophageal

cancer

Hyperthyroidism Higher incidence in cancer (181)

Pancreas Hyperthyroidism Increased risk (182), increased mortality

(165)

LT4 treatment Higher perineural invasion (62), T stage

(62), nodal spread (62) and poorer

prognostic stage (62)

Induced

hypothyroxinemia

Tumor regression (183)

Colorectal Hyperthyroidism Increased risk (184)

(Continued)
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TABLE 2 | Continued

Cancer type Thyroid function/

Treatment

Clinical outcome

Hypothyroidism Increased risk in untreated hypothyroidism

(184). Higher subclinical hypothyroidism in

colorectal cancer (185). Increased risk with

higher TSH (186)

LT4 treatment Decreased risk (184, 187, 188)

Free T3/free T4

ratio

Higher ratio associated with increased

survival (189)

Hepatocellular Hyperthyroidism Low TSH associated with smaller tumors

(190). T3 and T4 inversely associated with

cancer mortality (191)

Lower survival with elevated T4 (190)

Hypothyroidism Increased risk (192). High TSH associated

with larger tumors (190). Increased

incidence in HCC patients of unknown

etiology (193)

TSH x free T4 Higher value associated with favorable

time to tumor progression and overall

survival if chemotherapy provided and

unfavorable TTTP and OS if sorafenib

administered (194)

Thyroid Hyperthyroidism Increased risk (167, 195)

Head and

neck

Hypothyroidism Increased survival (196–198)

Melanoma Hypothyroidism No difference in survival (199)

Multiple

myeloma

Hyperthyroidism T3 higher and TSH lower in patients (200)

Leukemia Hyperthyroidism T3 and T4 higher and TSH lower in

patients (201). Improved outcome in

Grave’s disease (202)

Hypothyroidism Improved outcome in Hashimoto

thyroiditis (202)

Myelodysplastic

syndrome

Hyperthyroidism T3 and T4 higher and TSH lower in

patients (203)

General Hyperthyroidism Increased risk (126, 153, 195), Increased

cancer death in hyperthyroidism (165), and

toxic nodular goiter (204)

T3 inversely associated with cancer

mortality (191)

No association to cancer mortality

(205, 206)

Hypothyroidism Lower mortality (145, 207), Longer survival

(208), High response to radiation therapy

(209)

Increased risk (167), Increased cancer

mortality (137)

Induced

hypothyroxinemia

Prolonged survival (210)

risk (HR 1.61 of third quartile compared to first). In another large
population-based study conducted by Søgaard et al., women with
hyper- and hypothyroidism were followed for up to 7.4 years
(129). Hyperthyroidism was related to a slight increase in the risk
of breast cancer compared to the general population (SIR 1.11),
while the opposite was shown for hypothyroidism (SIR 0.94). In a
retrospective cohort study of 437 breast cancer patients, elevated

levels of TSH were associated with a lower likelihood of triple
positive breast cancer (ER+ PR+ Her2/neu+) compared with
ER+ PR+ Her2/neu– breast cancer. However, no association
was found with tumor grade or stage (146). Interestingly, Brandt
et al. were recently able to identify a SNP (rs2235544) in the gene
for deiodinase type 1 (DIO1) which was associated with both
free T4 level and breast cancer risk (211). A recently published
case control study which included 682 breast cancer patients
and 731 controls demonstrated an association between higher
serum total T4 and breast cancer in both premenopausal (OR
5.98) and post-menopausal women (OR 2.81), whereas a negative
association was demonstrated between total T3 and breast cancer
(134). Similarly, Huang et al. demonstrated higher free T4
and lower T3 in patients with newly diagnosed breast cancer
compared with patients with benign breast lesions (23). However,
these findings may demonstrate the effect of malignancy on
the thyroid axis, rather than a true demonstration of risk or
causality. Specifically, malignancy may be associated with a
reduction of T3, resulting the so-called non-thyroidal illness
syndrome (NTIS) (212). The association between NTIS and
malignancies is later detailed in this review in a designated
section. A meta-analysis from 2012, which included 10 case
control studies of hyper- and hypothyroidism and breast cancer,
failed to find a putative relationship of either disorder. Notably,
a high degree of heterogeneity was demonstrated between the six
hypothyroidism studies included (139). Another meta- analysis
from 2017 included population based studies assessing thyroid
dysfunction and the risk of breast cancer. Analysis of 12 studies,
including 24,571 cases, also did not find a statistical correlation
between hypothyroidism and breast cancer (p= 0.162). Similarly,
by analyzing 10 studies, which included 21,889 cases, the authors
did not demonstrate a statistically significant higher risk of breast
cancer in hyperthyroid patients (140).

Effect on the Risk of Prostate Cancer
In a prospective cohort study, sera from 3649 patients were
assayed for TSH and free T4 (154). During a 20 year follow
up period, 7.8% of males were diagnosed with prostate cancer.
Higher TSH was associated with a lower risk of prostate cancer
(adjusted HR: 0.7 per 1mIU/L increase in TSH). Similarly, higher
free T4 was associated with increased risk of prostate cancer
(adjusted HR: 1.11 per 1 pmol/L increase). In a prospective study
of male smokers including 402 prostate cancer patients and 800
controls (157), TSH in the highest quintile was associated with
decreased risk of cancer (Q5 vs. Q1–4: OR 0.7). Hypothyroidmen
(high TSH with normal or low T4) had lower prostate cancer risk
compared to euthyroid men (OR 0.48).

