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Time of day (TOD) influences on executive functions have been widely reported, with
greater efficiency demonstrated at optimal relative to non-optimal TOD according
to one’s chronotype (i.e., synchrony effect). Older adults (OAs) show declines in
inhibitory control and are more sensitive to the effects of circadian variation on
executive functioning. To date, no studies have investigated the effects of TOD and
aging on executive functioning using electrophysiological measures. The present study
investigated the effects of aging and TOD on the neural correlates of inhibitory
processing (N2 and P3) using event-related potentials (ERPs). Go-NoGo and Flanker
tasks were administered to 52 OAs of morning chronotype and 51 younger adults
(YAs) of afternoon-to-evening chronotype who were randomly assigned to morning or
afternoon test sessions, with the optimal TOD for OAs in the morning and for YAs in
the afternoon/evening. While behavioral results demonstrated no TOD effects, ERPs
indicated synchrony effects. Both YAs and OAs showed greater modulation of Go-NoGo
N2 and greater P3 amplitude during the non-optimal than optimal TOD, consistent with
the synchrony effect. For the Flanker task, age differences in P3 amplitude were only
apparent during the non-optimal TOD. These results suggest that processes associated
with inhibitory control are differentially affected by TOD and aging, with age-related
reductions in inhibitory efficiency during off-peak test times on measures of interference
control. These findings highlight the sensitivity of ERPs to detect TOD effects in the
absence of behavioral differences, confirm more pronounced TOD effects in OAs relative
to YAs on ERP measures of interference control, and reinforce the need to assess and
control for circadian typology in research studies.
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INTRODUCTION

Inhibitory control is a core component of executive functioning that underlies the ability to restrain
inappropriate prepotent responses (i.e., response inhibition) and suppress irrelevant information
(i.e., interference control; Zacks and Hasher, 1994; Diamond, 2013; Hasher and Campbell, 2020).
This fundamental cognitive function is essential for coping with the demands of everyday life,
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such as avoiding distractions while driving or withholding the
expression of socially inappropriate thoughts while engaging
in conversation. Response inhibition refers to the ability to
suppress an automatic or dominant response and is commonly
measured by the Go-NoGo task (Go-NoGo, Mesulam, 1985).
Interference control refers to the ability to filter out competing
information present in the target or the environment, but
irrelevant to the task being performed. It is commonly measured
by the Erikson Flanker task (Eriksen and Eriksen, 1974). Among
the different inhibition tasks used in prior behavioral studies,
the Go-NoGo task and the Eriksen Flanker Task are widely
paired with neuroelectric recording of event-related potentials
(ERPs) to investigate response inhibition and interference
control, respectively.

In the Go-NoGo task, participants must suppress an automatic
or dominant response to infrequent items (i.e., NoGo trials)
amidst a stream of standard items (i.e., Go trials). In the Flanker
task, participants must ignore distractor arrowheads flanking
a central arrowhead, with distractor arrowheads pointing
either in a congruent or incongruent direction of the target.
The electrophysiological correlates of inhibitory control most
frequently observed in both tasks are the N2b and P3b waves
(hereafter referred to as N2 and P3).

The N2 is a negative-going ERP deflection with a frontocentral
scalp topography emerging 250–400 ms following stimulus onset
(Kopp et al., 1996a,b; Heil et al., 2000; Liotti et al., 2000;
Yeung et al., 2004; Bartholow et al., 2005). In general, the N2
represents early stage conflict monitoring processes that reflect
conflict detection (Nieuwenhuis et al., 2003; Donkers and van
Boxtel, 2004). In the Go-NoGo Task, the N2 amplitude has
been found to be larger for NoGo than Go trials (Falkenstein
et al., 1999; Van’t Ent and Apkarian, 1999; Folstein and Van
Petten, 2008). In the Flanker task, the N2 has been found to
be larger in amplitude and longer in latency for incongruent
than congruent trials (Kopp et al., 1996a,b; van Veen and Carter,
2002; Frühholz et al., 2011; Brydges et al., 2012; Mansfield et al.,
2013). Prior research has shown that response inhibition and
interference control share similar early cognitive processes (Kan
et al., 2021). As such, the N2 in Go-NoGo tasks reflects conflict
arising from competition between the execution and inhibition
of responses in Go vs. NoGo trials (Nieuwenhuis et al., 2003;
Donkers and van Boxtel, 2004). In the Flanker task, it reflects
conflict arising from distracting flankers surrounding the target
(van Veen and Carter, 2002; Zhou et al., 2019). The P3 is a
broad positive-going ERP waveform with a centroparietal scalp
distribution that emerges approximately 300–600 ms following
stimulus onset. More generally, the P3 is thought to reflect
later monitoring and evaluation of inhibition processes and
is closely related to actual inhibition of the motor response
(Polich and Heine, 1996; Waller et al., 2021). Additionally,
the P3 has been interpreted as indicating the effectiveness
of the inhibitory response (Pfefferbaum et al., 1985; Roberts
et al., 1994; Falkenstein et al., 1995). The P3 amplitude and
latency are modulated by changing demands for inhibition
and motor suppression, which have been shown to be task-
specific. In the Go-NoGo task, P3 amplitudes have been found
to be larger for NoGo than Go trials (Pfefferbaum et al., 1985;
Bokura et al., 2001). In the Flanker task, the P3 has a smaller

amplitude (Hsieh et al., 2012) and longer latency (Wild-Wall
et al., 2008; Hsieh and Fang, 2012) for Incongruent than
Congruent trials. Recent ERP research by Kan et al. (2021)
demonstrated that response inhibition and interference control,
assessed through a hybrid Go-NoGo Flanker task, share similar
cognitive processes in the early stages (i.e., N2), but exhibit
different temporal mechanisms in the later stages (i.e., P3) of
inhibitory processing. More specifically, the Go-NoGo P3 reflects
the actual process of response inhibition (i.e., active suppression
of the motor response, Band and Van Boxtel, 1999; Kok et al.,
2004) and the Flanker P3 reflects interference control and
resolution needed to negotiate the conflict response demands of
the target stimulus (Van ’t Ent, 2002; Scrivano and Kieffaber,
2022). According to the Inhibitory Deficit Theory (Hasher and
Zacks, 1988; Hasher and Campbell, 2020; Amer et al., 2022),
older adults (OAs) are less able to suppress or ignore irrelevant
thoughts and actions relative to younger adults (YAs). Prior work
has shown age-related behavioral deficits in response inhibition
as indexed by increased reaction times (RTs) and error rates
(Bedard et al., 2002; Bielak et al., 2006; Andrés et al., 2008; Potter
and Grealy, 2008; Carriere et al., 2010; Hämmerer et al., 2010; but
see Vallesi, 2011; Kardos et al., 2020). Additionally, past studies
have found age-related deficits in interference control as indexed
by larger RT and accuracy differences between congruent and
incongruent trials (Zeef and Kok, 1993; Spieler et al., 1996; Zeef
et al., 1996; Kok, 1999; West and Alain, 2000; van der Lubbe and
Verleger, 2002; Proctor et al., 2005; Kawai et al., 2012; Chow et al.,
2021; Scrivano and Kieffaber, 2022; but see Wild-Wall et al., 2008;
Hsieh and Fang, 2012).

Electrophysiological studies investigating age-related
differences in inhibitory control using the Go-NoGo task
have shown differential N2 and P3 Go-NoGo effects between
YAs and OAs, even in the absence of age differences in behavioral
performance (Vallesi, 2011; Kardos et al., 2020). N2 amplitudes
have been shown to be smaller in OAs than YAs, reflecting an
age-related impairment of conflict-monitoring processes (Czigler
et al., 1996; Lucci et al., 2013; Staub et al., 2014). With regards to
P3 amplitude, a larger P3 modulation has been demonstrated in
OAs relative to YAs (Vallesi et al., 2009; Vallesi and Stuss, 2010;
Vallesi, 2011), suggesting that OAs experience increased difficulty
in suppressing motor responses in No-Go trials and recruit more
compensatory inhibitory mechanisms in suppressing irrelevant
responses. Additionally, longer latencies of the No-Go N2 and
No-Go P3 waves have been observed in OAs (Pfefferbaum and
Ford, 1988; Tachibana et al., 1996; Falkenstein et al., 2002),
reflecting general age-related slowing.

ERP studies involving the Flanker task have also supported
the notion that OAs rely on compensatory strategies to inhibit
irrelevant information to perform at a comparable level to YAs.
Studies by Wild-Wall et al. (2008) and Hsieh and Fang (2012)
did not find greater behavioral flanker effects in OAs relative to
YAs. However, the ERP findings from both studies showed more
pronounced between-condition modulations of the N2 in YAs
than OAs and delayed P3 latencies in OAs compared to YAs.
These results could indicate that OAs devote more attention to
the central target to reduce flanker interference. Similar to the
Go-NoGo task, larger P3 modulations in OAs relative to YAs
have also been observed in the Flanker task (Korsch et al., 2016),
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suggesting that OAs use more inhibition resources to resolve
conflicting information.

