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Birth weight of pigs is an important economic factor in the livestock industry. The
identification of the genes and variants that underlie birth weight is of great importance.
In this study, we integrated two genotyping methods, single nucleotide polymorphism
(SNP) chip analysis and restriction site associated DNA sequencing (RAD-seq) to
genotype genome-wide SNPs. In total, 45,175 and 139,634 SNPs were detected with
the SNP chip and RAD-seq, respectively. The genome-wide association study (GWAS)
of the combined SNP panels identified two significant loci located at chr1: 97,745,041
and chr4: 112,031,589, that explained 6.36% and 4.25% of the phenotypic variance
respectively. To reduce interval containing causal variants, we imputed sequence-
level SNPs in the GWAS identified regions and fine-mapped the causative variants
into two narrower genomic intervals: a ∼100 kb interval containing 71 SNPs and a
broader ∼870 kb interval with 432 SNPs. This fine-mapping highlighted four promising
candidate genes, SKOR2, SMAD2, VAV3, and NTNG1. Additionally, the functional
genes, SLC25A24, PRMT6 and STXBP3, are also located near the fine-mapping region.
These results suggest that these candidate genes may have contribute substantially to
the birth weight of pigs.

Keywords: birth weight, fine mapping, candidate genes, GWAS, pig

INTRODUCTION

The birth weight of pigs is an important economic trait in the livestock industry. It is
closely associated with early survival, weaning weight, and growth rate after weaning (Quiniou
et al., 2002; Smith et al., 2007). Pigs have been selectively bred to produce larger litters,
however, with this increase in litter size, the average birth weight has decreased (Bergstrom
et al., 2009; De Almeida et al., 2014). Birth weight reflects the intrauterine growth of
piglets which is affected by both the maternal supply of nutrition and genetic factors
(Roehe, 1999; Zohdi et al., 2012). Measures of birth weight heritability have ranged from
0.08 to 0.36 (Roehe, 1999; Roehe et al., 2010; Dufrasne et al., 2013), suggesting that it
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is substantially affected by own (fetal) genetic factors as well as
maternal genetic effects. Therefore, it is a worthwhile endeavor
to determine which genes or variants underly this variation
in birth weight.

A few birth weight related markers have been identified by the
study of candidate genes such as MYOG, MSTN and DBH (Te
Pas et al., 1999; Jiang et al., 2002; Tomás et al., 2006). With the
widespread use of customized single nucleotide polymorphism
(SNP) arrays, an increasing number of potential markers have
been identified by genome-wide association study (GWAS).
Wang X. et al. (2016) found over two hundred SNPs associated
with birth weight by using first parity sows whose offspring had
extreme birth weights; Zhang et al. (2018) identified 17 genomic
regions associated with birth weight; Wang et al. (2017) found
12 SNPs that were significantly associated with piglet uniformity;
and 27 differentially selected regions associated with the birth
weight of piglets were detected by Zhang et al. (2014). However,
a birth weight GWAS of Large white pigs by Wang et al. (2018)
was unable to determine any significant loci. The identification of
birth weight associated markers remains difficult to reproduce.

With rapid development of next-generation sequencing
technology, a number of techniques have been widely adopted for
genotyping, including whole genome resequencing and reduced-
representation sequencing (RRS) techniques such as genotyping-
by-sequencing and restriction site-associated DNA sequencing
(RAD-seq) (Baird et al., 2008; Huang et al., 2009; Elshire et al.,
2011). Compared to SNP chip analysis, RRS approaches are
based on restriction site associated fragments and have great
advantages in both the number of SNPs acquired and the ability
to identify novel SNPs. Currently, RRS approaches are widely
employed in combination with GWAS (Bhatia et al., 2013). As
SNP chip analyses only share a small subset of SNPs with RRS
(Brouard et al., 2017), the combination of the two methods in one
population may improve repeatability of GWAS findings.

