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Abstract: Ultrafiltration polyethersulfone (PES) membranes were prepared by wet phase inversion.
Commercial halloysite nanotubes (HNTs) in the quantities of 0.5 wt% vs. PES (15 wt%) were intro-
duced into the casting solution containing the polymer and different solvents:
N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), or 1-methyl-2-pyrrolidinone (NMP).
The type of solvent influenced the membranes’ morphology and topography, as well as permeability,
separation characteristics, and antifouling and antibacterial properties. The membranes prepared
using DMA exhibited the loosest cross-section structure with the thinnest skin and the roughest
surface, while the densest and smoothest were the DMF-based membranes. The advanced contact
angles were visibly lower in the case of the membranes prepared using DMF compared to the other
solvents. The highest water permeability was observed for the DMA-based membranes, however,
the most significant effect of the modification with HNTs was found for the NMP-based series.
Regardless of the solvent, the introduction of HNTs resulted in an improvement of the separation
properties of membranes. A noticeable enhancement of antifouling performance upon application of
HNTs was found only in the case of DMF-based membranes. The study of the antibacterial properties
showed that the increase in surface roughness had a positive effect on the inhibition of E. coli growth.

Keywords: membrane; halloysite nanotubes; N,N-dimethylformamide; N,N-dimethylacetamide;
1-methyl-2-pyrrolidinone

1. Introduction

The growing demand for clean water and the increasing pollution of the environ-
ment by industry have created a need for the development of modern water/wastewater
treatment technologies. Membrane processes, especially pressure-driven techniques, are
one of the solutions which could be successfully applied instead of conventional methods.
However, they suffer from an undesired phenomenon of membrane fouling, which causes
the decline of process efficiency over time. There are several approaches for fouling miti-
gation. One of the most promising is the modification of membranes with nanoparticles
(NPs), such as TiO2, SiO2, Al2O3, halloysite nanotubes (HNTs), carbon nanotubes (CNTs),
titanate nanotubes (TNTs), and others [1]. Among them, HNTs have attracted significant
attention as a natural, cheap, and non-toxic material [2–8]. The application of these NPs
was reported as an efficient approach to increase membranes’ permeability, as well as
mechanical and thermal resistance [9]. The addition of HNTs was also found to improve
the antifouling performance of polymeric membranes during filtration of organic foulants
due to an increase of membranes’ hydrophilicity [10]. However, reports in the literature on
the effect of the neat HNTs on the antibiofouling properties of the mixed-matrix membranes
are very scarce. In the case of biofouling, the main factor contributing to the deterioration
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of the membrane performance is the biofilm formed due to bacterial growth. The neat
HNTs were reported to not exhibit any significant antibacterial performance when added to
poly(lactic acid) (PLA) packaging films at 5 wt% [11]. Therefore, modification of HNTs with
some biocidal agents such as silver, copper, and N-halamine is usually proposed [9,12–17].

One of the most common polymers applied for the fabrication of the mixed-matrix
membranes modified with HNTs is polyethersulfone (PES) [8,18]. The membranes are
usually prepared via the wet phase inversion method (called also the non-solvent induced
phase separation process, NIPS). In this technique, a solution of polymer in solvent is
cast as a thin film or extruded as a capillary, and subsequently immersed in a non-solvent
(coagulation) bath. Typically, water is used as the non-solvent. After immersion of the
polymer film in the coagulation bath, the phase separation occurs due to the solvent–non-
solvent exchange. The structure of the formed membrane depends on various parameters
related to the composition of the casting dope and coagulation bath, as well as casting
conditions. Moreover, the morphology and properties of the membrane can be changed by
the application of various post-treatment procedures, e.g., drying under room or elevated
temperature or freeze-drying [19–21]. Amongst these parameters, the polymer solvent
plays an important role [22]. Depending on the solvent, various membrane morphologies
can be obtained (loose/dense skin layer, a sublayer of various porosity, different shapes of
macrovoids, finger-like/sponge-like structure, etc.) [23–25].

The most appropriate PES solvents are N,N-dimethylformamide (DMF), N,N-dimethy
lacetamide (DMA), 1-methyl-2-pyrrolidinone (NMP), and dimethyl sulfoxide
(DMSO) [18,26–29], although recently a possibility for the application of “green solvents”
has also been investigated [30]. The selection of a proper polymer solvent is based on the
solvent–polymer–non-solvent interactions. A useful parameter explaining the influence
of these interactions on membrane fabrication is the Hansen solubility parameter [31,32].
The value of this parameter for the PES–solvent interaction is higher for DMF (4.20 MPa0.5)
and DMSO (5.81 MPa0.5) compared to NMP (2.97 MPa0.5) and DMA (3.05 MPa0.5) [32]. A
higher polymer–solvent affinity causes a delay in demixing, and thus a delay in the phase
separation process. A delay in demixing was attributed also to the higher viscosity of the
DMF- and DMSO-based casting dopes. The membranes obtained under such conditions
exhibited lower water permeability, lower porosity, and smaller pore size compared to
those fabricated with the application of NMP and DMA [33–35]. It was also reported
that PES membranes obtained using DMA exhibited a more porous structure and higher
permeability compared to those fabricated using NMP [32,36]. Another factor affecting the
membrane preparation is the volatility of the polymer solvent [32,37].