Findings from behavioral and electrophysiological studies
provide support for the inhibitory deficit hypothesis of aging
by demonstrating inhibitory differences in OAs relative to YAs.
Evidence from behavioral studies on circadian rhythmicity have
shown that these age-related differences in inhibitory control are
modulated by time of day (TOD). That is, inhibitory control
efficacy fluctuates across the day in synchrony with endogenous
circadian rhythms. The synchrony effect refers to the interaction
between chronotype and TOD, and involves better performance
for optimal (i.e., morning time for morning-type individuals and
evening time for evening-type individuals) as compared to non-
optimal times of day (May and Hasher, 1998). Chronotype norms
differ across age groups, with the majority of OAs being morning
types and a substantial portion of YAs being or trending toward
evening types (Mecacci et al., 1986; May et al., 1993; May and
Hasher, 1998). This age-related shift in chronotype reflects a
reliable developmental pattern where changes in morningness-
eveningness preference co-varies with age-related changes in the
internal body clock (Tankova et al., 1994; Roenneberg et al.,
2007). These age trends in TOD preferences correspond with
optimal performance for OAs during the morning, and for YAs
during the evening. Synchrony effects have been demonstrated
for both YAs and OAs in studies using behavioral measures
of response inhibition and interference control (May et al.,
1993, 1999; Intons-Peterson et al., 1998; May and Hasher, 1998;
West et al., 2002; Borella et al., 2010; Knight and Mather,
2013; Anderson et al., 2014), with reduced inhibitory control
abilities in both age groups during non-optimal relative to
optimal times of day.

Inhibitory deficits in OAs have been found to be modulated
by TOD in prior literature, with OAs demonstrating greater
inhibition deficits in the evening relative to morning hours (May
and Hasher, 1998; Borella et al., 2010; Anderson et al., 2014).
Apart from an fMRI study by Anderson et al. (2014), research that
has demonstrated TOD synchrony effects in OAs and YAs have
relied on behavioral measures. No study to our knowledge has
used electrophysiological measures to quantify TOD and aging
influences on cognitive processes such as inhibitory control. The
primary aim of this study was to investigate how TOD modulates
behavioral and neural measures of two inhibitory control tasks
between YAs and OAs.

In the current study, a Go-NoGo task was used to measure
response inhibition and a Flanker task was used to measure
interference control. To explore how TOD influences age-related
differences in these two inhibitory control subtypes, participants
performed inhibition tasks either during their optimal or non-
optimal TOD (as established based on chronotype assessment).
Therefore, we recruited YAs with evening chronotypes and OAs
with morning chronotypes. Testing sessions were conducted in
the morning or in the late afternoon to evening. Neuroelectric
activity was recorded using electroencephalography (EEG) from
both tasks to investigate how TOD influences the N2 and P3
inhibitory ERP components in both groups.

Our hypotheses combined existing behavioral and ERP
research demonstrating inhibition deficits in aging (Vallesi et al.,

2010; Vallesi, 2011; Hsieh and Fang, 2012; Kawai et al., 2012;
Scrivano and Kieffaber, 2022) and behavioral and fMRI research
demonstrating synchrony effects and TOD modulation of age-
related differences in inhibitory efficiency (May and Hasher, 1998;
Borella et al., 2010; Anderson et al., 2014). First, we expected to
replicate prior aging work showing poorer response inhibition
and interference control in OAs relative to YAs, as reflected
by behavioral indices (i.e., larger reaction time and accuracy
difference scores, calculated from the difference between a basic
processing condition and an inhibition condition), and neural
indices (i.e., larger modulation of ERP components indexing
inhibition). Second, we expected a synchrony effect where both
OAs and YAs perform worse and show larger N2 and P3
modulations during their non-optimal TOD relative to optimal
TOD. Last, we used a novel ERP approach to studying TOD and
aging effects on inhibitory control, expecting more pronounced
age-related differences in inhibitory control, behaviorally and
neurally during the non-optimal TOD, as OAs have been shown
to be more susceptible to TOD effects than YAs.

MATERIALS AND METHODS

Participants
Participants were recruited if they were native English speakers
or learned English before the age of 5, had normal or corrected-
to-normal vision (e.g., no history of degenerative conditions,
glaucoma, cataracts significant enough to impede vision, or
color blindness), and reported no significant hearing loss,
no history of learning disabilities, stroke, transient ischemic
attack, traumatic brain injury with loss of consciousness
greater than 5 min, substance abuse disorder, neurodegenerative
disease, brain abnormalities, history of intracranial surgery,
and any other diagnosis of major neurological or psychiatric
disorder. Participants were excluded if they had a history of
myocardial infarction, coronary artery disease, or bypass surgery.
Participants were also excluded if they were taking medications
known to possibly affect cognitive functioning, including
antidepressants, anticonvulsants, neuroleptics, or consuming
recreational drugs either concurrently or within the year prior
to testing. Inclusion criteria was scoring above the cut-off on
the Telephone Interview for Cognitive Status-Modified (TICS-M,
Welsh et al., 1993). Additionally, the Morningness-Eveningness
Questionnaire (MEQ, Horne and Östberg, 1976) was used
to ensure OA participants were of the morning chronotype,
scoring at or above 59, and YA participants were of the
evening chronotype, scoring at or below 46. The MEQ has been
associated with circadian-related physiological changes such as
body temperature, heart rate, and skin conductance (Horne and
Östberg, 1976; Adan, 1991; Roenneberg et al., 2003).

Fifty-five YAs and 54 OAs were recruited for the study. One
YA and one OA did not complete the inhibition tasks. Data
from two YAs were excluded due to impaired neuropsychological
performance. One YA and one OA reported inadequate sleep the
night before testing, and their data were also excluded.

Our final sample consisted of 51 YAs (18–30 years, 25
females), and 52 OAs (64–88 years, 25 females). Participants
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were randomly assigned to perform the inhibition tasks during
optimal or non-optimal TOD. Individuals were recruited from
the Rotman Research Institute research participant pool, and
through local advertisements and community talks. YAs and OAs
did not statistically differ in gender, X2(1, N = 103) = 0.009,
p = 0.924. Additionally, gender did not statistically differ between
participants assigned to optimal and non-optimal testing times
within YAs, X2(1, N = 51) = 0.174, p = 0.676, or OAs, X2 (1,
N = 52) = 0.077, p = 0.781. YAs and OAs statistically differed
in education level, t(101) = –3.006, p = 0.003. OAs (M = 16.50)
were significantly more educated than YAs (M = 15.06), which
is expected as many of the YAs in our study had not completed
their schooling yet. Importantly, years of education did not
statistically differ between participants assigned to optimal and
non-optimal testing times within YAs, t(49) = –0.978, p = 0.333,
or OAs, t(50) = –1.590, p = 0.118. Finally, YAs in the optimal
vs. non-optimal TOD groups did not differ in Eveningness on
the MEQ, t(49) = 0.322, p = 0.749 and OAs in the optimal vs.
non-optimal TOD groups did not differ in Morningness on the
MEQ, t(50) = 0.235, p = 0.815. The study protocol was approved
by the Research Ethics Board of the Rotman Research Institute
at Baycrest Centre. Informed written consent was obtained from
all participants.

Neuropsychological Assessment
OA participants were administered a battery of
neuropsychological tests in the domains of intellectual
functioning, memory, language, processing speed, and executive
functioning. YA participants were administered an abbreviated
version of the neuropsychological battery. To ensure optimal
cognitive performance, all neuropsychological assessments
took place during their optimal TOD (morning for OAs, or
9:00–12:00; afternoon for YAs, or 14:00–18:30). For OAs, the
Montreal Cognitive Assessment (MoCA; Nasreddine et al.,
2005) was administered to assess global cognitive ability. The
Shipley’s Institute of Living Scale II (SILS-II, Shipley et al.,
2009) was administered to estimate crystalized intelligence,
and the Wechsler Adult Intelligence Scale Matrix Reasoning
(WAIS-MR, Wechsler, 1997) to estimate fluid intelligence.
Processing speed was assessed with the WAIS Digit Symbol
Coding subtest (WAIS-III DS, Wechsler, 1997), the Delis-Kaplan
Executive Function System Trail Making Test (Number and
Letter subtests) (D-KEFS TMT, Delis et al., 2001), and D-KEFS
Color-Word Interference Test (Color Naming and Word
Reading subtests) (D-KEFS CWIT, Delis et al., 2001). Memory
was assessed using the California Verbal Learning Test II (CVLT-
II, Delis et al., 2000), Incidental and Free Recall subsections of
the Digit Symbol Coding Test, Verbal Paired Associates, and
Visual Paired Associates subtests from the Wechsler Memory
Scale—Revised (WMS-R Visual and Verbal Paired Associates,
Wechsler, 1987). To assess phonemic and semantic fluency, the
F-A-S and Animal Fluency Tests (Spreen and Strauss, 1998) were
administered, while the short form of the Boston Naming Test
(BNT-SF; Kaplan et al., 1983) was used as a naming measure.
Executive functioning measures included the Wisconsin Card
Sorting Test (WCST, Grant and Berg, 1948), Alpha Span Test
(Craik et al., 2018), the D-KEFS TMT, Number-Letter Switching
Subtest (Delis et al., 2001), and D-KEFS CWIT Inhibition subtest

(Delis et al., 2001). YAs completed only the SILS-II, WAIS-MR,
and the Incidental Learning Paired Recall and Free Recall
subtests of the WAIS-III DS.

Only OAs completed additional questionnaires. The Epworth
Sleepiness Scale (Johns, 2000) and Pittsburgh Sleep Quality Index
(Buysse et al., 1989) were administered to assess sleep quality.
The memory assessment clinics self-rating scale (Feher et al.,
1994) was administered to assess subjective memory concern.
Self-reported functional independence was assessed with the
Basic Activities of Daily Living Scale and the Instrumental
Activities of Daily Living Scale (Lawton and Brody, 1969),
and verified through the Functional Assessment Questionnaire
(Pfeffer et al., 1982) by a reliable third-party informant. Both YAs
and OAs completed the Hospital Anxiety and Depression Scale
(Zigmond and Snaith, 1983).