Trait related loci can be identified with GWAS, however,
the elucidation of the causative variant rather than the loci is
the ultimate goal. The determination of the causative variant
requires a high density of SNPs in a particular region of
GWAS. If the region is not genotyped at a sequence level,
the imputation technique can be used to fill in missing
SNPs from the available reference panels. Due to linkage
disequilibrium between SNPs, the GWAS signal extends across
a large region. Although it is not always possible to directly
identify the causative variant, the region containing the causative
variant can be narrowed down by sophisticated methods (Fang
and Georges, 2016; Huang et al., 2017). The key feature
of these methods is determining SNPs that have a 95%
probability of containing the causative variants, as calculated with
posterior probabilities.

In this study, we used the DNA variants from two different
genotyping approaches, SNP chip and RAD-seq, to perform
GWAS for birth weight. To finely map causative genes, we built
a reference panel for a region-of-interest by deep resequencing
of 28 boars, by which the merged SNPs of RAD-seq and SNP
chip were imputed at the sequence level. Finally, we detected
the potential causative genes within or close to the finely
mapped region.

MATERIALS AND METHODS

Animals and Phenotypes
Pedigree and phenotype records used for this study were
provided by our lab. The pedigree contains 26,539 animals
from 7 generations, including 14,226 Yorkshire and 12,313
Landrace animals. There were 12,661 and 10,635 records of birth
weight for Yorkshire and Landrace piglets, respectively. After
excluding disqualified records (missing birth date or abnormal
records), 10,267 and 8,919 records Yorkshire and Landrace
piglets were included, respectively. A total of 674 purebred
sows (453 Yorkshire, 221 Landrace) born between 2014 and
2016 were selected for RAD-seq. After eliminating abnormal
values (deviated from the third quartile), 668 high quality
records were analyzed.

RAD-seq With BGI-seq500
Genomic DNA was isolated from the ear tissue of pigs; the
double-digest restriction enzyme associated DNA sequencing
method (RAD-seq) was performed using the methods of
Andolfatto et al. (2011) with appropriate modifications. Briefly,
the DNA concentration of all samples was normalized to 50
ng/pr in 96-well plates, and digested with FastDigestTaq I- MspI
(Thermo Fisher Scientific) in 30 µL volume containing 20 µL
DNA (1 µg). An anneal adapter (10 µM) was ligated to the
digestion products by T4 DNA ligase with 23 TaqI-Ms. Then,
24 ligation products were pooled together to form one library
with 15 µL per sample. Agencourt R© AMPure R© XP Reagent was
used for library size-selection. The PCR system contained 50 ng
size-selection products, 25 µL KAPA HiFi HotStart ReadyMix
(kapasystem), and 10 pmol primers. PCR products were purified
by Agencourt R© AMPure R© XP Reagent. The final library quality
(concentration and fragment size distribution) was determined
by a Qubit 2.0 Fluorometer (Thermo Fisher Scientific) and
BiopticQsep100 DNA Fragment Analyzer (Bioptic), respectively.
Every four library products (96 different barcodes) were mixed
together in equal parts which a total weight at 170 ng. The
cycling system contained 48 µL library mix, 1 × T4 DNA ligase
buffer, 0.5 µL T4 DNA ligase (600 U/µL), and 100 pmol Splint
Oligo, were reactions at 37◦C and fragment size distribution
were determined by a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific) and Bioptic Qsep100 DNA Fragment Analyze sample
volume of Agencourt R© AMPure R© XP Reagent. Finally, the
purified cyclizing libraries were sequenced with a BGI-seq500
platform (PE100).

Sequenced paired-end reads for each sow were identified
by barcode and aligned against the Sscrofa reference genome
(version Sscrofa 11.1)1 using the Burrows-Wheeler Aligner
(version 0.7.12) software (Li and Durbin, 2009). SAMtools
(version 0.1.19) (Li et al., 2009) was used to generate the
consensus sequence for each sow and prepare input data for
SNP calling with the Genome Analysis ToolKit (version 3.4)
(McKenna et al., 2010). Raw SNPs with sequencing depth greater
than 2,500 or less than 50 were removed, as SNP with extreme
sequencing depth is most likely caused by a repeat DNA sequence

1https://www.ncbi.nlm.nih.gov/genome/84?genome_assembly_id=317145
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or alignment error. The SNPs underwent quality control (QC)
in which those with a call rate > 0.5, minor allele frequency
(MAF) > 0.05, and p-value > 10−6 for the Hardy-Weinberg
equilibrium test were kept, resulting in 140,948 SNPs. The
missing genotypes were imputed with Beagle software (Browning
and Browning, 2007), and the SNPs were filtered again with
the above QC criteria. Finally, 139,634 high quality SNPs were
retained for subsequent analysis.