Effect on the Risk of Gynecologic Cancers
In a population based case-control study, 767 patients with
recent diagnosis of epithelial ovarian cancer were compared with
1,367 community controls (162). Based on data retrieved from
interviews, hyperthyroidism history was linked with increased
cancer risk (OR 1.8). In another study, Kang et al. evaluated
the association of self-reported history of thyroid dysfunction
with medical records of confirmed endometrial carcinoma (n =

1,314) and ovarian cancer (n = 1,150) as part of the Nurses’
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Health Study (NHS). In this case, history of hypothyroidism
or hyperthyroidism was not associated with cancer risk (213).
Lastly, in a retrospective study Brinton et al. assessed the
relationship between hospital and outpatient admission for
various conditions and subsequent development of uterine
and ovarian cancer. A prior diagnosis of thyroid disease was
associated with uterine cancer (RR 1.52). However, no specific
type of thyroid disease was more strongly linked to risk than
others (214).

Effect on the Risk of Gastrointestinal Cancers
In a large population based case control study by Ko et al., 532
patients with pancreatic cancer were matched to 1,701 controls
randomly selected from the same population (182). Based on
patient self-report, hyperthyroidism history was related with
increased cancer risk (OR 2.1).

Unlike pancreatic cancer, data regarding colorectal cancer
(CRC) and hepatocellular carcinoma (HCC) produced
conflicting results. A single prospective population based
study suggested an association between hyperthyroidism and
an increased risk of CRC (153), but due to a small cohort, this
increase was not statistically significant. In contrast, additional
studies demonstrated that hypothyroidism was associated with
increased risk of colon cancer. A large case-control study
compared 20,990 colorectal cancer (CRC) patients and 82,054
matched controls from a population database, followed for an
average of 6.5 years and determined CRC risk in patients with
thyroid dysfunction (184). In this study both hyperthyroidism
(OR 1.21) and untreated hypothyroidism (OR 1.16) were
associated with increased risk of colorectal cancer. Chan et al.
conducted a prospective case-control study of 3,836 older men
(186). Over a median follow up period of 9 years, 136 men
developed colorectal cancer. Following adjustments, higher TSH
was related with increased incidence of colorectal cancer (SHR
1.19), an association which was reinforced after eliminating the
first year of follow up (SHR 1.23). Free T4 was not associated
with cancer incidence in this study.

Similar to CRC, hypothyroidism may also play a role in
liver carcinogenesis. Hassan et al. conducted a case-control
study including 420 patients with hepatocellular carcinoma
and 1,104 healthy controls (192). Hypothyroidism of longer
than a decade was associated with significantly higher risk of
HCC in women, unrelated to known HCC risk factors (OR
2.9 following regression analysis for risk factors). However,
the data on thyroid disorders was based on patient self-
report using questionnaires rather than thyroid hormone levels.
Reddy et al. (193) demonstrated that in 160 patients with
HCC, hypothyroidism was more prevalent in HCC of unknown
etiology compared to patients with HCC secondary to HCV or
alcoholic liver disease (OR 6.8).

The inverse correlation between thyroid function and cancer
risk observed in CRC and HCC may be attributed to the
elevation of TSH under hypothyroid state. The overexpression
of a functioning thyroid stimulating hormone receptor (TSHR),
which was demonstrated in HCC tissues (215), may provide a
possible mechanism. TSH elevation in hypothyroidism may lead
to HCC progression through direct stimulation of its receptor

on cancer cells. However, no documentation for a similar TSHR
expression in CRC was reported to date.

Effect on the Risk of Hematologic Malignancies
Dalamaga et al. compared 73 patients with primary multiple
myeloma to 73 matched controls admitted for non-neoplastic
conditions (200). The prevalence of clinical thyroid disease
was higher in multiple myeloma patients compared to controls
(adjusted OR 4.03 for thyroid disease, 5.68 for autoimmune
thyroid disease). The levels of free T3 was higher (3.5 vs. 2.7
pg/ml, p = 0.002) and TSH lower (2.2 vs. 3.1 µIU/ml, p =

0.001) in myeloma patients compared to controls, albeit within
the normal range. The same group conducted a case control
study of 101 patients with histologically and cytogenetically
confirmed MDS to 101 matched control. MDS patient had
significantly higher serum levels of free T3 and free T4 and
lower TSH than controls (203). A small case control study
compared thyroid hormone levels between 25 patients with acute
leukemia and 25 matched controls. Total T3, free T3, total
T4, and free T4 were higher in patients than control, within
the normal range, while TSH levels were significantly lower
(201). However, since TH levels were not determined prior to
the development of disease, an assessment of risk could not
be established.