Procedure
All OAs performed the inhibition tasks on a separate day than
the neuropsychological assessment. OAs in the Optimal TOD and
YAs in the Non-Optimal TOD completed the inhibition tasks in
the morning (8:00–10:30 start time, with all tasks completed by
12:00); YAs in the Optimal TOD and OAs in the Non-Optimal
TOD completed the inhibition tasks in the late afternoon to
evening (14:00–17:00 start time, with all tasks completed by
18:30). The order of inhibition tasks was counterbalanced across
participants, and no participant was familiar with either task. All
inhibition tasks were performed seated in a sound-attenuated
booth 60 cm in front of a computer monitor with a visual
angle of 2.9 degrees for the Go-NoGo task, and 3.8 degrees for
the Flanker task.

Computer Tasks
For the present study, we adopted the Go-NoGo paradigm used
by Moussard et al. (2016). Geometrical shapes were presented
on a computer monitor. There were four stimuli created from
two shapes (triangles or squares) in two different colors (white or
pink) to reduce stimulus repetition effects. Figure 1A depicts the
sequence of events for each trial. A colored shape was presented
on a black background for 186 ms followed by a fixed blank screen
interstimulus interval lasting 1,500, 2,000, or 2,500 ms to prevent
expectancy effects. Stimulus color assignment to standard or
infrequent stimuli was counterbalanced across participants to
control for stimulus saliency. Participants were instructed to press
the spacebar on a regular computer keyboard in response to
standard shapes (Go trials) as quickly and accurately as possible
(75% probability) and to withhold responding to infrequent
shapes (NoGo trials; 25% probability). The response time window
was 1,000 ms from the onset of the stimulus. The paradigm
consisted of 576 trials (432 Go and 144 NoGo trials) in total,
separated into three blocks of 192 trials each. A practice block
of 20 trials was used to familiarize participants with the task.

For the Flanker task, arrays of arrowheads were presented on
a computer monitor. There were three different stimuli arrays,
each with five symbols centered horizontally on the monitor,
with each array comprising a centered arrowhead pointing to
either left or right, and two flanker symbols on either side.
Congruent arrays consisted of five arrowheads pointing in the
same direction (e.g., > > > > >). Incongruent arrays consisted
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FIGURE 1 | Visual representation of (A) Go-NoGo Task and (B) Flanker Task.

of four flanking arrowheads pointing in the direction opposite
of the central arrowhead (e.g., > > < > >). Neutral arrays
consisted of a middle arrowhead flanked by four equal signs
(e.g., = = > = =). Figure 1B displays the sequence of events for
each trial. A stimulus array was presented on a white background
for 300 ms followed by a fixed interstimulus interval of 2,000 ms
with a central fixation cross. Participants were instructed to press
an arrow key on a standard keyboard in response to the direction
of the central arrowhead as quickly and accurately as possible.
Participants used the left index finger to respond to the centered
arrowhead facing left, and the right index finger for the centered
arrowheads facing right. The response time window was 2,300 ms
from stimulus onset. The paradigm consisted of 306 trials in total
(102 trials per condition) separated into three blocks of 102 trials
each, with trial order randomized across participants. A practice
block of 17 trials was used to familiarize participants with the task.

Stimuli for both tasks were displayed using E-Prime version
1.2 (Psychology Software Tools, Inc.). During the tasks,
participants did not receive any feedback on their performance.

Electroencephalography Acquisition and
Preprocessing
Neuroelectric brain activity was recorded from 66 Ag/AgCl
scalp electrodes using a BioSemi Active Two acquisition system
(BioSemi V.O.F., Amsterdam, Netherlands). The electrode
montage included electrodes from the 10/20 system, a common
mode sense active electrode and driven right leg passive electrode
serving as ground. Ten additional facial electrodes were added,

which were placed below the hair line (both mastoid, both pre-
auricular points, outer canthus of each eye, inferior orbit of each
eye, and two additional frontotemporal electrodes) to monitor
eye movements and to cover the whole scalp evenly. Neuro-
electric activity was digitized continuously at a rate of 512 Hz with
a bandpass of DC-100 Hz, and stored for offline analysis. All off-
line preprocessing was performed using Brain Electrical Source
Analysis software (BESA Research, version 7.0, MEGIS GmbH,
Gräfelfing, Germany).

For ERP analysis, an average reference (i.e., the average of all
scalp EEG channels as the reference for each EEG channel) was
used. Continuous EEG data were digitally filtered with 0.53 Hz
high-pass (forward, 6 dB/octave) and 40 Hz low-pass filters (zero
phase, 24 dB/octave). These filter settings were chosen for two
reasons. The first reason was to attenuate slow-wave potentials
that may not be specific to the actual response suppression and
cognitive control processes. Second, given that our older adult
participants were prone to head movements, we adopted a higher
cut-off frequency of 0.53 Hz.

Channels with excessive artifacts, such as those caused by
head or body movements, were then interpolated using spherical
spline interpolation (Picton et al., 2000), with no more than
10% of the channels per recording interpolated. For each
participant, artifacts from ocular movements were corrected
from the continuous EEG recording based on the spatial
components approach (Berg and Scherg, 1994). Brain signal
topographies underlying lateral and horizontal eye movements,
as well as eyeblinks, were semi-automatically detected per
participant recording, then the artifact signal for each electrode
was reconstructed with a spatial filter and modeled by a fixed
dipole model (Berg and Scherg, 1994). The spatial topographies
were then subtracted from the continuous EEG.

After correcting for eye movements, data for each participant
were then segmented into epochs of –500 to 1,000 ms with a
baseline of –500 to 0 ms. Only correct trials were included in
the ERP analysis. Epochs were scanned for additional artifacts,
with epochs including deflections exceeding a 60 µV difference
between the maximum and the minimum amplitude for a given
epoch and channel marked and excluded from the analysis.
This removed an average of 6.52% (SD = 5.53%) of trials per
participant in the Go-NoGo task and 4.56% (SD = 4.45%) of trials
per participant in the Flanker task, neither of which varied by
age group, F(1, 101) = 3.34, p = 0.059, ηp

2 = 0.035, and F(1,
101) = 2.64, p = 0.107, ηp

2 = 0.025, respectively. The remaining
epochs were averaged according to experimental conditions, and
averaged epochs were baseline-corrected with respect to the pre-
stimulus interval (i.e., mean amplitude over the 500 ms prior
to stimulus onset). Waveforms for the Go-NoGo task included
a mean of 404 Go trials (SD = 37.55) and 120.03 NoGo trials
(SD = 14.70) per participant; for the Flanker task, these were 97.02
(SD = 7.91) for Congruent, 86.66 (SD = 11.27) for Incongruent,
and 96.35 (SD = 8.43) for Neutral conditions.

Data Preparation
Behavioral Measures
Go-NoGo mean accuracy values were calculated from both hits
and correct rejections. Go-NoGo mean RT values were calculated
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only from hits (Go condition). For the Flanker task, trials without
a response were discarded from accuracy calculations. The first
trial in each block was omitted to accommodate for task warm-
up effects. Trials with a response time less than 200 ms were
also removed. Mean accuracy for the Flanker task was calculated
for the Congruent, Incongruent and Neutral conditions. Mean
RT was calculated using correct trials and any trials with an RT
3 standard deviations or more from the participants’ mean in
each condition were removed. This removed on average 1.36%
(SD = 0.64%) of Go trials per participant in the Go-NoGo
task, with significantly more Go trials trimmed in OAs (1.57%,
SD = 0.64%) than YAs (1.15%, SD = 0.58%), F(1, 101) = 11.75,
p = 0.001, ηp

2 = 0.104. In the Flanker task, this removed 1.41%
(SD = 0.65%) of trials per participant, which did not vary by age
group, F(1, 101) = 1.34, p = 0.250, ηp

2 = 0.013. No participant
scored significantly below chance within a condition for a given
block of trials (below 29% correct within a single condition in
the Flanker task, below 19% correct within a single condition in
the Go-NoGo task).

Event-Related Potential Measures
Peak latencies were measured as the maximum positivity or
negativity within a specific time window averaged over a
predefined electrode cluster. The N2 modulation for both tasks
was maximal at frontal-central regions, and therefore latencies
and mean amplitude were localized and averaged across a cluster
of nine electrodes in the frontal-central scalp region (F1, Fz, F2,
FC1, FCz, FC2, C1, Cz, C2). The Go-NoGo P3 was maximal at
central scalp regions, and was therefore averaged across a cluster
of nine central electrodes (FC1, FCz, FC2, C1, Cz, C2, CP1,
CPz, CP2); the Flanker P3 modulation was maximal at centro-
parietal regions, and therefore latencies and mean amplitude
were averaged across a cluster of nine central-parietal electrodes
(C1, Cz, C2, CP1, CPz, CP2, P1, Pz, P2).

Go-NoGo and Flanker N2 peak latencies were exported from
each participant at the latency of the maximal negative-going
peak between a time window of 200–400 ms for both groups.1

Go-NoGo and Flanker P3 peak latencies were measured for
each participant at the maximal positive-going peak between
250–650 ms for both age groups.