The studies on the influence of the polymer solvent on the properties of the mixed-
matrix PES membranes modified with NPs are very limited. Ghandashtani et al. [38]
investigated the effect of three solvents, NMP, DMF, and DMSO, on the performance of SiO2-
modified PES mixed matrix membranes. The highest permeate flux and oil rejection were
observed in the case of the membrane fabricated using DMSO, due to the largest pore size
and the most hydrophilic surface [38]. However, these results are in disagreement with the
previously cited papers [32,34,35] on the influence of various solvents on the properties of
neat PES membranes. This could be related to different membranes’ preparation conditions
and the presence of SiO2 in the membrane matrix.

The above-presented overview reveals that the subject literature is lacking in the
research on the influence of polymer solvent on the properties of the mixed-matrix PES
membranes modified with HNTs. The present work covers this gap. The membranes
were obtained via the wet phase inversion method using DMF, DMA, or NMP as PES
solvents. The physicochemical properties of the membranes were examined based on
scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle
(CA) measurements. Moreover, the pure water flux and separation characteristics were de-
termined. Furthermore, membrane fouling was investigated using bovine serum albumin
(BSA) as a model foulant, while the antibiofouling properties were assessed on a basis of
inhibition of bacterial growth using Escherichia coli as a model microorganism.
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2. Results and Discussion
2.1. Physicochemical Properties of Membranes

Figure 1 presents the SEM images of the cross-sections of the membranes prepared
using various polymer solvents. All of the membranes exhibit an asymmetric structure with
a separation layer on the top. However, the use of different solvents significantly influenced
the morphology of the membranes (Figure 1). In the case of the membranes prepared
with DMF as a solvent, the most compact structure was obtained. The membranes were
characterized by the narrow finger-like pores in the middle part and a spongy structure
in the bottom part of the cross-section and between the finger-like pores. The use of both
DMA and NMP resulted in the formation of finger-like pores in the upper part and large
voids in the bottom part of the membranes. The structure of both types of membranes
was more loose compared to that fabricated using DMF. However, similarly to the case of
the DMF-based membranes, a spongy structure was observed in the bottom part of the
cross-sections.
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In the case of the HNTs-modified membranes, the presence of the nanofiller was con-
firmed (circles in Figure 1). The distribution of HNTs was random and their presence did 
not affect the structure or thickness of the membranes. Nonetheless, the membrane thick-
ness was influenced by the type of solvent and increased from ~40 µm for DMF to ~45 µm 
for DMA and ~55 µm for NMP. The observed increase resulted from a more developed 

Figure 1. SEM images of the cross-sections of the unmodified (left column, A—0%DMF; B—0%NMP;
C—0%DMA) and HNTs-modified membranes (right column, A1—0.5%DMF; B1—0.5%NMP; C1—
0.5%DMA).
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The differences in the structure of the membranes obtained using various solvents are
related to the rate of the solvent and non-solvent exchange (i.e., the liquid–liquid demixing
rate). A high miscibility between solvent and non-solvent ensures a rapid exchange of the
solvent in the forming membrane with the non-solvent in the coagulation bath [35,39]. As
a result of the instantaneous demixing, a fast precipitation of polymer occurs, leading to
the formation of a thin skin layer and a relatively loose, porous substructure containing
large macrovoids [32,40]. That phenomenon was observed in the case of the membranes
fabricated using NMP and DMA (Figure 1B,B1,C,C1). On the contrary, application of DMF
resulted in a more compact morphology of the membrane with fewer macrovoids and a
sponge-like structure (Figure 1A,A1), which is due to a slower exchange of the solvent with
the non-solvent (delayed demixing) [22].

Figure 2 presents SEM images of the separation layer of the membranes prepared
using various solvents. The thickness of the skin increased as follows: DMA (~70 nm)
< NMP (~75 nm) < DMF (~100 nm). These results are in the agreement with the above-
discussed mechanism of demixing. As was already explained, a high miscibility of the
solvent with the non-solvent may lead to the formation of a thin separation layer, thereby
increasing water permeability [32,40].
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Figure 2. SEM images of the membrane separation layer (A—0%DMF; B—0%NMP; C—0%DMA).

In the case of the HNTs-modified membranes, the presence of the nanofiller was
confirmed (circles in Figure 1). The distribution of HNTs was random and their presence
did not affect the structure or thickness of the membranes. Nonetheless, the membrane
thickness was influenced by the type of solvent and increased from ~40 µm for DMF
to ~45 µm for DMA and ~55 µm for NMP. The observed increase resulted from a more
developed porous structure (especially the presence of macrovoids) for the membranes
obtained using DMA and NMP solvents.