Effect of Thyroid Hormones on Clinical
Presentation of Cancer
Cristofallini et al. retrospectively compared 1,136 women
with breast cancer with 1,088 controls (142). Prevalence of
hypothyroidism was significantly lower in the cancer group
compared to the control group (7.0 vs. 14.9%, p < 0.001).
Hypothyroid breast cancer patients were diagnosed at an older
age (58.8 vs. 51.1 years; p < 0.001), had higher probability
for having a localized disease (95.0 vs. 85.9% clinical T1 or
T2 disease, respectively; p = 0.025), and were more likely to
be lymph node negative (62.8 vs. 54.4%; p = 0.15). While
these findings suggest that hypothyroidism slows breast cancer
progression, the study was limited by its retrospective nature and
by the fact that the diagnosis of hypothyroidism was based on
information from medical charts rather than hormone values.
In the aforementioned study by Tosovic et al. (135), higher
T3 level (third quartile compared to first) was associated with
large breast tumors (>20mm) (HR of 3.17) and lymph node
metastases (HR 4.53). This associationwas especially pronounced
in post-menopausal women. In a series by Atkins et al. 34
patients with various advanced neoplasms (melanoma, renal cell
carcinoma, lymphoma, and colon cancer) had received treatment
with interleukin-2 and lymphokine-activated killer (LAK) cells
(179). Twenty-one percent of patients had laboratory evidence of
hypothyroidism. Patients with hypothyroidism had a higher rate
of tumor regression (71 vs. 19%, p < 0.02).

Conversely, hypothyroidism was associated with increased
aggressiveness of colorectal and liver cancer, comparable with
the effect on cancer risk. In a case control study comparing
273 colorectal cancer patients to 819 matched controls, the
prevalence of subclinical hypothyroidismwas significantly higher
in the colorectal neoplasm group (24.5 vs. 15.3%, p < 0.01).

Frontiers in Endocrinology | www.frontiersin.org 11 February 2019 | Volume 10 | Article 59

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Krashin et al. Thyroid Hormones and Cancer

Compared with euthyroid subjects, hypothyroid patients had
higher likelihood of advanced colonic disease (8.3 vs. 4.4%, p
= 0.028) (185). In another study by Pinter et al., 667 patients
diagnosed with non-surgically treated HCC were retrospectively
followed for a mean period of 65.5 months (190). Hypothyroid
patients (TSH>3.77 µU/ml) had a higher risk for large lesions
(>5 cm), while Hyperthyroid patients (TSH<0.44 µU/ml) had a
lower risk.

Effect of Thyroid Status on Cancer Survival
Effect on Overall Cancer Survival
Several population based studies have demonstrated increased
cancer mortality in hyperthyroidism, with opposite outcomes
in hypothyroidism, supporting the assumption of growth
promoting effect of thyroid hormones. Brandt et al. used data
of 2,152 patients with Grave’s disease and toxic nodular goiter,
followed for 11 years (204). Both diseases were associated with
increased all-cause mortality compared with non-hyperthyroid
controls, and increased cancer mortality was demonstrated
for toxic nodular goiter (HR 1.36, p < 0.05). In a recent
population based study by Journy et al., 75,076 female radiologic
technologists who completed medical questionnaires were
retrospectively followed for a median of 28 years (130). No
association was demonstrated between overall cancer mortality
and hyper or hypothyroidism. However, risk of breast cancer
mortality after 60 years of age was increased in patients with
self-reported hyperthyroidism (HR 2.04, p < 0.05). Women
with hyperthyroidism treated with radioactive iodine had
increased risk of ovarian cancer mortality compared with
women without thyroid disease (HR 5.32, p < 0.05), based on
very few cases. Lechner et al. (216) conducted a retrospective
cohort study of 538 patients with various solid malignancies
(renal cell carcinoma, GIST, HCC, neuroendocrine, primary
central nervous system, other carcinoma, sarcoma) treated
with tyrosine kinase inhibitors. Thirteen percent of patients
developed subclinical hypothyroidism and 27% developed overt
hypothyroidism. Patients with hypothyroidism had significantly
longer overall survival (median overall survival 1,005 days in
subclinical hypothyroidism and 1,643 in overt hypothyroidism
compared with 685 days in euthyroid patients, p < 0.0001). In
Franklyn et al.’s retrospective cohort of hyperthyroid patients
treated with radioiodine (217), mortality from cancers of all
sites was reduced following treatment (SMR 0.9, p = 0.02).
In subgroup analysis lower mortality was significant only for
cancer of the bronchus and trachea (SMR 0.78, p = 0.03)
while for cancers of the small bowel and thyroid, small absolute
risk increases in mortality were demonstrated. Opposing results
were demonstrated in a large population based study, wherein
115,746 patients were followed for 10 years for evaluation of
cancer mortality (137). Following adjustment, patients with
biochemically proved subclinical hypothyroidism (1.6%) at study
inclusion had higher risk of cancer death (RR 1.51, p < 0.05)
as well as increased risk of bone, skin and breast cancer (RR
2.79, p < 0.05). A prospective study by Zhang et al. (191) was
conducted on a cohort of 212,456 middle aged Korean subjects
who had undergone thyroid function tests. Following a median
follow-up of 4.3 years, an inverse association was demonstrated

between free T4 and all-cause mortality (HR = 0.77, P = 0.01)
as well between free T3 and cancer mortality (HR = 0.62, p for
trend= 0.001). TSHwas not associated withmortality endpoints.
This discrepancy may be at least partially attributed to the large
proportion of gastrointestinal tumors in both studies (>45%
of cancer deaths) which, as described above, may propagate in
hypothyroid conditions.