Upon visual inspection of grand mean waveforms, the N2
and P3 for the Go-NoGo task and the P3 from the Flanker task
showed longer peak latencies in OAs than YAs, and so mean
amplitudes for these measures were extracted with different time
windows between age groups. Mean amplitudes for the Go-
NoGo N2 were derived from a time window of 230–330 ms
for YAs and 250–350 ms for OAs. For the Go-NoGo P3, YAs
mean amplitudes were derived using a time window of 300–
550 ms, and for OAs, 350–600 ms. Flanker N2 mean amplitudes
were derived from the same time window of 225–350 ms
for both groups due to similar grand peak latencies for both
age groups. Flanker P3 mean amplitudes were derived from a

1It has been suggested that N2 and P3 latency reflects information processing speed
and N2 and P3 amplitudes express inhibitory control functions (Duncan-Johnson
and Kopell, 1981; Polich and Herbst, 2000). For this reason, conclusions regarding
inhibitory functioning were drawn based on N2 and P3 amplitude results and not
latency results.

250 ms long time window of 250–550 ms for YAs and 350–
600 ms for OAs.

Data Analysis
Behavioral Measures
Statistical analysis of behavioral data was performed using
SAS/STAT software version 15.2 and the SAS System for
Windows version 9.4. Copyright© 2016 SAS Institute Inc.
To accommodate the positively skewed distribution of RT,
generalized linear mixed models (GLMMs) for gamma
distribution (with an identity link) were used to model the
individual trial RT data (Lo and Andrews, 2015). A random
intercept and a variance component structure were included
to control for the non-independence of the data (i.e., repeated
measures within subject).

For accuracy data, the dependent variable was a dichotomous
variable (0 = error; 1 = correct response) and the data were fit
to a modified Poisson model (Zou, 2004). This model estimates
the proportion correct and ratios of proportions correct across
groups. The model used generalized estimating equations and a
compound symmetry type working correlation matrix to adjust
for the repeated measures within subject.

For each outcome, the initial model contained the interaction
of all fixed effects. If the 3-way interaction, for example, was
not significant, a model with only 2-way interactions was
considered. The model was simplified to contain only significant
interactions and related main effects or only main effects
when no interaction terms were significant (see Supplementary
Tables 1, 2 for the models used for each analysis for the
different tasks). The following fixed effects were included:
Group (YAs, OAs), TOD (Optimal, Non-Optimal) and condition
(Go-NoGo Task: Go, No-Go; Flanker Task: Incongruent,
Neutral, Congruent).

For RTs, an initial gamma GLMM model was fit without any
fixed effects (an intercept model only). The standard deviation of
the predicted mean RT was used as the denominator of effect size
calculations for differences in mean RT across groups. Effect sizes
were interpreted according to Cohen’s d criteria (Cohen, 1988),
where an effect size of 0.2 indicates a small effect, 0.5 a medium
effect, and > 0.8 a large effect.

Event-Related Potential Measures
ERP analyses were conducted using IBM SPSS (version 28.0)
and JASP (version 0.16) software. Electrophysiological measures
were subjected to mixed model ANOVAs conducted with Sidak
correction to compensate for multiple comparisons. Partial eta-
squared was calculated as a measure of effect size. A Greenhouse-
Geisser correction was used when the assumption of sphericity
had been violated. An alpha value of 0.05 was used throughout.
Analyses focused on the difference wave (e.g., “NoGo minus Go”
or “Incongruent minus Congruent or Neutral”) for the N2 and
P3 waves, which have shown to more clearly index inhibitory
control performance relative to examining each condition in the
inhibition task separately (Salthouse and Meinz, 1995; Moussard
et al., 2016).

Mean amplitudes and peak latencies for the N2 and
P3 components were subjected to mixed model analyses
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of variance (ANOVA) with Group (YAs, OAs) and TOD
(Optimal, Non-Optimal) as between-subjects factors, and
Condition (Incongruent, Neutral, Congruent for Flanker; Go
and NoGo for Go-NoGo) as the within-subjects factor. For
significant three-way interactions in the Flanker task, follow-
up two-way ANOVAs were run for significant interactions
involving Condition: N2 and P3 amplitude modulations
for Incongruent-Congruent and Incongruent-Neutral
Flanker effects.

For each age group, bivariate Pearson correlation analyses
were performed between ERP and behavioral measures of
inhibitory control to confirm that N2 and P3 modulations
were associated with inhibition in OAs and YAs.2 As amplitude
modulations were taken as a measure of the Go-NoGo
or Flanker effect and reflect inhibitory processing (i.e., the
difference between Go and NoGo, or between Incongruent

2Go RT is considered a measure of processing speed which does not index
inhibition. For this reason, Go RT was not included in ERP-behavioral correlations.

TABLE 1 | Participant characteristics and neuropsychological test scores.

Variable YA AM Mean (SD)
(n = 26)

YA PM Mean (SD)
(n = 25)

OA AM Mean (SD)
(n = 26)

OA PM Mean (SD)
(n = 26)

Raw Scaled Raw Scaled Raw Scaled Raw Scaled

Demographics

Age (years) 20.96 (2.18) – 22.12 (3.38) – 75.15 (7.38) – 75.23 (5.40) –

Education (years) 14.83 (1.83) – 15.36 (2.06) – 15.88 (3.01) – 17.12 (2.55) –

Gender (F:M) 12:14 – 13:12 – 12:14 – 13:13 –

TICS-M 38.24 (3.17) – 37.80 (3.89) – 37.42 (2.76) – 36.96 (3.29) –

MEQ* 41.00 (6.13) – 40.52 (4.32) – 65.96 (4.79) – 65.65 (4.66) –

MoCA – – – – 26.92 (2.42) – 26.88 (2.39) –

Estimates of IQ

WAIS-III Matrix Reasoning 28.23 (3.41) 15.04 (20.30) 29.00 (3.67) 11.72 (2.37) 24.46 (3.80) 14.54 (2.23) 24.04 (5.59) 14.31 (2.62)

Shipley Vocabulary* 31.58 (3.96) 11.81 (2.06) 30.29 (4.32) 10.92 (2.21) 35.46 (2.98) 12.00 (2.24) 36.19 (3.68) 12.96 (3.14)

Memory

CVLT-II Learning – – – – 49.28 (9.06) 13.08 (2.29) 50.12 (14.63) 13.77 (3.29)

CVLT-II Short Delay FR – – – – 10.52 (3.33) 12.14 (3.03) 10.27 (3.56) 12.12 (3.15)

CVLT-II Long Delay FR – – – – 10.40 (3.32) 11.36 (2.86) 10.92 (3.62) 11.85 (2.89)

WMS-R Visual PA I – – – – 12.36 (3.34) 12.00 (2.66) 11.92 (3.58) 11.81 (2.53)

WMS-R Visual PA II – – – – 5.04 (1.40) 11.84 (1.75) 5.12 (1.37) 12.15 (1.46)

WMS-R Verbal PA I – – – – 15.72 (3.37) 9.60 (2.24) 17.11 (2.98) 10.88 (2.44)

WMS-R Verbal PA II – – – – 6.92 (1.04) 11.84 (1.84) 7.00 (1.17) 12.00 (2.47)

WAIS-III Digit Symbol IL-FR* 8.08 (1.20) 9.69 (1.91) 8.12 (1.01) 8.62 (1.50) 7.58 (1.06) 10.54 (0.99) 7.42 (1.21) 10.38 (1.33)

WAIS-III Digit Symbol IL-PR 15.35 (3.08) 10.35 (1.09) 15.32 (3.70) 10.24 (1.45) 12.58 (4.37) 10.50 (1.36) 12.73 (4.37) 10.65 (1.02)

Language

BNT-15 – – – – 53.60 (5.77) 10.80 (3.33) 54.08 (3.77) 11.12 (2.70)

Phonemic Fluency (FAS) – – – – 48.58 (13.31) 12.00 (3.00) 49.88 (13.17) 12.04 (3.56)

Semantic Fluency (Animal) – – – – 17.54 (4.45) 9.81 (2.80) 19.46 (5.09) 10.81 (3.70)

Executive functioning and processing speed

WAIS-III Digit Symbol 95.42 (16.74) 12.81 (3.33) 89.72 (17.75) 12.00 (3.30) 57.96 (13.82) 12.23 (2.80) 65.58 (14.75) 13.69 (2.99)

D-KEFS Trails Numbers – – – – 37.87 (10.72) 12.92 (2.10) 39.27 (15.45) 12.88 (2.41)

D-KEFS Trails Letters – – – – 36.56 (10.06) 12.96 (1.43) 40.49 (13.89) 12.63 (1.84)

D-KEFS Trails N-L Switch – – – – 95.13 (36.85) 12.25 (2.13) 94.51 (44.80) 12.35 (2.81)

D-KEFS CWIT Color – – – – 30.31 (5.89) 11.58 (2.22) 30.88 (4.85) 11.42 (1.93)

D-KEFS CWIT Word – – – – 23.51 (5.11) 11.21 (2.64) 22.31 (4.77) 11.88 (2.36)

D-KEFS CWIT Inhibition – – – – 58.61 (15.17) 12.88 (2.07) 56.78 (9.17) 13.08 (1.35)

Alpha Span – – – – 27.68 (9.58) 10.12 (2.99) 30.04 (11.97) 11.08 (3.67)

WCST Categories – – – – 4.81 (1.96) – 5.00 (1.62) –

WCST Perseverative Errors% – – – – 14.35 (10.04) 13.52 (4.74) 14.15 (10.28) 12.92 (4.53)

Questionnaires

HADS Anxiety* 6.35 (3.93) – 6.00 (3.51) – 5.08 (3.31) – 4.08 (2.33) –

HADS Depression* 3.52 (2.50) – 3.40 (2.16) – 2.12 (1.90) – 2.70 (2.00) –

EPW – – – – 6.60 (2.89) – 7.50 (3.18) –

PSQI – – – – 5.75 (3.43) – 6.16 (2.53) –

YA, younger adult; OA, older adult; MoCA, Montreal Cognitive Assessment; TICS-M, Modified Telephone Interview of Cognitive Status (raw score out of 50); MEQ,
Morningness-Eveningness Questionnaire; WAIS, Wechsler Adult Intelligence Scale; WMS-R, Wechsler Memory Scale—Revised; CVLT, California Verbal Learning Test;
FR, Free Recall; PA, Paired Associates; IL, Incidental Learning; PR, Paired Recall; BNT, Boston Naming Test; FAS, phonemic fluency to the letters F, A, and S; D-KEFS,
Delis Kaplan Executive Functioning System; N-L, Number-Letter; CWIT, Color Word Interference Test; WCST, Wisconsin Card Sorting Test; HADS, Hospital Anxiety and
Depression Scale; EPW, Epworth Sleepiness Scale; PSQI, Pittsburgh Sleep Quality Index.
*YA6=OA, p < 0.05.
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and Congruent/Neutral), correlations were run between N2 or
P3 modulations and inhibition performance (i.e., Go-NoGo or
Flanker effect in accuracy and RT). As peak latencies were taken
as a measure of age- or TOD-related slowing of neural processing
and did not index inhibitory control, correlations were not run
between N2 or P3 latencies and accuracy or RT. Fisher’s z-test
was used to compare correlations between age groups.