Figure 3 shows AFM images of the membranes’ surfaces visualized in 3D mode. In the
case of the mixed-matrix membranes, the presence of HNT agglomerates can be observed.
On the surface of the membrane prepared with DMF, the agglomerates with a size of
~30 to ~270 nm were found. The surface of the DMA membrane was covered with HNT
agglomerates with diameters ranging from ~25 to ~420 nm, but most of them were about
100 nm in size. In the case of the membrane fabricated using NMP, the agglomerates with a
diameter in the range of ~25 to 300 nm were present, and most of them exhibited a size of
about 80 nm. In the AFM images (Figure 3), the difference in the surface roughness (Ra) of
the obtained membranes was also noticeable.

The analysis of the Ra value (Figure 4) revealed the highest roughness in the case of the
membranes prepared using DMA, while the smoothest surface exhibited the membranes
obtained with the application of DMF. The Ra value of the unmodified 0%DMF, 0%NMP,
and 0%DMA membranes amounted to 4.52(0.52) nm, 5.22(0.39) nm, and 6.06(0.56) nm,
respectively. After the introduction of HNTs, the Ra increased up to 4.60(0.48) nm, 5.83(0.32)
nm, and 6.99(0.51) nm, respectively. The observed changes in roughness are related to the
presence of HNTs on the surface of the membranes (Figure 3). A greater increase in Ra was
noticeable in the case of the modified 0.5%DMA and 0.5%NMP membranes than in the case
of 0.5%DMF. In the AFM images of the 0.5%DMA and 0.5%NMP (Figure 3), the presence
of a higher number of the NPs agglomerates was found than in the case of 0.5%DMF.
The observed differences can be explained in terms of the structure formed during the
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phase inversion process. The 0%DMF and 0.5%DMF membranes were characterized by
a more compact structure than the DMA- and NMP-based membranes (Figure 1). As a
result, in the case of the DMF-based membrane, the HNT aggregates were blocked in the
sublayer of the membrane at the stage of the solvent–non-solvent exchange. The highest
roughness was observed for the DMA-based membranes, which can be attributed to the
largest pore diameter from all of the examined membranes (see below). The roughness of
the NMP–based membranes was lower compared to the DMA-based membranes, which
could be explained by a more compact structure. A similar relationship was observed by
Thuyavan et al. [32], who reported an increase in membrane roughness in the following
order: DMF < NMP < DMA. A lower surface roughness was explained by a more compact
structure and smaller pore diameters of the membranes.
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Figure 4. The influence of HNTs and the type of solvent on surface roughness (Ra) of membranes
(for each solvent: the darker, left column corresponds to the unmodified membrane; the lighter, right
column represents the modified membrane).

The mean pore size of the obtained membranes is presented in Figure 5. It can be
observed that the membranes were characterized by different pore diameters, although
the values changed in a relatively narrow range (from 6.3 to 6.8 nm). The largest pore
diameters were found in the case of the membranes prepared with the application of
DMA as a solvent, and smaller for the NMP- (6.4 nm) and DMF-based (6.5 nm) mem-
branes. The addition of HNTs caused a slight decrease in the pore diameter of all the
membranes (to 6.3, 6.3, and 6.7 for the DMF, NMP, and DMA solvents, respectively).
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Figure 5. Mean pore size of the neat (the darker, left columns) and modified membranes (the lighter,
right columns).

The membranes obtained with the application of various polymer solvents were
characterized by different hydrophilicity. Figure 6 presents static (SCA) and dynamic
contact angle values determined for the neat and HNT-modified membranes.

Comparing the effect of the solvent on the SCA of both neat and mixed-matrix mem-
branes, it can be observed that the values follow the order: DMF ≈ NMP < DMA (Figure 6).
Moreover, the introduction of hydrophilic HNTs influenced the SCA of all the membranes,
regardless of the applied solvent (decrease for 3◦). Very different results were obtained
by Guan et al. [37] who prepared sulfonated polyethersulfone membranes using the same
solvents. The authors observed that the increase in the SCA of the membranes was in the
following order: NMP < DMA < DMF. On the contrary, Thuyavan et al. [32] during their
investigations on PES (17.5 wt%) membranes observed the lowest hydrophilicity in the
case of the application of DMA, and the effect of the solvents on SCA followed the order:
DMF < NMP < DMA.
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Figure 6. Static, advancing, and receding contact angle of the neat and mixed-matrix membranes.

Except for the static contact angles, the values of advancing (ACA) and receding (RCA)
contact angles were also determined. ACA is a measure of the overall hydrophobicity of a
surface, while RCA is a measure of relative hydrophilicity. Due to their flexibility, polymer
surfaces can change their surface energy depending on the surrounding medium. This
feature is one of the reasons for the hysteresis observed between ACA and RCA. Moreover,
hysteresis depends also on the surface roughness [41,42]. Under certain conditions, the
rough surfaces cannot be completely wetted by water and could produce the so-called
composite surfaces, in which air becomes trapped in the surface troughs [43,44]. In such
a case, the contact angle can be higher than that measured for a smooth surface. On the
other hand, when a rough surface is completely wetted (all the cavities/pores are fully
filled with water), the contact angle can be lower compared to that measured for a smooth
surface [44]. The obtained ACA, RCA, and hysteresis results are shown in Figure 6. In the
case of the neat membranes, the lowest ACA was observed for 0%DMF. The value of ACA
measured for 0%NMP and 0%DMA was similar to each other and visibly higher compared
to 0%DMF. These results suggest that the so-called composite surface mentioned above
is formed in the case of the NMP- and DMA-based membranes. The modification with
HNTs resulted in a decrease in the value of ACA for all the examined membranes, although
the effect was least significant when NMP was used as a solvent. The difference in ACA
measured for the neat and mixed matrix membranes reached 5◦, 3◦, and 1◦ for the DMF,
DMA, and NMP solvents, respectively. The addition of HNTs affected also RCA, which
decreased 4◦ and 5◦ in the case of DMF and DMA, respectively, while the NMP-based
series remained unchanged. The lowering of the contact angle value can be attributed to
the presence of -OH groups in the structure of the HNTs [45,46].