Effect on Breast Cancer Survival
In 1964, Humphrey and Swerdlow were among the first to
demonstrate the effect of thyroid disorders on breast cancer
outcomes (218). In their study, the 5-year survival of 14 patients
who had undergone a thyroidectomy for non-toxic goiter was
significantly longer than nine patients who had undergone
thyroidectomy for hyperthyroidism (71 vs. 22%, p < 0.05). In
another study of 462 cases of breast cancer (131), patients with a
history of thyroid disease had significantly lower survival rates at
5 and 10 years compared with controls (p< 0.005). In a subgroup
analysis, patients with a history of treated hyperthyroidism
had significantly shorter 5- and 10-year survival (p < 0.01).
A population-based prospective cohort study by Tosovic et al.
included 2,185 women who had T3 levels measured as part of
a preventive health study (138). After a mean follow-up of 24.1
years, 26 women died of breast cancer. T3 levels were correlated
with age-adjusted breast cancer related death (HR 2.8, p= 0.012),
especially in post-menopausal patients (adjusted HR 3.73, p =

0.001). Thyroid hormone status may also affect response to breast
cancer therapy. A study by Cao et al. included 28 patients with
metastatic breast cancer treated with the VEGFR-2 inhibitor
famitinib (144). Sixty-four percent of patients had elevated TSH
(>4.94 mIU/L) during treatment. Progression free survival (PFS)
was longer in these patients compared with patients with normal
TSH (107 vs. 53 days, respectively, p= 0.002).

Effect on Lung Cancer Survival
Several decades ago, Hercbergs and Leith reported a case of a
69 year old male with metastatic non-small cell lung cancer that
resolved spontaneously following resuscitation from myxedema
coma, dying of unrelated causes 4 years after the myxedema
event (5). In a later retrospective case-controls study (159),
Hercbergs et al. compared 85 hypothyroid lung cancer patients
to 85 matched euthyroid lung cancer patients. Hypothyroid
patients were older at diagnosis (median age 73 vs. 64 years,
p = 0.0006) and survived longer (stages 1–4: 14.5 vs. 11.1
months, p = 0.014; stage 4: 11 vs. 5 months, p = 0.0018)
compared with controls. In a recent study of 51 non-small-
cell lung cancer patients treated with pembrolizumab, a PD-
1 inhibitor (160), 21% of patients developed hypothyroidism
requiring thyroid hormone replacement, with 80% developing
positive antithyroid antibodies. Overall survival (OS) with
pembrolizumab was significantly longer in subjects who
developed thyroid dysfunction (mean OS 40 vs. 14 months. HR
0.29, p= 0.04).

Effect on Ovarian Cancer Survival
Minlikeeva et al. used collective data from 11 studies, including
information on thyroid hormone status for a total of 5,822
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patients diagnosed with invasive ovarian cancer (163). Increased
risk of mortality was demonstrated for patients with a history of
hyperthyroidism in the 5 years preceding cancer diagnosis (HR
= 1.94; p = 0.01). Hypothyroidism was associated with a mildly
decreased mortality risk (HR = 1.16; p = 0.01). Duration of
hypothyroidism or thyroid medications use were not associated
with survival.

Effect on Renal Cancer Survival
Much research has been conducted on the possible positive effects
of drug-induced hypothyroidism on the outcome of treatment
for renal cell carcinoma (RCC). In a small scale study by Weijl
et al. (180), patients with metastatic renal cell carcinoma were
treated with IL-2 and LAK cells. Forty-seven percent of patients
became hypothyroid following treatment. Favorable response
to treatment was positively correlated with hypothyroidism
(r = 0.76, p= 0.001).

Over the past decade, several studies have reported on
potential favorable outcomes of tyrosine-kinase inhibitors
(TKI’s)-induced hypothyroidism, specifically by sunitinib.
Sunitinib is an oral multitargeted tyrosine kinase inhibitor
commonly used in metastatic renal cell carcinoma.
Hypothyroidism is a common side effect of this treatment,
with up to 85% patients developing abnormality of thyroid
function consistent with hypothyroidism, and roughly a
third requiring thyroid hormone replacement (219, 220). The
mechanism for this effect is not altogether clear, though it may
be related to a decreased VEGF binding to normal thyroid cells
and/or disruption of thyroid blood flow (219). In a retrospective
analysis of metastatic RCC patients who received VEGF receptor
tyrosine kinase inhibitors (171), median OS and PFS were
significantly longer in patients with a peak TSH >10 mIU/L
compared to patients with a peak TSH of ≤10 mIU/L (not
reached vs. 21.4 months, p = 0.005; 47.7 vs. 9.3 months, p =