SNP Chip Genotyping
These individuals were also genotyped with a Geneseek Porcine
50K SNP Chip (Neogen, Lincoln, NE, United States), which
contained 50,697 SNPs across autosomes and sex chromosomes.
QC of the SNPs was conducted using PLINK (version 1.07)
(Purcell et al., 2007). The SNPs with MAF > 0.05, call rate > 0.97,
and individual call rate > 0.95 were retained. Furthermore, we
removed SNPs that were not mapped to the Sscrofa 11.1 genome,
leaving 45,180 SNPs. The missing genotypes were imputed with
Beagle software and underwent QC with the above QC criteria.
Finally, 45,175 high quality SNPs were included.

Whole Genome Sequencing
We sequenced the whole genome of 28 boars, the ancestors of 453
Yorkshire sows (unpublished), with an average sequence depth
∼19× (ranged from 17.06× to 22.24×). After genome alignment
with Burrows-Wheeler Aligner and SNP calling with the Genome
Analysis Toolkit, 17,017,067 raw SNPs were detected. These
SNPs were filtered using the Genome Analysis Toolkit with
parameters “QUAL < 30 || QD < 2.0 || FS > 60.0 || MQ < 40.0
|| MQRankSum < −12.5 || ReadPosRankSum < −8.0,” and
using PLINK with MAF < 0.05 and p-value < 10−6 for
the Hardy-Weinberg equilibrium test. We removed 761,590
additional SNPs with missing genotypes across the 28 boars,
leaving 11,668,346 high quality SNPs, which were taken as the
reference panel for imputation.

Sequence Level Imputation
The SNPs determined by RAD-seq (140,948 SNPs) and SNP
chip (45,180 SNPs) were merged to produce a high density
SNP set for sequence level imputation. After removing 427
duplicate SNPs from both SNP sets, 185,701 SNPs remained. We
performed sequence level imputation with Beagle by taking the
whole genome sequencing data of 28 Yorkshire boars (described
above) and 20 Landrace pigs (downloaded from https://figshare.
com/articles/data2019_tar_gz/9505259). After QC (MAF < 0.05
and p-value < 10−6), we obtained 9,012,073 overlapping SNP
markers for the two breeds and imputed the RAD_ chip SNPs
of the Yorkshire and Landrace pigs to a genome-wide level.

Variance Component Estimation and
Heritability
Both pedigree and RAD_SNP information were used to build
a kinship matrix among individuals to estimate the variance
components of birth weight. The mixed linear model for this
estimation was:

Y = Xb + Z1u + Z2p + e

where Y is the phenotype vector, b is a fixed effects vector,
i.e., herd-year-season, sex (only in pedigree-based estimation),
breed (2 breeds in SNP-based and 6 strains in pedigree-based
estimation) and birth parity, u is a vector of additive genetic
effects following the multinormal distribution: u ∼ N (0, Aσ2

a)
and ∼ N (0, Gσ2

a), respectively in pedigree and RAD_SNP based
estimations, where A is the pedigree relationship matrix and G
is the genomic relationship matrix constructed based on SNPs
as described in VanRaden (2008). p is a material effects vector:
p ∼ N (0, Iσ2

p) and e is a residuals vector: e ∼ N (0, Iσ2
e ),

and I is an identity matrix. σ2
a, σ2

p, and σ2
e are the additive

genetic, material genetic, and residual variances, respectively. X,
Z1, and Z2 are the incidence matrices for b, u, and p, respectively.
The variance components were estimated using the average
information restricted maximum likelihood procedure in DMU
software (version 6, release 5.22). Heritability of birth weight was
estimated as:

h2
=

σ2
a

σ2
p+ σ2

a+ σ2
e

The standard error of heritability was obtained as Klei and
Tsuruta (2008) described.