RESULTS

Participant Demographics
Data from the neuropsychological assessment are summarized in
Table 1. Consistent with previous studies, we observed the typical
age-related increase in crystallized intelligence with OAs having
higher vocabulary scores than YAs. In the WAIS Digit Symbol
Free Recall test, we observed a typical age-related decrease in
incidental recall with OAs performing worse than YAs (Voelcker-
Rehage and Alberts, 2007; Scheibe and Blanchard-Fields, 2009).

Behavioral Results
Go-NoGo Performance
Go-NoGo accuracy did not differ between groups or as a function
of TOD (see Supplementary Table 1), and so the model was
simplified to contain only the Condition main effect. As depicted
in Figure 2, participants made more mistakes in NoGo than
Go trials, χ2(1) = 57.46, p < 0.001, accuracy ratio = 0.897,
indicating a ∼11% decrease in NoGo accuracy relative to Go
accuracy across groups.

Go RTs were not modulated by TOD (see Supplementary
Table 1), so the model was simplified to just examine the Group
main effect. As expected, OAs had longer Go RTs than YAs, F(1,
43,329) = 50.35, p < 0.001, effect size = 0.570.

Flanker Performance
Flanker behavioral results are displayed in Figure 3.
TOD did not influence accuracy on the Flanker task (see
Supplementary Table 2), and so the model was simplified
to Group, Condition, and their interaction. Accuracy was
comparable for YAs and OAs χ2(1) = 2.73, p = 0.099, and differed
across Condition, χ2(2) = 58.32, p < 0.001, but these effects
interacted, χ2(2) = 7.68, p = 0.022. Pairwise contrasts showed
that OAs had a 6% increase in accuracy in the Incongruent
condition, compared to both the Congruent condition (accuracy
ratio = 1.060, p = 0.006) and the Neutral condition (accuracy
ratio = 1.059, p = 0.004), relative to YAs.

Flanker RTs were not modulated by TOD for either group,
or in any condition (see Supplementary Table 2), and so the
model was simplified to Group, Condition, and their interaction.
RTs were longer for OAs than YAs, F(1, 29,125) = 99.33,
p < 0.001, and differed across conditions, F(1, 29,125) = 3583.02,
p < 0.001, but these effects interacted. The Group by Condition
interaction was significant, F(1, 29,125) = 22.09, p < 0.001.
Pairwise contrasts showed that RTs in the Incongruent condition
were longer for OAs than YAs, relative to both the Congruent
condition (effect size inc−con = 0.095) and Neutral condition
(effect size inc−neu = 0.088).

FIGURE 2 | Performance on the Go-NoGo Task by group, TOD, and
condition for measures of (A) GLMM estimated accuracy, and (B) GLMM
estimated mean RT. Error bars represent the 95% confidence interval, and the
y-axis scale for accuracy is truncated to aid in visualizing the Go-NoGo effect.
OA, older adults; YA, younger adults; RT, reaction time.

To summarize, TOD did not modulate inhibition
performance, nor was the age difference in inhibitory control
modulated by TOD. Accuracy was quite high in the control
conditions across tasks (i.e., Go trials in the Go-NoGo task;
Congruent and Neutral trials in the Flanker task). Such ceiling
effects could have limited our ability to detect differences across
TOD. Furthermore, age differences were significant only for Go
RTs and in the Flanker effect, although the effect sizes of the latter
were negligible, for both accuracy and RT metrics.

Go-NoGo Event-Related Potential
Results
A summary of statistics for ERP data and N2 and P3 peak
latencies and mean amplitudes for the Go-NoGo task is displayed
in Supplementary Tables 3, 4.
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FIGURE 3 | Performance on the Flanker Task by group, TOD and condition
for measures of (A) GLMM estimated accuracy, and (B) GLMM estimated
mean RT. Error bars represent the 95% confidence interval. OA, older adults;
YA, younger adults; RT, reaction time.

N2. Figure 4 displays the Go-NoGo ERP findings. For N2 peak
latency, there were no significant interactions involving Group,
Condition, or TOD. Overall, the N2 latencies were longer in OAs
than YAs, F(1, 99) = 19.49, p < 0.001, ηp

2 = 0.165. The analysis for
Go-NoGo N2 mean amplitudes showed a Group by Condition
interaction, F(1, 99) = 12.45, p = 0.001, ηp

2 = 0.112, with a
greater N2 modulation (i.e., greater N2 amplitude difference
between conditions) in YAs than OAs. Pairwise comparisons
showed, as expected, greater N2 amplitudes for NoGo than
Go trials in YAs (p < 0.001), whereas N2 amplitude did
not differ between conditions in OAs (p = 0.594). Additional
pairwise comparisons showed greater NoGo N2 amplitudes
in YAs than OAs (p < 0.001), whereas Go N2 amplitudes
did not significantly differ between groups (p = 0.121). The
analysis also showed a Condition by TOD interaction, F(1,
99) = 6.96, p = 0.010, ηp

2 = 0.066, with a greater N2 amplitude
modulation for the Non-Optimal than Optimal TOD. In the
Optimal TOD, N2 amplitudes were larger for NoGo than Go
(p < 0.001); in the Non-Optimal TOD, N2 amplitudes were
not significantly different between conditions (p = 0.923). No

FIGURE 4 | Grand average waveforms, scalp topographies and difference
waveforms at electrode site Cz for the Go-NoGo task. (A) Grand-average
ERPs time-locked to stimulus onset and averaged over go and nogo
conditions separately for the four groups depicting N2 and P3 components.
(B) Topographical iso-contour maps and (C) difference waveforms
(NoGo—Go) depicting the N2 and P3 components for the four groups.

other effects or interactions involving Group, Condition, or TOD
reached significance for N2 amplitude. ERP-behavior correlations
between the N2 modulation and the Go-NoGo effect in accuracy
did not reach significance for either YAs (r = 0.155, p = 0.277) or
OAs (r = 0.067, p = 0.636), and there was no significant difference
between correlations (z = 0.044, p = 0.330).
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P3. For P3 peak latency, there were no significant interactions
involving Group, Condition, or TOD. However, Go-NoGo P3
latencies were longer in OAs than YAs, F(1, 99) = 14.54, p < 0.001,
ηp

2 = 0.128. P3 latencies were also longer in Go than NoGo trials,
F(1, 99) = 10.98, p = 0.001, ηp

2 = 0.100. The analysis for Go-
NoGo P3 amplitude showed a Group by Condition interaction,
F(1, 99) = 45.90, p = 0.0006, ηp

2 = 0.075, with a significantly
greater P3 amplitude modulation in OAs than YAs. Simple effects
analyses by Group showed larger P3 amplitudes for NoGo than
Go trials in OAs (p < 0.001). Additional simple effects analyses
by Condition showed greater NoGo P3 amplitudes in OAs than
YAs (p = 0.022), whereas Go P3 amplitudes did not significantly
differ between group (p = 0.894). A main effect of TOD was
also shown, F(1, 99) = 4.37, p = 0.039, ηp

2 = 0.042, with larger
P3 amplitudes for the Non-Optimal than Optimal TOD. No
other effects or interactions involving Group, Condition, or TOD
reached significance for P3 latency or amplitude. ERP-behavior
correlations demonstrated that, in YAs, a greater P3 amplitude
modulation was significantly correlated with a greater Go-NoGo
effect in accuracy (r = 0.423, p = 0.002), whereas this correlation
did not reach significance in OAs (r = 0.231, p = 0.099). There
was a significant difference in correlations between age groups
(z = –1.06, p = 0.144).

Summary: OAs demonstrated longer N2 and P3 latencies
than YAs in both Go and NoGo conditions, as expected from
prior research (Vallesi, 2011; Mudar et al., 2015). Additionally,
we found evidence supporting synchrony effects with YAs and
OAs showing a greater Go-NoGo N2 amplitude modulation and
greater P3 amplitude for non-optimal than optimal testing times.
YAs also showed greater Go-NoGo N2 amplitude modulations
than OAs. As expected, OAs demonstrated a greater Go-NoGo P3
amplitude modulation than YAs which did not change with TOD;
this P3 modulation tended to index inhibition performance.