0.009, respectively). In a series of sunitinib-treated clear cell
RCC (172), hypothyroid (TSH >4 mIU/L) patients receiving
levothyroxine as thyroid-replacement therapy had prolonged
PFS compared with other patients (25.3 vs. 9.0 months; p =

0.042). A prospective cohort study by Schmidinger et al. included
87 sunitinib or sorafenib treated patients with metastatic RCC
(173). Patients who developed subclinical hypothyroidism had a
higher rate of remission compared with euthyroid patients (28.3
vs. 3.3%, p < 0.001) and longer median duration of survival
(not reached vs. 13.9 months, p = 0.016). Other studies have
similarly demonstrated prolonged PFS in sunitinib induced
hypothyroidism (174, 175). One prospective study did not show
such a correlation (221). However, this study was based on only
6 months of follow up. In 2015, Nearchou et al. published a
meta-analysis evaluating hypothyroidism as a predictive marker
for survival in metastatic RCC patients treated with TKI’s (176).
Based on six studies, PFS in patients with sunitinib-induced
hypothyroidism was not significantly different compared with
patients without hypothyroidism. However, in three studies
which included patients treated with sunitinib or sorafenib, the
difference in PFS was statistically significant in favor of patients
with acquired hypothyroidism (HR, 0.59; p = 0.003). Moreover,
an analysis of four studies indicated a statistically significant

improvement in OS in patient who developed sunitinib-
induced hypothyroidism compared with patients who did not
(HR 0.52, p= 0.01).

Effect on Gastrointestinal Cancer Survival
Similar to the effect on cancer risk, CRC and HCC appear
to represent cancer subtypes whose association with thyroid
status differs from that of other solid tumors. In a recent
study by Schirripa et al. (189), a higher baseline free T3/free
T4 ratio was associated with increased survival in patients
with metastatic colorectal cancer treated with the multikinase
inhibitor regorafenib (p = 0.003). In Pinter et al.’s study of
non-surgically treated HCC patients (190), increased OS was
associated with lower TSH (≤1.7 vs. >1.7 µU/ml, median OS
12.3 vs. 7.3months; p= 0.003) and lower free T4 (≤1.66 vs.>1.66
ng/dl, median OS, 10.6 vs. 3.3 months; p = 0.007). Similarly,
in a study by Zhang et al. (191), both free T3 and free T4
were inversely associated with liver cancer mortality (HR per SD
change: 0.64 for free T3, 0.52 for free T4). These findings again
support a growth promoting effect of hypothyroidism in HCC,
which may be related to activation of the TSH receptor. In a
recent case control study (194), the product of TSH and free
T4 was calculated for 123 patients with advanced HCC treated
with sorafenib or chemotherapy. High TSH x free T4 at baseline
(>2.48) was associated with favorable time to tumor progression
(TTTP) (HR 0.478, p = 0.008) and better OS if chemotherapy
was provided (HR 0.44, p = 0.006). Conversely, high baseline
TSH x free T4 (>2.55) was associated with unfavorable TTTP
(HR 2.03, p = 0.039) and overall survival (HR 3, p =

0.007) if sorafenib was administered. However, the association
between this calculated ratio and thyroid status was not
fully elucidated.

Effect on Head and Neck Cancer Survival
Head and neck cancer patients commonly undergo involved-field
radiation therapy and are prone to iatrogenic hypothyroidism,
which can therefore serve as a useful model to study the
effect of thyroid dysfunction on cancer outcomes. Nelson et al.
conducted a retrospective analysis of 155 patients with advanced
head and neck squamous cell carcinoma who were treated with
radiation therapy alone or in combination with other treatments
(196). Patients who developed new onset hypothyroidism post-
treatment had less cancer recurrence (p = 0.02), improved
survival (p < 0.001), and longer recurrence-free survival (p
< 0.001), compared with patients who did not. In another
population based study of patients with head and neck cancer
treated with radiotherapy (197), the 10 year incidence of
hypothyroidism was 59% and these patients exhibited longer
survival (HR 0.42, p < 0.001) as well as longer cause-specific
survival (HR 0.36, p < 0.001). In a phase III trial comparing
two cisplatin chemoradiotherapy protocols in 300 patients with
locally advances head and neck cancer (222), 38.73% of patient
developed hypothyroidism by 2 years of follow up (198). These
patients had lower locoregional failure rate (LRFR) (hazard ratio
0.342, p = 0.043), and longer overall survival (hazard ratio
0.336, p = 0.001). Favorable impact on LRFR, PFS and OS were
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associated with hypothyroidism of longer duration and TSH
levels up to 40 mIU/L.