Based on the results obtained for the ACA and RCA measurements, the hysteresis
was calculated. In the case of the DMF-based membranes, after the introduction of HNTs, a
slight decrease in the hysteresis value from 38◦ to 36◦ was observed. The use of DMA and
NMP as polymer solvents resulted in a higher hysteresis compared to DMF. Moreover, the
values were similar for the neat and mixed-matrix membranes and amounted to 49◦ to 50◦.
These data show that the effect of modification with the nanofiller was very different for
the DMA- and NMP-based membranes compared to the DMF-based one. The decrease of
the hysteresis for the 0.5%DMF membrane compared to 0%DMF can be mainly attributed
to the lowest roughness of the DMF-based membranes amongst all the examined cases
(Figure 4). Similarly, the almost unchanged hysteresis values observed for the neat and
mixed-matrix membranes obtained using the two other solvents can be explained by
the higher surface roughness of the DMA- and NMP-based membranes compared to the
DMF-based series (Figure 4).



Molecules 2021, 26, 2768 8 of 18

2.2. Permeability of the Membranes

The influence of different solvents on the permeability of the neat and mixed-matrix
membranes is summarized in Figure 7.
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Figure 7. The influence of the addition of HNTs and the type of the solvent on pure water flux
through the neat and mixed-matrix PES membranes.

No improvement of pure water flux (PWF) after the introduction of HNTs to the
DMF-based membrane was found. This can be explained by the compact membrane
structure (Figure 1) and thick separation layer (Figure 2) which reduced the positive effect
of the modification with HNTs. A slight increase in PWF (from 714 to 756 dm3/m2 h at the
transmembrane pressure TMP = 3 bar) was observed after the introduction of HNTs into the
matrix of the DMA-based membrane. The most significant effect of the modification with
HNTs was found for the NMP-based membrane, in the case of which the PWF increased
from 592 to 658 dm3/m2 h at TMP = 3 bar. The increase in membrane permeability after
the incorporation of HNTs can be related to the tubular structure of the nanomaterial
and its hydrophilic nature [47]. Despite slight changes in hydrophilicity due to the low
nanofiller content, the increase in permeability could be related to the nanofiller distribution
in the membrane matrix. The SEM images (Figure 1) show that a significant part of the
introduced HNTs formed agglomerates localized in the sublayer of a membrane, which
reduced their amount on the membrane surface. The increase in membrane roughness
observed for the mixed matrix 0.5%DMA and 0.5%NMP compared to the neat 0%DMA
and 0%NMP confirm the presence of a noticeable amount of HNTs on the surface of these
membranes. On the contrary, the Ra of the 0%DMF and 0.5%DMF membranes was very
similar, indicating a low content of the nanofiller on the surface.

Comparing the effect of various solvents on the PWF it can be observed that the
flux increased in the order: DMF < NMP < DMA. The differences in permeability can
be associated with changes in the structure of the membranes visible in the SEM images
(Figures 1 and 2). The use of DMF resulted in the formation of a thicker separation layer,
and thus these membranes exhibited lower permeability compared to DMA and NMP-
based membranes, with a thinner separation layer [32,40]. A higher permeability of the
DMA-based membranes compared to the NMP-based ones can be further explained by a
larger pore diameter of the 0%DMA and 0.5%DMA compared to the 0%NMP and 0.5%NMP
(Figure 5). A similar relationship between the type of solvent and the PES membranes’
permeability was reported by Thuyavan et al. [32]. The highest value of the flux observed
for the membrane prepared with the use of DMA was associated with the formation of
larger pores in the structure of the membrane, while the lowest value observed in the case
of DMF was attributed to a more compact membrane structure. The obtained results were
also explained in terms of a higher viscosity of the solution of polymer in DMF compared
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to DMA and NMP, which delayed the solvent–non-solvent exchange and thus resulted in a
more compact structure characterized by a lower permeability [32].

2.3. Separation Properties

Figure 8 shows the rejection (R) of model organic compounds, poly(ethylene gly-
cols) (PEGs) and dextrans, by the neat and mixed-matrix membranes prepared using
various solvents.
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Figure 8. The influence of the addition of HNTs and the type of the solvent on the rejection of PEGs
(4 to 35 kDa) and dextrans (70 to 500 kDa) by the neat and mixed-matrix PES membranes.