Flanker Event-Related Potential Results
A summary of statistics for ERP data, as well as N2 and P3 peak
latencies and mean amplitudes for the Flanker task are displayed
in Supplementary Tables 3, 4.

N2. Figure 5 displays the Flanker ERP findings. The analysis
for the Flanker N2 latencies showed a significant Group by
Condition interaction, F(2, 198) = 11.83, p < 0.001, ηp

2 = 0.107.
OAs had longer N2 latencies than YAs for Neutral trials
(p = 0.028) but not for Congruent (p = 0.539) or Incongruent
(p = 0.205) trials. For YAs, N2 latencies for Incongruent trials
were longer than Congruent or Neutral trials (both p < 0.001),
and did not differ between Congruent and Neutral trials
(p = 0.997). For OAs, N2 latencies for Neutral were longer than
Incongruent (p = 0.007) and Congruent (p = 0.008) trials, and did
not differ between Incongruent and Congruent trials (p = 0.998).

The analysis for Flanker N2 mean amplitudes showed a
Group by Condition interaction, F(2, 198) = 15.96, p < 0.001,
ηp

2 = 0.139. Post hoc univariate ANOVAs demonstrated
significantly greater N2 amplitude modulation for YAs than
OAs for both Incongruent-Congruent and Incongruent-Neutral
interference effects (both p < 0.001). N2 amplitudes for
Incongruent trials were larger for YAs than OAs (p = 0.041);
amplitudes did not significantly differ between groups for

Congruent (p = 0.755) or Neutral (p = 0.720). No other
effects or interactions involving Group, Condition, or TOD
reached significance for N2 latency or amplitude. ERP-
behavioral correlations with accuracy demonstrated that a greater
Incongruent-Congruent N2 modulation in YAs was significantly
correlated with a greater Incongruent-Congruent Flanker effect
in accuracy (r = 0.422, p = 0.002), whereas this was not significant
in OAs (r = 0.061, p = 0.566; z = 1.92, p = 0.028). Neither
of these correlations reached significance when conducted with
the Incongruent-Neutral effect (YA: r = 0.387, p = 0.176; OA:
r = 0.081, p = 0.566). Both correlations showed a marginal
difference between age groups (z = 1.61, p = 0.054). As for ERP-
behavior correlations with RTs, a greater Incongruent-Neutral N2
modulation in OAs was correlated with a greater Incongruent-
Neutral Flanker effect in RTs (r = 0.289, p = 0.038), whereas this
did not reach significance in YAs (r = 0.008, p = 0.957), with the
difference in correlations between age groups reaching marginal
significance (z = –1.43, p = 0.077). Neither of these correlations
reached significance when conducted with the Incongruent-
Congruent effect (YA: r = 0.109, p = 0.447; OA: r = 0.250,
p = 0.074), and these correlations did not differ between age
groups (z = –0.72, p = 0.236).

P3. For the Flanker P3 latencies, the analysis showed a Group
by TOD interaction, F(1, 99) = 11.20, p = 0.001, ηp

2 = 0.102.
In YAs, the P3 latencies were longer in the Optimal than Non-
Optimal TOD (p = 0.008), whereas in OAs the P3 latencies were
longer in the Non-Optimal than Optimal TOD (p = 0.045). The
analysis also showed a main effect of Group, F(1, 99) = 85.92,
p < 0.001, ηp

2 = 0.465, with longer P3 latencies in OAs than
YAs. Additionally, there was a main effect of Condition, F(1.56,
154.17) = 51.14, p < 0.001, ηp

2 = 0.341. Pairwise comparisons
showed longer P3 latencies for Incongruent than Congruent
(p < 0.001) or Neutral trials (p < 0.001), and no significant
difference in latency between Congruent and Neutral trials
(p = 0.564).

For P3 mean amplitude, the ANOVA yielded a three-way
Group by Condition by TOD interaction, F(1.53, 151.46) = 7.16,
p = 0.003, ηp

2 = 0.067. Follow-up two-way ANOVAs showed,
in the Non-Optimal TOD, a larger P3 modulation in OAs than
YAs for both Incongruent-Congruent and Incongruent-Neutral
interference effects (both p < 0.001). In the Optimal TOD,
there was no significant difference in P3 modulation between
age groups for either the Incongruent-Congruent (p = 0.426) or
Incongruent-Neutral interference effects (p = 0.260). For OAs,
the P3 for Incongruent trials was smaller than either Congruent
or Neutral trials at both Optimal and Non-Optimal testing times
(p < 0.001 for all). For YAs, the P3 was smaller for Incongruent
than Congruent trials (p = 0.046) in the Optimal TOD, whereas
P3 amplitudes did not significantly differ between conditions
in the Non-Optimal TOD. No other effects or interactions
involving Group, Condition, or TOD reached significance for P3
latency or amplitude.

ERP-behavior correlations with accuracy demonstrated
that, in OAs, the P3 modulation was also significantly
correlated with a greater Flanker effect in accuracy (r = 0.369,
p = 0.007 for Incongruent-Congruent, r = 0.315, p = 0.023
for Incongruent-Neutral). These did not reach significance
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FIGURE 5 | Grand average waveforms, scalp topographies and difference waveforms for the Flanker task. (A) Grand-averaged ERPs time-locked to stimulus onset
and averaged over congruent, incongruent, and neutral conditions separately for the four groups. The N2 ERP component is depicted at electrode site FCz and
topographical iso-contour maps are presented to the right of the grand-averaged ERPs (IC, Incongruent—Congruent; IN, Incongruent—Neutral).
(B) Grand-averaged ERPs time-locked to stimulus onset and averaged over congruent, incongruent, and neutral conditions separately for the four groups. The P3
ERP component is depicted at electrode site CPz and topographical iso-contour maps are presented to the right of the grand-averaged ERPs
(IC, Incongruent—Congruent; IN, Incongruent—Neutral). (C) Difference waveforms (Incongruent—Congruent and Incongruent—Neutral) at electrode site CPz
depicting the N2 and P3 components for the four groups.
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in YAs (Incongruent-Congruent: r = 0.044, p = 0.757;
Incongruent-Neutral: r = 0.057, p = 0.690). The difference
in correlations between age groups reached significance for
Incongruent-Congruent (z = –1.69, p = 0.045) but not for
Incongruent-Neutral (z = –1.33, p = 0.093). ERP-behavior
correlations with RTs demonstrated that, in YAs, a greater P3
modulation was significantly correlated with greater Flanker
effect in RTs (r = 0.468, p = 0.001 for Incongruent-Congruent;
r = 0.448, p = 0.001 for Incongruent-Neutral). These correlations
also reached significance in OAs (r = 0.501, p < 0.001 for
Incongruent-Congruent, r = 0.375, p = 0.006 for Incongruent-
Neutral). These correlations did not significantly differ between
age groups (Incongruent-Congruent: z = –0.21, p = 0.416;
Incongruent-Neutral: z = –0.69, p = 0.247).

Summary. We observed a significant Group by TOD effect
on Flanker P3 latencies. That is, in YAs the P3 latencies were
longer during optimal testing times (evening) than non-optimal
times (morning), whereas in OAs, P3 latencies were longer during
non-optimal (evening) than optimal times (morning). OAs also
demonstrated longer latencies for Flanker N2 for Neutral trials
only and delayed P3 latencies for all task conditions compared
to YAs. With regards to mean amplitude, YAs showed greater
Flanker N2 amplitude modulations than OAs, with a greater
Flanker N2 correlating with poorer inhibition performance (i.e.,
greater Flanker effect). Notably, OAs demonstrated a greater
Flanker P3 amplitude modulation than YAs, but only during
non-optimal testing times, and not for optimal testing times.
This Flanker P3 modulation indexed performance in interference
control in both age groups.

DISCUSSION

The present study investigated how age and TOD might
interact during tasks engaging interference control and response
inhibition using behavioral and electrophysiological measures.
Electrophysiological but not behavioral findings demonstrated
TOD differences in YAs and OAs. More specifically, a synchrony
effect was found in ERP indices of response inhibition, where
TOD modulated the neural processing of response inhibition
similarly across groups. For interference control, differential
TOD effects were found between groups, with increased
inhibitory processing demands displayed by OAs during the
non-optimal TOD.

Response Inhibition
Behavioral measures of Go-NoGo task performance
demonstrated group differences in Go RTs, with OAs displaying
slower RTs than YAs. However, contrary to our predictions, no
differences in accuracy were found between the two age groups.
Ceiling effects on Go trials limit the extent to which we can draw
firm conclusions about the role of age and TOD on inhibition
performance. The slower RTs suggest that OAs were more
cautious in responding on Go trials to avoid errors on no-go
trials. These behavioral results mirror those of Vallesi (2011) who
showed slower go responses by OAs but comparable accuracy to
YA controls on a Go-NoGo task. The absence of an age-related

deficit in inhibitory performance has also been demonstrated by
Kardos et al. (2020) who actually found that OAs made fewer
commission errors on the Go-NoGo task than YAs, but this was
coupled with slower RTs, suggesting a speed-accuracy trade-off.