Association Between Thyroid
Autoimmunity and Cancer
Small scale case control studies have demonstrated an increased
prevalence of thyroid autoimmunity in breast cancer (223, 224),
gastric cancer (225), pancreatic cancer (226), multiple myeloma
(200), and myelodysplastic syndrome (203). In a 2012 meta-
analysis, autoimmune thyroiditis, as well as overall thyroid
antibody positivity, thyroglobulin antibody positivity and thyroid
peroxidase antibody (TPOAb) positivity were associated with
increased risk of breast cancer (OR 2.92, 2.02, 2.72, 2.64,
respectively), with minimal to moderate heterogeneity (139).
Conversely, in a population based case control study by Brandt
et al. (128), including 676 breast cancer patients and 680 controls,
women with high levels of TPOAb (above 9 kIU/L) were at
a lower risk of being diagnosed with breast cancer (OR 0.75),
specifically invasive type (OR 0.74).

Thyroid autoimmunity may beneficially affect cancer
outcomes. Fiore et al. (227) examined the prognostic value of
thyroid autoantibodies in 47 patients with locally metastatic
breast cancer referred for mastectomy. Five-year mortality was
lower in patients with thyroid autoantibody positivity (6.7 vs.
46.9%, p = 0.008). Farahati et al. assessed anti TPOAb in 314
patients with newly diagnosed breast cancer (228). Among
56 patients with TPOAb, no incidences of distant metastasis
was documented, whereas in 17 (6.6%) of 258 cases without
TPOAb, distant metastases were demonstrated (p = 0.04). In
Brandt et al., high TPOAb levels were also associated with a
lower risk of ductal cancer, large tumors (>20mm), and ER
and PR positive tumors (128). Interestingly, the same group
recently identified several TPOAb related SNPs (s11675434,
rs3094228, rs1033662, rs301806, and rs207140) which may also
be associated with breast cancer risk (211). Another study by
Franzke et al. included 329 patients with metastatic RCC treated
with systemic IL-2 and IFNα2 (229). Antithyroid autoantibodies
were detected in 18% of patients. Thyroid autoantibodies
were correlated with increased survival (5-year survival 54
vs. 15%, p < 0.0001). Interestingly, HLA-Cw7 expression was
more frequent with thyroid autoantibody positivity (69.2 vs.
47.7%, p = 0.009), and Cw7 expression was associated with
prolonged overall survival, suggesting HLA-dependent thyroid
autoimmunity associated with improved cancer outcomes.
Thyroid autoantibodies may affect breast cancer behavior
irrespective of its effect on the thyroid hormone axis. Thyroid
cells and benign and malignant breast tissues share common
antigens. The most important of these is the sodium-iodine
symporter, which is highly expressed in breast cancer cells (230).
Also, lactoperoxidase in breast cancer cells shares a homology
with thyroperoxidase (231). T cells directed against thyroid
autoantigens could attack breast cancer cells expressing similar
antigens (227).

Association of Cancer With Non-thyroidal
Illness Syndrome (NTIS)
NTIS, or sick euthyroid syndrome, is characterized by alterations
in circulating thyroid hormone levels in euthyroid patients

with acute or chronic systemic illnesses. Changes include a
decrease in T3 levels, increase in rT3 and inconstant alterations
in circulating T4 levels (212). The association of NTIS with
cancer was documented in various tumor types including breast
cancer (232), gastrointestinal cancers (232), lung cancer (233–
235), central nervous system tumors (236), multiple myeloma
(237), chronic lymphocytic leukemia (238), and diffuse large cell
lymphoma (239).

NTIS may be associated with adverse disease outcomes. In a
1978 study by Ratcliff et al. (233), 6 month mortality was higher
among lung cancer patients with low T3 compared with matched
lung cancer patients with normal T3 (49 vs. 27%). In a study
of 80 patients with newly diagnosed non-small cell lung cancer
(234), NTIS was more frequent among stage III (26%) and stage
IV (62%) cases, and survival was shorter in patients with NTIS
compared with patients without NTIS (mean survival 9.2 vs. 15.2
months, p = 0.00002). Similarly, in a cohort of both small cell
and non-small cell cancer patients, NTIS was associated with
disease stage and served as a poor prognostic factor (235). In
a study of 230 patients with primary brain tumors (236), 27%
had NTIS syndrome. Glioma patients with NTIS had greater 5-
year mortality (HR = 2.197, p = 0.016) and shorter OS (249 vs.
352 days; p = 0.029). NTIS was also a predictor of poor post-
operative outcomes in patients undergoing brain tumor surgery
(240). In a study of patients with chronic lymphocytic leukemia
(238), NTIS was associated with significantly shorter time to
first treatment (2 vs. 11 months, p < 0.001) and cancer-specific
survival (median survival 51 months vs. not reached) compared
to patients with normal T3. In another study by the same group,
of 188 patients with diffuse large B cell lymphoma, low T3 was
associated with worse PFS (median survival 17 vs. 22 months)
and overall survival (median survival 17 vs. 23 months) in the
rituximab era (239). However, collectively these results may be a
reflection of NTIS as a marker of aggressive disease, rather than a
direct effect of this syndrome on cancer outcomes.