Significant differences in the separation properties were observed between the mem-
branes prepared with different solvents. Comparing the unmodified membranes, the
highest PEGs rejection was observed for the 0%DMA membrane (18%, 30%, and 32% for 4,
20, and 35 kDa, respectively). The separation performance of 0%DMF and 0%NMP towards
PEGs was visibly lower (18% and 8% for PEG 35 kDa, respectively). In the case of the separa-
tion of dextrans, the rejection efficiency followed the order: 0%DMF < 0%NMP < 0%DMA.
For the 200 kDa dextran, the R value reached 65%, 75%, and 89%, respectively. Regardless
of the polymer solvent applied, the introduction of HNTs to the membranes’ structure
resulted in an improvement in the separation properties. The rejection of 35 kDa PEG by
0.5%DMF, 0.5%NMP, and 0.5%DMA reached 19%, 19%, and 43%, respectively, whereas the
rejection of 200 kDa dextran amounted to 91%, 91%, and 90%, respectively. The separation
mechanism of ultrafiltration is based on a sieve effect and depends mainly on the size and
shape of the pores on the membrane surface. The observed improvement in the separation
performance of the membranes after the introduction of the nanofiller can be attributed
to the additional pores of HNTs (lumen and surface pores and defects) and voids formed
between the HNTs tubes forming agglomerates. Furthermore, the enhancement of the sepa-
ration efficiency was explained by a tortuous path of water flowing through the membrane
caused by the agglomerates as well as by the unique adsorption property of HNTs due
to their positively charged inner and negatively charged outer surfaces [10]. Nonetheless,
no direct correlation between the pore size determined on the basis of the AFM analysis
(Figure 5) and the rejection of PEGs and dextrans (Figure 8) was found. The 0%DMA
membrane characterized by the largest mean pore size exhibited the highest rejection of
the model compounds. However, the 0%DMF membrane, possessing a similar pore size
to 0%NMP, exhibited a lower dextrans separation efficiency than the 0%NMP membrane,
while after the introduction of HNTs the performance of both types of membranes was
similar. In contrast to flow-through measurement techniques, the AFM microscopy does
not allow for the differentiation between open and closed pores in the membrane separation
layer. It is possible that the 0%DMF membrane had more of the open pores, which allowed
the model compounds to pass through, compared to the larger, but likely closed pores
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in the 0%DMA membrane. Also, this technique does not allow for the measurement of
the pores within the HNTs, whose presence also contributes to the rejection of the model
compounds. These data show that the evaluation of the separation performance of the
membranes using model solutes is a more appropriate approach than the determination of
the mean pore size on a basis of the AFM analysis.

2.4. Antifouling Properties

The antifouling properties of the membranes were determined using bovine serum
albumin as a model foulant (Figure 9). The ultrafiltration process was carried out for 2 h,
during which a decrease in the permeate flux was observed over time. The use of HNTs
had a noticeably positive effect on the fouling mitigation only in the case of the DMF-based
membranes. The permeate flux at the end of the process reached 147 dm3/m2 h for 0%DMF
and 165 dm3/m2 h for 0.5%DMF. In the case of the NMP- and DMA-based membranes, no
significant effect of the HNTs addition on the membrane fouling alleviation was observed.
At the end of the experiments, the flux reached 184 and 185 dm3/m2 h for 0%NMP and
0.5%NMP, and 220 and 229 dm3/m2 h for 0%DMA and 0.5%DMA, respectively. The
higher values of the permeate flux observed for the DMA and NMP-based membranes
compared to the DMF-based ones resulted from the higher water permeability of the former
membranes (Figure 7).
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The decrease in the permeate flux through the unmodified 0%DMF membrane in
comparison to PWF reached 54% after 2 h of the experiment, whereas for the 0.5%DMF,
the permeate flux was reduced by 40%. In the case of the neat 0%DMA and 0%NMP,
the decrease in permeate flux was 53%. After modification, there was a 53% decrease of
0.5%DMA and 55% for 0.5%NMP. The improved fouling resistance in the case of 0.5%DMF
compared to 0%DMF can be related to the lower roughness of the DMF-based membranes
compared to the NMP- and DMA-based membranes. Another explanation can be its low
permeability. Conversely, the increase in roughness and PWF value upon modification with
HNTs resulted in almost unchanged fouling resistance of the 0.5%NMP and 0.5%DMA
membranes compared to the neat 0%NMP and 0%DMA. Thuyavan et al. [32] also related
the fouling susceptibility of the membranes prepared with various solvents to the differ-
ences in the surface roughness. The authors reported that the membrane prepared with the
use of DMF had the highest fouling resistance, which was ascribed to its low roughness,
high hydrophilicity, and small pore diameter. The fouling resistance was also influenced by
the hydrophilicity of the tested membranes (Figure 6). An increase in the hydrophilicity of
a membrane results in a reduction in the hydrophobic interactions between the membrane
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surface and the BSA molecules, which can lead to the adsorption of the foulant on the
surface or the formation of a permeation-limiting hydrophobic layer [48,49]. Although the
SCA values of all the examined membranes were comparable (50◦ to 54◦), a significant
difference was found in the case of ACA (Figure 6). As was already explained, ACA
represents the overall hydrophobicity of the membrane surface. The value of ACA of the
NMP- and DMA-based membranes was visibly higher (66◦ to 69◦) compared to that of the
DMF-based membranes (54◦ to 59◦), indicating a higher hydrophobicity of the surface of
the former membranes compared to the latter ones.