Genome-Wide Association Study
The mixed model including a random polygenic effect can be
expressed as:

Y = Xb + Za + Mg + e

where Y is the phenotype vector, which is corrected with
estimated breeding values and fixed effects (only residuals left),
and estimated breeding values are evaluated with the average
information restricted maximum likelihood procedure in DMU;
b is the estimator of fixed effects including breed, g is the SNP
substitution effect and a is the vector of random additive genetic
effects following the multinormal distribution a ∼ N (0, Gσ2

a), in
which G is the genomic relationship matrix that is constructed
based on SNPs as described in VanRaden (2008), and σ2

a is the
polygenetic additive variance. X, Z, and M are the incidence
matrices for b, a, and g, respectively. e is a vector of residual
errors with a distribution of N (0, Iσ2

e ). All single-marker GWAS
analyses were conducted using the EMMAX software (Kang et al.,
2010). Based on the Bonferroni correction, the genome-wide
significant threshold was P < 1/N, where N is the number of
informative SNPs.

Fine-Mapping
The BayesFM-MCMC package (Fang and Georges, 2016) was
used to finely map causative variants, in which the threshold for
SNP clustering was set as r2 = 0.5; the length of the Markov chain
was 510,000 with the first 10,000 discarded (burn-in period). The
threshold to declare significance was set at 1.1 × 10−5, which
was determined from 0.05 divided by the number of SNPs in
the GWAS region. We corrected the phenotypes by subtracting

2http://dmu.agrsci.dk/
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the corresponding breeding values and fixed effects, where the
breeding values were estimated via the DMU package.

Gene-Annotation
SnpEff (version 4.3t) (Cingolani et al., 2012) was used to annotate
the function of SNPs, in which the genome sequence and
the genomic annotation databases (.gff) were required. The
Sscrofa11.1 genome were downloaded from the National Center
for Biotechnology Information3 and the genomic annotation file
(.gff) was downloaded from the web ftp://ftp.ncbi.nlm.nih.gov/
genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/
GCF_000003025.6_Sscrofa11.1_genomic.gff.gz.

RESULTS

RAD-seq and SNP Chip Genotyping
We obtained 139,634 SNPs from RAD-seq and only 45,175
SNPs from SNP chip analysis. First, we compared the allele
frequencies (AF) of SNPs garnered from both genotyping
platforms (Figure 1A). Compared with SNP chip analysis, RAD-
seq more frequently found SNPs with lower AF. Specifically, the
likelihood of RAD-seq finding SNPs with AF < 0.1 was nearly
0.3, almost two times higher than that of SNP chip analysis
(∼0.1). We also compared the distance between adjacent SNPs
determined by the two genotyping methods (Figure 1B). The
adjacent SNPs found by RAD-seq were much closer together than
those found with SNP chip analysis, suggesting that RAD-seq is
more informative and may be helpful to detect causative genes.
Finally, we determined the overlapping SNPs between the two
SNP sets, and surprisingly found only 427 SNP overlaps.

Genome-Wide Association Study
We estimated heritability prior to the association study to
fully understand how much birth weight is inherited. We used
pedigree information and genome SNPs to estimate heritability.
There were 14,226 and 12,313 individuals in the pedigree,
and 10,267 and 8,919 records of birth weight for Yorkshire
and Landrace, respectively. Genome-wide SNP information was
used to build kinship among individuals and heritability was
estimated as 0.094 ± 0.065. Then, once again using the pedigree,
we estimated heritability in Yorkshire and Landrace pigs at
0.162± 0.026 and 0.131± 0.025, respectively (see Table 1), which
are closer to previous reports than the heritability found when
genome-wide SNP information was used.