The Association Between Thyroid
Replacement Therapy and Cancer
Incidence and Outcome
In an early study, 5,505 patients referred to a mammography
department were interviewed regarding thyroid hormone use
(150). Six hundred thirty-five patients used thyroid medications.
In patients receiving thyroid supplements, breast cancer
incidence was significantly higher than controls without thyroid
disease or thyroid medication use (12.13 vs. 6.2%, p< 0.005). The
difference was especially prominent in patients taking thyroid
medication for more than 15 years (19 vs. 6.2%, p < 0.005) and
nulliparous women taking thyroid medication for more than 5
years (20 vs. 9.2% in nulliparous controls, p < 0.025). These
findings suggest a relationship between thyroid supplements and
cancer associated with the duration of use. In a prospective
cohort study, 2,738 post-menopausal women were screened for
thyroid hormone parameters and prospectively followed for a
period of 9 years (147). New breast cancer was related to previous
use of thyroid medication at study inclusion (OR 3.2). However,
a meta-analysis from 2017 including six studies evaluating the
relationship between thyroid hormone supplementation and risk
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of breast cancer found no statistical correlation between the two
(140). In a population based study, Cornelli et al. compared
the prevalence of breast, colorectal, gastric and lung cancer in
women during 2010 with the sales of levothyroxine (LT4) in the
previous year in 18 Italian regions (161). Corrected for smoking
and age, a significant correlation was demonstrated for lung
cancer and levothyroxine sales (R = 0.485, p = 0.04). Sarosiek
et al. performed a retrospective analysis in 504 pancreatic
cancer patients who underwent a Whipple procedure or distal
pancreatectomy and splenectomy during the course of 7 years
(62). 14.1% of patients were hypothyroid. Hypothyroid patients
taking exogenous thyroid hormone, in comparison to euthyroid
patients, were more likely to have perineural invasion (OR 3.38,
p = 0.012), have high T stage (T3-T4, OR 2.1, p = 0.045), nodal
spread (OR 2.05, p = 0.018), and have poorer prognostic stage
(2B-3, OR 1.89, p = 0.037). There was no difference in survival
between both groups.

Similar to the apparent protective effect of endogenous
thyroid hormones in colorectal cancer, exogenous thyroid
hormone supplementation was associated with decreased risk
of CRC. In a population based case control study conducted
in northern Israel, 2,648 colorectal cancers were matched to
2,566 controls (187). Levothyroxine use for a minimum of
5 years, evaluated by structured interviews and prescription
records validation, was associated with a significantly reduced
risk of CRC (OR 0.59, p = 0.001). However, this study was
limited by possible recall bias. Another large population based
study compared 20,990 colorectal cancer patient with 82,054
matched control patients (184) and determined CRC risk in
patients with thyroid dysfunction, with and without thyroid
hormone replacement. Thyroid hormone supplementation use
of more than 5 years was related with lower risk for CRC,
with a stronger association documented for longer periods since
initiation of treatment. The adjusted odds ratio for colorectal
cancer associated with thyroid hormone replacement was 0.88
(p = 0.03) for treatment initiated 5–10 years before index date
and 0.68 (p < 0.001) for treatment initiated more than 10
years before index date. In response to this study, Friedman
et al. (188) performed a case-control analysis of colon (n =

12,207) and rectal/rectosigmoid cancers (n = 4,729), based
on the Kaiser permanente cancer registry, and obtained LT4
prescription dispensing records from outpatient pharmacies.
Each case patient was matched to up to 50 control subjects.
Rectal cancer risk was more than 30% lower in men who used
levothyroxine for more than 5 years, compared to non-users (OR
0.66, p = 0.03). Although statistically insignificant, colon cancer
risk appeared to be somewhat reduced.

The Effect of Induced Hypothyroidism and
Hypothyroxinemia on Cancer Outcomes
Few interventional studies exist which examined the effect of
chemically induced hypothyroidism and hypothyroxinemia on
cancer outcomes. Those are based mainly on case reports and
small patient series. A previous report described a patient
with inoperable glioblastoma of the optic chiasm who failed
standard treatment with radiation and temozolomide (169). The

patient underwent induced hypothyroidism with PTU, followed
by carboplatin chemotherapy. On two separate occasions, this
patient responded clinically and radiographically to treatment
with an extended remission period (2.5 years) and prolonged
overall survival (4.5 years). In a recent report (183), a patient with
triple negative breast cancer and lung metastasis who progressed
under chemotherapy was treated with methimazole (45mg per
day) and increasing doses of liothyronine (L-T3). This treatment
led to stabilization of the disease and CA-125 levels for several
months. A second patient described in this study with metastatic
pancreatic adenocarcinoma was treated with a similar protocol.
In this case, treatment led to a temporary reduction in CA19-
9 and a disappearance of a skin metastasis. In both patients,
although L-T3 produced early resistance to treatment, a direct
tumor growth inhibition effect was also observed. In a study
published in 1976 (168), Yung et al. compared 32 patients with
glioblastoma treated with surgery and radiation alone with 18
glioblastoma patients treated with surgery, radiation as well T3
to achieve a hyperthyroid state. Patients in the T3 treatment
group had significantly longer median survival (60 vs. 30 weeks,
p = 0.005). The authors speculated that this may be attributed
to radiosensitizing property of triiodothyronine. Hercbergs et al.
reported on 22 patients with recurrent glioma who were
treated with PTU to induce hypothyroidism, concurrently with
tamoxifen (170). Eleven patients became hypothyroid. Median
survival was significantly longer in the hypothyroid group
(10.1 vs. 3.1 months, p = 0.03). Lastly, another study by
Hercbergs et al. included 23 patients with end stage cancers of
the brain, ovary, lung, pancreas, salivary gland, and breast as
wells mesothelioma and soft-tissue sarcoma (210). In euthyroid
patients, hypothyroxinemia was reached by using methimazole,
with the addition of L-T3 to avoid hypothyroidism side-effects
parallel to suppressing endogenous TSH. The survival time of
83% (19 of 23) of patients exceeded the 20% expected 1-year
survival for this group based on the SEER database (p < 0.01).