2.5. Antibacterial Properties

The antibacterial properties of the neat and mixed-matrix membranes are shown
in Figure 10.
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Figure 10. Inhibition of E. coli growth in the presence of the neat and mixed-matrix membranes.

It was found that both the type of the solvent and the addition of HNTs had an
influence on the inhibition of E. coli growth in the presence of the examined membranes.
The highest antibacterial activity was observed for the DMA-based membranes, while
the lowest was observed for the DMF-based series. Moreover, the incorporation of HNTs
into the membranes’ matrix improved the antibacterial properties of the membranes,
regardless of the applied solvent. In the case of the 0%DMF membrane, the number of
bacterial colonies decreased by only 14%, while after the modification with HNTs the
percentage reduction was almost twice as high and reached 26%. A similar improvement
of the antibacterial properties was observed for the 0.5%NMP membrane, for which the
percentage reduction was 37%. In the case of the neat 0%NMP, it was 19%. The influence of
HNTs on the antibacterial performance of the DMA-based membranes was less pronounced.
The number of bacterial colonies decreased by 45% in the presence of the neat 0%DMA
and for 47% in the case of the mixed-matrix 0.5%DMA.

The antibacterial properties of the neat and mixed matrix membranes can be explained
in terms of mechanical damage to bacterial cells. Such damage might be induced by a
rough surface of the membranes. Figure 11 confirms that a certain correlation between
the Ra and antibacterial activity of the obtained membranes exists. Furthermore, it can be
found that the antimicrobial properties of the membranes can be changed by changing the
polymer solvent even in the absence of the HNTs. Nonetheless, the application of HNTs
contributes to the enhancement of the antibacterial properties of the membranes. A similar
phenomenon was observed during our previous studies on PES membranes modified
with titanate nanotubes [50]. HNTs, likewise TNTs, exhibit a needle-like structure that can
penetrate the outer layer of the E. coli cells leading to their damage. This type of mechanism
of bacterial inactivation has also been observed in the case of membranes modified with
CNTs [51,52].
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Figure 11. Influence of roughness on antibacterial activity of the neat (open circles) and mixed matrix
(closed circles) PES membranes.

3. Materials and Methods

Polyethersulfone (Ultrason E6020P) was provided by BASF SE (Ludwigshafen, Germany).
DMF (puriss p.a.) was purchased from Avantor Performance Materials Poland S.A.
(Gliwice, Poland), while DMA and NMP were obtained from Acros Organics (Geel, Bel-
gium and the Netherlands, respectively). Halloysite nanotubes were supplied by Sigma
Aldrich (Saint Louis, MO, USA). The length of HNTs ranged from 150 to 1250 nm, the inner
diameter was in the range of 11 to 28 nm and the wall thickness was 5–23 nm. The detailed
characteristics of HNTs are presented elsewhere [53]. Bovine serum albumin (Probumin)
was purchased from Merck (Darmstadt, Germany). Poly(ethylene glycols) were provided
by Sigma Aldrich (Steinheim, Germany) and dextrans by Polfa Kutno (Kutno, Poland).
In all experiments, pure (deionized) water (type 2, 0.066 µS/cm) from Elix 3 (Millipore,
Burlingtone, MA, USA) was applied.

Plate count agar (BIOCORP, Warszawa, Poland) and NaCl (Merck, Søborg, Den-
mark) were used in microbiological tests. The initial concentration of the Gram-negative
Escherichia coli (ATCC 29425, Manassas, VA, USA) suspension was set at 0.5 according to
the McFarland scale (McFarland standards, bioMérieux, Marcy l’Etoile, France).

PES UF membranes were prepared by the wet phase inversion method. In the case of
the unmodified membrane, the polymer (15 wt%) was dissolved in DMF, DMA, or NMP
(85 wt%), respectively. The homogeneous casting dope was cast onto a glass plate using an
automatic film applicator (Elcometer 4340, Elcometer Ltd., Manchester, UK) with the knife
gap of 0.1 mm, and subsequently immersed in a pure water bath (type 2, 0.066 µS/cm,
Millipore, Burlingtone, MA, USA, 20 ± 1 ◦C) to complete the phase inversion process.