Next, we performed an association study for genome-wide
SNPs based on a mixed model that accounted for population
kinship (see section “Materials and Methods”). SNP sets from
RAD-seq and SNP chip analysis were merged together, with
two signals on chromosome 1 and 4 exceeding the threshold
(Figure 2A). The positions of the lead SNPs for the two regions
were chr1: 97,745,041 and chr4: 112,031,589, respectively; the
MAF of the lead SNPs were 0.24 and 0.34 and they explained
6.36% and 4.25% of the phenotypic variance, respectively. We
then focused on the two GWAS regions surrounding the lead

3https://www.ncbi.nlm.nih.gov/genome/84?genome_assembly_id=317145

SNPs, which are determined as the surrounding 1∼2 Mb region
around the lead SNP. To confirm the two GWAS signals, we
performed separate GWAS for the RAD-seq and SNP chip
datasets. The region on chromosome 4 was determined to be
significant for the RAD-seq dataset but not for the SNP chip
dataset; where the reverse was true for the region on chromosome
1 (Figures 2C,E). Despite only reaching significance in one
dataset, the –logP values of both regions peak in both datasets,
confirming the reliability of the GWAS signals. To check for false
positives caused by population stratification, we closely examined
the theoretical and observed p-values with a Q-Q plot4. The -logP
values are well fit by a linear regression against theoretical -logP
values (Figures 2B,D,F), suggesting that population stratification
has been well corrected for, although, it is important to note that
two breed populations were simultaneously investigated.

Fine Mapping
To further refine the regions containing causative genes and
variants, we performed fine mapping of the GWAS region
1∼2 Mb around the lead SNP. To increase fine mapping
accuracy, we utilized as many SNPs as possible by merging
the SNPs from both RAD-seq and SNP chip analysis and
removing duplicate SNPs. After applying a stringent filter, we
obtained 5,226 and 7,184 SNPs in the fine mapping regions
of chromosome 1 and 4, respectively. With this high density
of SNPs, we were able to impute SNPs at a sequence level.
Sequence-level imputation requires a sequence-level reference
SNP set. We therefore re-sequenced 28 Yorkshire boars with an
average coverage of ∼19x and downloaded the whole genome
sequencing data of 20 Landrace pigs. This resulted in 11,668,346
and 18,954,748 sequence-level SNPs for Yorkshire and Landrace
pigs, respectively. With these SNPs as a reference panel, we
imputed the merged RAD-seq and SNP chip SNPs at a sequence
level using Beagle software separately for each breed. Then,
we employed BayesFM-MCMC software to narrow down the
clusters containing causative variants. BayesFM-MCMC first
clusters the SNPs within a GWAS region using a hierarchy
clustering algorithm according to r2 among SNPs; then it models
multiple causal variants by carrying out a Bayesian model
selection across the cluster and generates the posterior probability
for each SNP within the cluster, by which a credible set of SNPs
with >95% posterior probability is constructed. The advantages
of BayesFM-MCMC are that (1) it narrows down potential
causative variants by indicating causal variants in the SNP set;
and (2) it efficiently identifies more than one variant if multiple
variants control the investigated trait.

However, because BayesFM-MCMC does not solve a mixed
model with polygenic effects, we corrected the phenotype
values by using the residuals (see section “Materials and
Methods”). First, we conducted a single variant association
for the GWAS chromosome region, 1,96,745,041–98,745,041,
which produced a sharp peak in this region (Figure 3A). We
then employed BayesFM-MCMC to further refine the regions,
and one cluster signal with a posterior probability equal to
1 (greater than the threshold 0.5) was identified. To examine

4https://github.com/YinLiLin/R-CMplot
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FIGURE 1 | Minor allele frequency (MAF) and distance between single nucleotide polymorphisms (SNPs). (A) Frequency of SNPs in different MAF classes for
restriction site associated DNA sequencing (RAD-seq) and SNP chip assays. (B) Frequency distribution of the distance between adjacent SNPs for RAD-seq and
SNP chip assays.

TABLE 1 | The estimated heritability of birth weight for Yorkshire and Landrace with different sources of information.