THE EFFECTS OF THYROID HORMONES
ON ANGIOGENESIS AND ANTICANCER
IMMUNE RESPONSES

Generation of dense vasculature and evasion of immune reaction
are among the key hallmarks of cancer (241). Recent studies
provide evidence that TH affect both these crucial features of
tumors, enabling cancer progression.

T4 acting on αvβ3 receptor stimulates formation of new
vessels as shown in CAM assay and three-dimensional human
microvascular endothelial sprouting model (97, 99, 100) which
involves activation of MAPK (97). Inhibition of T4-αvβ3
signaling by tetrac or anti-integrin antibody blocked TH-induced
formation of new vessels (97, 99). Importantly, tetrac and its
nanoparticulate form also inhibited angiogenesis stimulated by
cancer cells, as shown by CAM models implanted with renal
cell cancer (59), medullary thyroid cancer (82), follicular thyroid
carcinoma (83), and non-small cell lung cancer (40).

T4 may also facilitate cancer progression by interfering with
anti-tumor immune responses. Treatment of breast and colon
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cancer cells with T4 stimulated the expression of PD-L1, one of
the elements of PD-1/PD-L1 immune checkpoint that controls
activation of T cells. Cancer cells often overexpress PD-L1 which
interacts with PD-1 receptors on the surface of T cells, thus
blocking its activation and attenuating immune response directed
against tumors (242). In breast cancer cells, T4 activated PD-
L1 expression via non-genomic mechanisms involving αvβ3
receptor. Remarkably, NDAT (nanotetrac) blocked T4-mediated
activation of PD-L1, providing a possibility for restoring
immune defense against cancer cells. One of the key drawbacks
of cancer therapies directed against PD-1/PDL-1 checkpoint,
aimed at activation of immune responses, is the risk of
autoimmune disease in treated patients. Since αvβ3 is specifically
overexpressed in cancer cells, and rarely functions on the
surface of healthy cells, treatment of patients with NDAT would
possibly not lead to autoimmune responses directed against non-
cancer cells (16). Clearly, the results of these promising in vitro
studies require further validation in vivo on a larger group of
cancer types.

THYROID HORMONES AND RESPONSE
TO THERAPY

The results of several in vitro studies suggest that thyroid
hormones may influence responses to chemotherapy. Through
promotion of cancer cell proliferation, mitochondrial activity,
and cell cycle progression from G0-G1 to S, T3 enhances
the sensitivity of breast cancer cells to various chemotherapies
(22, 23). In pancreatic cancer cells T3 treatment potentiated
cytotoxic activities of chemotherapeutics such as cisplatin or
gemcitabine (63). Contrasting observations were made for cell
lines derived from colonic tumors. In colon cancer cells T3
increases the expression of P-gp (MDR1), one of the key
mediators of xenobiotic efflux (67, 109). In contrast to the above
mentioned prevalent non-genomic TH effects stimulating cancer
progression, T3 activates P-gp expression by TR binding to the
direct repeat elements located upstream of the transcription start
site of the P-gp gene (243). These results suggest that T3 may

possibly interfere with drug treatments of colon cancer; however
this hypothesis requires experimental verification. T4 and T3 also
interfered with the activity of bortezomib, a key drug in treatment
of MM patients (90).

CONCLUSION

The thyroid hormones are increasingly acknowledged for their
tumor-promoting effects. We aimed in this review to shed light
on this association in order to clarify which types of cancer
are thyroid-hormone sensitive and therefore are expected to
favorably respond to manipulation of the thyroid hormone
axis. This is highly relevant, specifically in the context of the
discovery of the T4 receptor site upon the αvβ3 integrin, which
is overexpressed in many tumor cells and vasculature and may
serve as an attractive target for inhibition. However, currently
few T4-αvβ3 inhibitors which demonstrated efficacy in several
cancer types are under preclinical studies. Moreover, TH status
is currently not yet considered as a risk factor or a prognostic
factor in the clinical practice of cancer management, partly due
to the conflicting data reported over the years. Future prospective
studies to evaluate this link, with strict inclusion/exclusion
criteria and predefined cut-off values, are therefore merited.
Convincing results may promote the inclusion of thyroid status
in the assessment of cancer patients and interventional studies
may lead to novel treatment modalities that are desperately
lacking in many aggressive cancers.
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