The casting dope for the fabrication of the mixed-matrix membranes was obtained by
mixing a dispersion of HNTs in an appropriate solvent: DMF, DMA, or NMP (10 cm3) with
the previously prepared solution of PES in the solvent (40 cm3). The dispersion of HNTs
in a solvent was prepared by sonication for 30 min using an ultrasonic probe (Vibra-cell
VCX-130, Sonics, Randor, PA, USA; output power 130 W, frequency 20 kHz, amplitude
80%). After addition of the HNTs and their dispersion into the polymer solution, the casting
dope was mixed alternately using: (i) a magnetic stirrer at the temperature of 55 to 60 ◦C
and (ii) sonication in an ultrasonic bath (Sonic-6D, Polsonic, Poland; output power 320 W,
frequency 40 kHz) for 2 h, 15 min by turns. After degassing of the casting dope at room
temperature, the membranes were cast using the automatic film applicator as described
above. The content of HNTs in the casting dope was 0.5 wt% (by weight of the polymer).
The amount of HNTs was selected on the basis of the previous work [53], which revealed
that the membrane containing 0.5 wt% of HNTs showed the best fouling resistance, good
dispersion of HNTs on the surface, and relatively low roughness.

The static contact angle of the membranes was determined by a sessile drop approach
using a goniometer (type 260 ramé-hart instruments co., Succasunna, NJ, USA). The
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applied volume of the water drop was 10 µL. The results are mean values of at least 10
measurements. Moreover, the advancing and receding contact angles were determined by
slowly increasing (from 3 to 11 µL) and subsequently reducing the volume of water drop.
The results are mean values of at least five measurements.

The surface topography of the membranes was analyzed on a basis of AFM images
collected using an atomic force microscope (NanoScope V Multimode 8, Bruker Corp.,
Billerica, MA, USA) in the ScanAsyst mode. The silicon nitride probe was applied. The
average roughness value (Ra) of the membrane surface was determined in the NanoScope
Analysis software using at least five AFM images (10 × 10 µm). The size of the membrane
pores in the skin layer was calculated based on the AFM images (1 × 1 µm) with the
application of the Gwyddion software package using a slightly modified methodology
described by Khanukaeva et al. [54]. The images were first flattened to the third order using
the NanoScope Analysis software. In order to define the pore diameters, both the threshold
and the watershed modes were applied. In the threshold mode, the AFM image is cut
horizontally at a certain height (the threshold). The resulting plane contains some irregular
shaped areas, which are considered as pore openings. For the proper identification of the
pores by this method, the analyzed surface must be flat enough, i.e., free of deformations.
However, even with the flattening procedure the shapes that could be considered to be the
pores were not completely identified by the threshold approach. Therefore, the watershed
method was also used. In this method, the analyzed surface is covered with the virtual
water droplets and then a numerical simulation of their free spreading is conducted. The
surface porosity is analyzed based on the position, size, and shape of such created structures
which are interpreted as pores. A more detailed description of the method can be found
elsewhere [54].

The morphologies of the membranes’ cross-sections were examined using the ultra-
high-resolution field-emission scanning electron microscope (UHR FE-SEM) Hitachi SU8020
(Düsseldorf, Germany). The samples of membranes were dehydrated in ethanol and then
broken in liquid nitrogen. Before the measurement, the samples were sputtered with a
chromium layer (Q150T ES Quorum Technologies Ltd., Lewes, UK). The analysis was
carried out using the secondary electrons (SE) mode (accelerating voltage 5 kV).

The antibacterial properties of the membranes were evaluated using Escherichia coli
as a model microorganism. A piece of a membrane (12.5 × 4.5 cm) was dehydrated in
ethanol, dried in air, and put into a glass bottle filled with 100 cm3 of E. coli suspension. A
control sample was prepared in the same way but without a membrane. Three separate
experiments were realized to confirm the reproducibility of the results. The samples were
incubated at 37 ◦C for 24 h under a continuous stirring using a magnetic stirrer (250 rpm).
The number of bacteria was determined using the decimal dilutions in a sterile NaCl
(8.5 g/dm3) solution. A total of 0.3 cm3 of the diluted solution was spread using a spreader
on the PCA plate. The agar plates were incubated at 37 ◦C for 24 h. The visible colonies
were counted by the counter (LKB 2002, POL-EKO, Wodzisław Śląski, Poland). The results
were calculated as the average colony-forming units (CFU) according to Equation (1):

CFU/cm3 = (N × Y)/Z (1)

where N denotes the number of bacteria colonies visible on agar plates, Y denotes the total
dilution, and Z denotes the volume of bacteria suspension (0.3 cm3).

The log reduction of bacterial growth was determined with reference to the control
sample using Equation (2):

Log reduction = log (A/B) (2)

where A denotes the number of bacteria in the control sample and B denotes the number
of bacteria in the presence of a membrane.

The pure water flux, as well as the separation and antifouling properties, were ex-
amined based on a cross-flow UF process with the application of an experimental setup
described elsewhere [55]. The experiments were repeated at least three times to confirm the



Molecules 2021, 26, 2768 14 of 18

reproducibility of the results. The membrane (0.0025 m2) was mounted in a stainless-steel
module with a 1.194 mm feed spacer. The PWF was evaluated by ultrafiltration of pure
water (type 2, 0.066 µS/cm, Millipore, 20 ◦C) at the transmembrane pressures (TMPs) 1, 2,
and 3 bar. Antifouling properties of the membranes were determined on a basis of 2 h of
ultrafiltration of BSA solution (1 g/dm3). The feed cross-flow velocity and TMP during the
fouling experiments were 1 m/s and 2 bar, respectively.