Population Information Number of pigs Number of pigs σ2
a σ2

p σ2
e h2

sources in pedigree with BW records

Yorkshire Pedigree 14,226 10,267 0.011 (0.002) 0.013 (0.001) 0.043 (0.001) 0.162 (0.026)

Landrace 12,313 8,919 0.011 (0.002) 0.017 (0.001) 0.056 (0.002) 0.131 (0.025)

Yorkshire & Landrace SNPs – 668 0.007 (0.005) 0.024 (0.005) 0.042 (0.005) 0.094 (0.065)

σ2
a , σ2

p, and σ2
e are the additive genetic variance, material genetic variance and residual variance, respectively; standard errors are in parentheses.

which SNPs predominantly explained the posterior probability
in this cluster, we plotted the posterior probabilities for each
SNP (output from BayesFM-MCMC). Most SNPs have miniscule
posterior probabilities and no one SNP gives substantial posterior
probability (f.i. greater than 0.5 or 0.2) in the identified cluster
(Figures 3B,C). We then employed the 95% credible set defined
by BayesFM-MCMC to further refine the causal variants, which
contained 71 SNPs across a ∼100 kb region from 96,895,307
to 97,098,059 (see Supplementary Table S1 for detail). This
100 kb region contained the peak identified with the scan
of single variants (Figure 3A), confirming the refined 100 kb
region was reliable.

Fine mapping of the region on chromosome 4, 111,031,589–
113,031,589 (Figure 4B), identified one cluster signal with a
posterior probability equal to 1. As before, we plotted the
posterior probabilities for each SNP but most SNPs once
again had miniscule posterior probabilities (less than or 0.05)
(Figure 4C). The 95% credible set of causal variants in
chromosome 4 contained 432 SNPs across over a∼870 kb region
from 111,700,218 to 112,569,735 (see Supplementary Table S2
for detail). The peak found in the single-SNP association profile
(Figure 4A) is covered by this ∼870 kb region, once again
confirming the reliability of BayesFM-MCMC for this purpose.
The correlation (r2) among SNPs confirmed that they were highly
linked, which explains why the individual posterior probabilities
of these SNPs are very small.

Candidate Genes
The 71 SNPs of interest on chromosome 1 are located in the
intergenic region, which lies about 53 kb upstream of SKOR2 and
over 317 kb downstream of SMAD2 (Table 2, see Supplementary
Table S1 for details). We hypothesize that these variants are likely
to have regulatory effects on the two nearby genes.

The 432 highly linked SNPs on chromosome 4 are located
within four genes, LOC106510205 (covered by 28 SNPs),
LOC106510207 (covered by 26 SNPs), VAV3 (covered by 160
SNPs), and NTNG1 (covered by 218 SNPs, see Supplementary
Table S2). Among these SNPs, one is a coding amino acid, seven
are located in the 3′ untranslated region and 414 are located
in the intron (see Supplementary Table S2 for details). The
coding variant is a synonymous variant (c.1136 T > A), localized
in gene VAV3. The remaining variants are in non-coding sites
distributed in all four genes, suggesting the causal variant may
have regulatory effect. We searched for functional genes near the
tightly linked region, and thereby included SLC25A24, PRMT6,
STXBP3 as candidate genes (Table 2).

DISCUSSION

We employed two genotyping methods, RAD-seq and a
customized SNP chip assay, to obtain genome-wide distributed
SNPs. The number of SNPs identified by RAD-seq was three
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FIGURE 2 | Genome-wide association study (GWAS) profiles from the merged SNPs of RAD-seq and SNP chip assays (A,C,E) and the corresponding Q-Q plot
(B,D,F) the horizon lines represent the thresholds as determined by Bonferroni correction.

FIGURE 3 | Fine-mapping in the chromosome 1: 96,745,041–98,745,041 region. (A) Individual SNP association study and its locuszoom plot. (B) The posterior
probability of clusters. (C) The posterior probability of SNPs.
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FIGURE 4 | Fine-mapping in the chromosome 4: 111,031,589–113,031,589 region. (A) Individual SNP association study and its locuszoom plot. (B) The posterior
probability of clusters. (C) The posterior probability of SNPs.