ERP findings from the Go-NoGo task in the current study
are in line with prior electrophysiological research showing
age-related deficits in neural processing speed and response
inhibition, as reflected by age-related differences in N2 and P3
latency and mean amplitude (Falkenstein et al., 2002; Vallesi and
Stuss, 2010; Vallesi, 2011; Lucci et al., 2013; Staub et al., 2014). The
present data confirm the age-related slowing of N2 and P3 latency
previously reported in past studies and are consistent with the
general view that N2 and P3 latency are indices of information
processing speed (Polich, 1991; Kutas et al., 1994; McEvoy
et al., 2001; Lorenzo-López et al., 2008; Saliasi et al., 2013).
Although OAs were able to withhold their behavioral responses
with a comparable accuracy to YAs, differential alterations in
neurophysiological markers related to inhibitory control were
observed between YAs and OAs. A greater N2 modulation was
found in YAs than OAs, and a greater P3 modulation was found
in OAs than YAs. The larger N2 modulation among YAs suggests
that YA participants engage more inhibitory resources during
the early stage of inhibitory processing and attempt to monitor
and resolve conflict with an emphasis on speed over accuracy,
differentiating between Go and NoGo stimuli as early as the
time of N2 (i.e., approximately 200–400 ms) (Paxton et al.,
2008; Williams et al., 2016). OAs, in contrast, recruit a similar
amount of resources to evaluate target stimuli regardless of trial
type (Go vs. NoGo).

Our results are also consistent with previous ERP aging Go-
NoGo studies showing that the P3 component is more affected
by aging than the N2 (e.g., Vallesi and Stuss, 2010; Vallesi et al.,
2010; Lucci et al., 2013; Staub et al., 2014), as reflected by an
enhanced P3 amplitude difference between No-Go trials and
Go trials in OAs. This amplitude difference suggests that OAs
may use different strategies with respect to YAs to perform
the task, both in the case of conflict monitoring and action
execution/suppression. This change may aid in performance by
preventing false alarms, allowing OAs to perform at a similar
level to YAs; however, the execution speed is reduced, as could
be expected when more controlled processing is adopted. Taken
together, these data suggest that inhibitory control is a multistage
process, in which aging influences the later stages, as indexed by
the P3 modulation, more so than the earlier stages, as indexed by
the N2 modulation.

In addition to age-related differences in response inhibition,
TOD differences in response inhibition were also apparent
in ERPs. Both YAs and OAs showed a greater modulation
of N2 and greater P3 amplitude during the non-optimal
than optimal TOD, demonstrating a synchrony effect in the
neural processing of response inhibition and compensatory
attention, respectively. The brain-behavior analyses confirmed
that greater P3 modulations between NoGo and Go trials were
associated with poorer behavioral performance (i.e., greater
difference in accuracy between Go and NoGo conditions) in YAs.
Furthermore, TOD-related alterations in neurophysiological
markers related to inhibitory control were observed in both early
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(N2 amplitude) and later (P3 amplitude) stages of processing in
YAs and OAs. These findings taken together indicate that the
observed TOD differences in ERPs arise from circadian-related
deficits in inhibition.

Interference Control
In the current study, behavioral performance on the Flanker task
suggested age-related strategy differences in processing irrelevant
information. Relative to YAs, OAs exhibited a decreased
interference effect in accuracy and an increased interference effect
in RT, suggestive of a speed-accuracy trade-off. These findings
fit with others showing that OAs prioritize accuracy over speed
(Salthouse, 1979; Dirnberger et al., 2010; Starns and Ratcliff,
2010; Forstmann et al., 2011; Maillet et al., 2020), including
studies examining Flanker performance in healthy aging (Wild-
Wall et al., 2008; Hsieh and Fang, 2012; Hsieh and Lin, 2014).
Lack of TOD effects on Flanker performance may be attributed
to ceiling effects on Congruent and Neutral trials. As for ERPs,
YAs demonstrated an overall larger N2 modulation in amplitude
than OAs across TOD. In support of our predictions, OAs
demonstrated a larger P3 amplitude modulation than YAs, but
only for the non-optimal TOD. In the present study, we showed
a negative relationship between the N2 and P3 modulation and
performance, such that larger ERP indices of response inhibition
were associated with poorer behavioral performance in both
YAs and OAs. More specifically, the speed-accuracy trade-off
between younger and older adults was further demonstrated in
the brain-behavior analyses showing that greater N2 modulations
between incongruent and control trials were associated with
poorer accuracy in YAs and greater RT Flanker effects in OAs (as
evidenced by greater differences in accuracy and reaction time
between Incongruent and control conditions). Consistent with
prior ERP research examining Flanker performance in aging,
the reduced N2 modulation in OAs suggests an emphasis on
performance accuracy by intensifying central target processing
to reduce flanker interference (Wild-Wall et al., 2008; Hsieh
and Fang, 2012; Hsieh et al., 2012). Furthermore, OAs may
be resolving the conflicting information in the Flanker task
by adopting a strategic, top-down enhancement of visual
processing of the central targets during the initial stages of
inhibitory processing.

Interestingly, the finding that OAs only demonstrated a larger
P3 modulation than YAs during their non-optimal TOD suggests
that OAs continue to benefit from their strategy choices during
the later stages of inhibitory processing involving interference
resolution so long as they completed the task during their
optimal TOD. Brain-behavior analyses showed that greater P3
modulation was associated with a greater Flanker effect in RT
(i.e., poorer inhibition) for YAs. Brain-behavior analyses further
explained enhanced P3 modulations among OAs. This is in
line with previous research suggesting that age differences tend
to be exaggerated when testing is done during non-optimal
times of day (Hasher et al., 2005). In fact, circadian typology
and TOD have been suggested to be so influential that age-
related impairments on cognitive tasks may even be undetectable
when OAs are assessed in the morning, or optimal TOD
(Schmidt et al., 2007). Present findings bear resemblance to

other studies showing age-related impairments only reaching
statistical significance when comparing between YAs and OAs
tested in the evening (Intons-Peterson et al., 1998; Hasher et al.,
2005). In particular, fMRI research by Anderson et al. (2014)
demonstrated that OAs tested at their optimal TOD (morning)
relied on a similar set of neural regions underlying inhibitory
control in YAs, whereas OAs tested in the afternoon relied on
different neural regions. Taken together, our findings suggest
that increased circadian-related inhibition demands during the
non-optimal TOD affect the later stages of neural processing of
inhibitory control in OAs.

Similar to the Go-NoGo task, Flanker P3 peak latencies
were more delayed for OAs than YAs. The synchrony effect for
interference control also varied across age groups. Within the
group of OAs, those tested at non-optimal TOD had longer P3
peak latencies and a greater P3 amplitude modulation compared
with those tested at optimal TOD. Surprisingly, this pattern was
reversed in YAs, where those tested during non-optimal times
of day had earlier P3 peak latencies and a smaller P3 amplitude
modulation compared with those tested at optimal times of
day. In other words, the smallest P3 amplitude modulation
and earliest P3 latencies between the four groups was for YAs
tested during non-optimal TOD. Given the lack of ERP research
investigating TOD effects, this unexpected finding cannot be
interpreted relative to past findings, and warrants future research.
We speculate that these differential findings in P3 latency reflect
a compensatory response, where YAs may overcompensate for
TOD differences to reach comparable performance.

Theoretical Implications of Aging and
Time of Day Effects on Inhibitory Control
Results from the present study have important theoretical
implications for the neural correlates underlying inhibitory
control in healthy aging. YAs showed greater N2 modulation
than OAs on both inhibition tasks, and OAs showed greater
P3 modulation than YAs on the Go-NoGo task and at non-
optimal testing times on the Flanker task. Prior research has
shown that across Go-NoGo and Flanker tasks, the N2 reflects
conflict monitoring and detection (Nieuwenhuis et al., 2003;
Donkers and van Boxtel, 2004), and the P3 differentially reflects
response inhibition in the Go-NoGo task and interference
resolution in the Flanker task (Band and Van Boxtel, 1999;
Kok et al., 2004; Kan et al., 2021). Furthermore, the differential
modulation of N2 and P3 waves in OAs and YAs in our
study was interpreted as reflecting age-related differences in the
stages of inhibitory processing. More specifically, YAs may be
more efficient at monitoring and detecting conflict during the
early stages of inhibitory processing and OAs during the later
inhibitory processing stages involving overt response inhibition
and conflict resolution of distracting flankers.

Future research is needed to clarify N2 and P3 modulation
differences in YAs and OAs, as some prior aging research
examining inhibitory performance has failed to evaluate both
ERP components within the same study (e.g., Hsieh and Fang
(2012) did not consider P3 amplitude and Vallesi (2011) did not
consider N2 amplitude).
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These results provide evidence for age-related differences in
the use of proactive and reactive control as proposed by the dual-
mechanisms of cognitive control framework (Braver et al., 2007;
Braver, 2012). According to the framework, proactive control is
considered an early selection mechanism that works to maintain
goal-relevant information, biasing attention to optimally respond
to task demands. In contrast, reactive control is considered a
less efficient late correction mechanism that is activated when an
interference event is detected. Furthermore, the differential N2
and P3 modulation findings found between YAs and OAs in our
study are in line with previous research showing that YAs rely on
proactive control and OAs rely predominately on reactive control
(Braver and West, 2008; Paxton et al., 2008; Czernochowski et al.,
2010; Hasher and Campbell, 2020).

A second major theoretical contribution of the present study is
that it extends prior behavioral TOD research by demonstrating
a substantial impact of circadian misalignment on the neural
correlates of inhibitory control. TOD effects were undetectable
in behavioral measures despite clear TOD differences in ERP
measures, suggesting that both YAs and OAs may be relying on
certain strategies in order to perform at comparable levels across
times of day. In line with our findings, Smit et al. (2020) examined
TOD effects in YAs using ERPs and showed TOD differences
in several ERP components of visual distraction. Similarly, no
TOD differences were found in behavioral measures, further
highlighting the sensitivity of electrophysiological measures in
capturing TOD differences. While ceiling effects on behavioral
measures limit our conclusions about the behavioral results, we
specifically chose a simplified task design in order to isolate the
underlying neural processes involved in YAs’ and OAs’ inhibitory
performance as a function of TOD (Moreno et al., 2014).
While ERP measures in our study demonstrated differences
that behavioral measures were not sensitive enough to detect,
it is quite possible that with a more complex taxing inhibition
task (e.g., reducing the response time window or increasing
similarity between distractors and the target stimulus), behavioral
differences in TOD may become apparent.