Separation properties of the membranes were evaluated during the ultrafiltration of a
series of model solutions containing poly(ethylene glycols) (PEGs) with molecular weights
of 4, 20, and 35 kDa, and dextrans with molecular weights of 70, 110, 200, and 500 kDa. The
concentration of the model organic compounds was 0.5 g/dm3, and the TMP was set at
1 bar. The rejection of PEGs and dextrans was calculated based on Equation (3):

R = [(C0 − Cp)/C0] × 100% (3)

where C0 is the concentration of PEG and dextrans in the feed, while Cp is the concentration
in permeate.

The concentration of the model compounds in the feed and permeate was measured
using high-performance liquid chromatograph LaChrom Elite (Hitachi, Chiyoda, Tokio,
Japan) equipped with the refractive index detector L-2490 and the PolySep-GFC-P4000
column (Phenomenex, Torrance, CA, USA). Ultrapure water was used as a mobile phase.

4. Conclusions

The influence of the polymer solvent on the physicochemical, transport, separation,
antifouling, and antibacterial properties of PES mixed matrix membranes modified with
HNTs was presented and discussed. Membranes prepared with DMF were characterized by
a dense structure with a thick separation layer and some finger-like pores in the sub-layer,
while in the cross-section of DMA- and NMP-based membranes, a thin skin in the top
and macrovoids in the bottom part were noticed. These differences in the morphology
were related to the various mechanisms of phase inversion during membranes’ formation,
i.e., delayed demixing in the case of DMF and instantaneous demixing in the case of DMA
and NMP solvents. AFM analysis revealed the presence of the HNT aggregates on the
surface, which influenced the roughness of the obtained membranes. The highest Ra value
was observed for the DMA-based membranes, while the lowest was observed for the DMF-
based ones. The static contact angles changed in the following order: DMF ≈ NMP < DMA
indicating similar hydrophilicity of the DMF- and NMP-based membranes. However, the
values of ACA, which can be regarded as a measure of membranes’ hydrophobicity, were
visibly higher in the case of the membranes fabricated using NMP and DMA compared to
that obtained with the application of DMF.

A higher water permeability was found in the case of the membranes prepared using
DMA and NMP as solvents compared to the DMF-based membranes. Moreover, an increase
of PWF upon addition of HNTs to the NMP- and DMA-based membranes was observed,
whereas the introduction of the nanofiller did not affect the permeability of the membranes
obtained using DMF. These results were related to the distribution of the nanomaterial in
the matrix and on the surface of the membranes, and the thickness of the separation layer.

The rejection of PEGs and dextrans by the 0%DMF and 0%NMP was visibly lower
compared to that by 0%DMA. The introduction of HNTs to the membrane matrix had a
positive effect on the separation performance of the membranes, regardless of the applied
solvent. No correlation between the pore size determined by AFM and the rejection of the
model compounds was found.

A positive influence of the introduction of HNTs to the membrane matrix on the
antifouling properties was observed only for the DMF-based membranes. In the case of
the membranes prepared using the other solvents the permeate fluxes before and after
modification with HNTs were similar. The different effect of the modification was explained
in terms of higher permeability of the NMP- and DMA-based membranes compared to
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the DMF-based ones, as well as their higher overall hydrophobicity represented by the
ACA values.

A relationship between the antimicrobial properties and the surface roughness of the
membranes was observed. The membranes prepared with the use of DMA as a solvent
were characterized by the highest roughness and also by the most efficient inhibition of the
E. coli growth. The incorporation of HNTs increased the membrane roughness thus further
improving the antibacterial performance of the membranes. The results were explained by
the mechanical damage of bacterial cells in contact with the rough surface, which limits
their growth.
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Abbreviations and Symbols

A Number of bacteria in the control sample
ACA Advancing contact angle
AFM Atomic force microscopy
B Number of bacteria in the presence of a membrane
BSA Bovine serum albumin
C0 Concentration of PEG and dextrans in feed
CP Concentration of PEG and dextrans in permeate
CA Contact angle
CFU Colony forming unit
CNTs Carbon nanotubes
DMA N,N-dimethylacetamide
DMF N,N-dimethylformamide
DMSO Dimethyl sulfoxide
HNTs Halloysite nanotubes
N Number of bacteria colonies visible on agar plates
NIPS Non-solvent-induced phase separation
NMP 1-methyl-2-pyrrolidinone
NPs Nanoparticles
PEGs Poly(ethylene glycols)
PES Polyethersulfone
PLA Poly(lactic acid)
PWF Pure water flux



Molecules 2021, 26, 2768 16 of 18

R Rejection
Ra Mean roughness (roughness average)
RCA Receding contact angle
SCA Static contact angle
SE Secondary electrons
SEM Scanning electron microscopy
TMP Transmembrane pressure
TNTs Titanate nanotubes
UF Ultrafiltration
Y Total dilution
Z Volume of bacteria suspension
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