The ERP findings from the present study demonstrated a
synchrony effect in Go-NoGo N2 and P3 (i.e., greater N2
modulation and P3 amplitude during the non-optimal relative
to optimal TOD) regardless of age group. Consistent with
prior TOD research, these results suggest that synchrony effects
clearly influence attentional mechanisms and response inhibition
with individuals performing more efficiently on inhibition tasks
during their optimal TOD. While not all cognitive processes are
equally susceptible to TOD effects, in line with our findings,
literature on the synchrony effect has shown that tasks involving
executive/inhibitory processes associated with prefrontal cortex
activity are particularly vulnerable to the influence of circadian
misalignment (May and Hasher, 1998; Borella et al., 2010;
Anderson et al., 2014).

Flanker ERP findings demonstrated a greater P3 modulation
in OAs relative to YAs only during the non-optimal TOD,
importantly demonstrating that OAs experience greater demands
on inhibitory control resources during periods of circadian
mismatch while exhibiting more similar inhibitory processing
to YAs during periods of circadian alignment. The present ERP

results also clarify the existing interference control literature
using Flanker tasks. Despite the vast literature demonstrating
greater susceptibility to Flanker interference in OAs than YAs
(Zeef and Kok, 1993; Zeef et al., 1996; Colcombe et al.,
2005), several studies have failed to find significant behavioral
differences (Gunter et al., 1996; Madden and Gottlob, 1997;
Falkenstein et al., 2001; Nieuwenhuis et al., 2002; Fernandez-
Duque and Black, 2006; Jennings et al., 2007). In fact, a few
studies have found that OAs exhibited better interference control
performance than YAs (Madden and Gottlob, 1997; Wild-Wall
et al., 2008). Our ERP findings suggest that age-related differences
in Flanker performance may become obscured or exaggerated if
TOD is not accounted for.

A final theoretical contribution of the current study relates to
the effect of circadian variation on different inhibitory control
subtypes: response inhibition and interference control. ERP
findings demonstrated a significant interaction between age
and TOD on interference control, but not response inhibition.
The differential effects of TOD on inhibitory control subtypes
have been demonstrated by previous research. Borella et al.
(2010) found that OAs tested in the afternoon but not the
morning showed higher Stroop interference effects than YAs,
but no such interactions between age and TOD were found
in a secondary inhibition task assessing negative priming.
Additionally, prior research demonstrated that interference
control and response inhibition dissociate in an ERP Go/Nogo
Flanker task, finding that the incongruent flanker condition
elicited a more centrally distributed topography with a later N2
peak (neural index of inhibitory processing) than the NoGo
condition (Brydges et al., 2012).

Tasks of interference control and response inhibition measure
distinct constructs of inhibitory control and thus preferentially
rely on different brain regions, with greater activation of
dorsolateral and ventrolateral regions of the prefrontal cortex
shown for response inhibition, and greater activation of
the anterior cingulate cortex for interference control (Blasi
et al., 2006). Furthermore, the discrepant pattern of TOD
results reported for our Flanker and Go-NoGo tasks may be
accounted for by the fact that these effects reflect different
inhibitory functions, which maybe differentially sensitive to
circadian fluctuations (Hasher et al., 2007). The differential
TOD effects emphasize the need to consider inhibitory control
as a multifaceted construct comprising several similar yet
distinct processes (Nigg, 2000; Friedman and Miyake, 2004)
or operations at different points in the flow of information
(Hasher and Campbell, 2020).

Implications for Aging and Time of Day
Research in Inhibitory Control
Practical implications include consideration of peak-time during
testing to optimize the performance of OAs and YAs on tasks
that involve inhibitory control and to achieve a more accurate
representation of the magnitude of age-related inhibition
differences reported in the literature. Given the accumulation
of behavioral evidence, and now neurophysiological evidence
from our study, showing that TOD can modulate age-related
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differences in interference control processing/efficiency,
information regarding circadian typology and TOD should be
reported or controlled routinely. As emphasized by Hasher et al.
(2005, 2007), failing to take TOD and chronotype into account
may minimize or exaggerate age-related differences in inhibition
performance and potentially result in misinterpretations
regarding age-related cognitive decline (particularly when all OA
participants are tested in the late afternoon/evening hours). For
instance, May and Hasher (1998) reported TOD modulations in
a Trail Making Test, a common measure of executive functioning
included in neuropsychological assessments. Additionally, the
increased inhibition demands during testing at non-optimal
times of day are further exacerbated for OAs with cognitive
impairment relative to healthy OAs (Paradee et al., 2005;
Rowe et al., 2021). For these reasons, TOD effects should be
considered in routine clinical practice and in research studies
examining executive functions such as inhibitory control to
avoid misinterpretation of results during improperly timed
cognitive assessments.

Limitations and Future Directions
Chronotype was operationalized in our study using the MEQ,
which is a subjective self-reported measure. While there is
good current evidence for the validity of the MEQ (i.e., as a
correlate with physiological measures of circadian phase, Horne
and Östberg, 1976; Roenneberg et al., 2003), future research
should consider including objective chronotype metrics such
as actigraphy. Another limitation of our study was that YAs
had slightly higher anxiety and depression scores on the HADS
relative to OAs. However, there is evidence that the HADS anxiety
scale overestimates the extent of clinical anxiety in student
populations like the one studied here (Andrews et al., 2006).
Furthermore, the present study used a forward high-pass filter
to improve the signal-to-noise ratio of the ERPs from older
adults, who are more prone to head movements that introduce
low-frequency artifacts. Our choice of high-pass filter settings
may have influenced later stage ERP components and reduced
between-group differences in ERP measures (Tanner et al., 2015).
To address this issue, future ERP research should examine
TOD differences in healthy aging using non-causal high-pass
filtering techniques. Finally, the strict inclusion and exclusion
criteria of OAs in the present study limits the generalizability
of our findings. That is, the present sample of OAs was quite
healthy, potentially minimizing differences in behavioral and
neural functioning between YAs and OAs that would otherwise
be present in the general population of OAs with typical age-
related pathologies. Nonetheless, our strict inclusion/exclusion
criteria allowed us to confirm that the age-related differences in
inhibitory control demonstrated in our study were not due to an
underlying pathology, like mild cognitive impairment, which is
characterized by deficits in inhibitory control (Rabi et al., 2020).

Despite the aforementioned limitations, findings from this
study can be used as a potential springboard for broader
examinations of the complex relationship between aging,
TOD, and executive functioning using electrophysiological
measures. Not only do our findings advance knowledge of
underlying changes in the neural mechanisms of inhibitory
control associated with TOD and aging, they also have future

applications in studying TOD influences in populations with
known inhibitory control deficits. For example, this could include
individuals with mild cognitive impairment, Alzheimer’s disease,
Parkinson’s disease, attention-deficit hyperactivity disorder,
autism, and depression (Schachar et al., 1993; Amieva et al., 2004;
Palmwood et al., 2017; Schmitt et al., 2018; Martyr et al., 2019;
Rabi et al., 2020; Chow et al., 2021).

Future research would also benefit from assessing TOD
influences on the neurophysiological correlates of inhibitory
control using a broader range of inhibition tasks to confirm TOD
differences in inhibitory control subtypes and ensure that effects
are subtype-specific rather than just task-specific. To clarify
further the relationship between TOD and aging on inhibitory
processing, future ERP research should also consider whether
manipulating inhibitory task demands modulates cognitive
aging and TOD effects. For example, Vallesi et al. (2010)
demonstrated that OAs’ compensatory brain responses engaged
the more extensive frontoparietal brain network to overcome a
prepotent and inappropriate response only when the task was
more complex, suggesting the need to further investigate task
complexity in relation to the effects of aging and TOD. Finally,
our research has demonstrated TOD and age-related differences
in inhibitory processing as reflected by cognitive ERPs, but future
research should also examine the role of age and TOD on sensory
inhibition. Age-related differences in sensory inhibition have
recently been demonstrated using sensory-evoked potentials in
multiple sensory domains (Alain et al., 2022), highlighting the
need to investigate the age-TOD-inhibition relationship in the
context of sensory processing.

CONCLUDING REMARKS

Neurophysiological results from this study showcase the
influence of age-related circadian patterns on the inhibitory
subtypes of response inhibition and interference control. For
response inhibition, ERPs from OAs and YAs demonstrated
synchrony effects. Age-related differences in the ERP correlates
of interference control were found only during the non-optimal
TOD. Our results support the hypothesis of TOD effects
on inhibition-related mechanisms and age-related effects of
TOD on interference control mechanisms, establishing for the
first time that electrophysiological markers can substantially
contribute toward elucidating the effects of aging and TOD
on inhibitory control. Given the mixed behavioral findings
regarding age-related differences in inhibition reported in prior
research, particularly for the Flanker task, ERP measures in
our study showed both age-related and TOD-related differences
in inhibitory processing that behavioral measures were not
sensitive enough to detect. These changes that accompany
circadian demands in inhibition highlight the importance for
future research studies in aging to measure and control for
circadian typology.
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