TABLE 2 | Candidate genes for birth weight located around the causal variants.

chr hgnc_symbol Start_position End_position Function Reported in pig and other species

chr4 VAV3 111825071 112202833 Guanine nucleotide exchange factors
(GEFs) for Rho family GTPase

Pig food conversion ratio (Wang
et al., 2015)

NTNG1 112280899 112615782 Guides axon growth during neuronal
development

Calf birth weight (Cole et al., 2014)

SLC25A24 111580186 111632390 Calcium-dependent mitochondrial solute
carrier

Bovine embryonic mortality (Killeen
et al., 2016)

PRMT6 112698865 112710305 Mediates the asymmetric dimethylation of
Arg2 of histone H3

Bulls sperm concentration (Hering
et al., 2014)

STXBP3 111234154 111294067 Insulin-regulated GLUT4 trafficking Be positively selected for body weight
(Li et al., 2014)

chr1 SKOR2 96795507 96842064 Negatively regulate TGFβ signaling
pathways

More rapid weight gain in African
American males (Tu et al., 2015)

SMAD2 97415716 97,511,358 Mediates the signal of the transforming
growth factor (TGF)-beta

Causative gene for dog body size
(Rimbault et al., 2013)

times greater than those identified by customized SNP chip,
among these, only 427 SNPs overlapped, consistent with previous
reports (Brouard et al., 2017). Furthermore, we found that RAD-
seq was able to genotype more low-frequency SNPs than the SNP
chip assay. As we known, rare and low frequency variants have
been found to partially explain phenotypic variation in some
human diseases and agricultural traits (Quintana-Murci, 2016;
Zhang et al., 2017).

By using genome-wide association combined with post-
GWAS fine mapping, we refined one causative variant to a
∼100 kb region containing 71 SNPs. This region is located in
the intergenic region between SKOR2 and SMAD2. Intergenic
sequences are generally considered as junk sequences. However,
in recent years, studies have increasingly shown that intergenic
sequences contain long-distance regulatory elements and may
also generate a large amount of non-coding RNA through
transcription, thereby regulating the expression of surrounding

genes (Chen and Tian, 2016). SKOR2 is homologous to the
Ski/Sno family of transcriptional co-repressors, which has been
shown to negatively regulate transforming growth factor β

(TGFβ) signaling pathways by binding to Smads (Arndt et al.,
2005). SKOR2 null mice are smaller than their siblings (Wang
W. et al., 2011). SKOR2 polymorphism has also been reported to
be associated with more rapid weight gain in African American
males (Tu et al., 2015). SMAD2 is activated by TGFβ, and
regulates multiple cellular processes, such as cell proliferation,
apoptosis, and differentiation. As we known, TGFβ pathways
play critical roles in bone development (Li et al., 2005). SMAD2
plays an essential role in regulating chondrocyte proliferation
and differentiation in the growth plate (Wang W. et al., 2016).
Additionally, SMAD2 was identified as the causative gene
for the body-size of dogs, and was associated with the total
number of piglets born in Yorkshire pigs as well as with high
fecundity in dairy goats (Rimbault et al., 2013; Lai et al., 2016;
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Wang et al., 2018). Our results suggest that causative variants in
this intergenic region may contribute to birth weight phenotypes
by interfering with the regulatory function of the nearby distal
regulatory elements and causing differential expression of the two
surrounding genes.

We have refined the causative variant on chromosome 4 to
a ∼870 kb region which resides in a big linkage disequilibrium
block containing 4 genes, LOC106510205, LOC106510207, VAV3,
and NTNG1. NTNG1 plays an important role in cell signaling
during nervous system development (Nakashiba et al., 2000) and
is associated with calf birth weight in Holstein cattle (Cole et al.,
2014). LOC106510205 and LOC106510207 are predicted to be
long non-coding RNA (lncRNA), and has not been functionally
characterized to this point. As we known, lncRNA transcription
plays an important role in both cis- and trans-regulation of
nearby gene expression (Sun and Kraus, 2015). VAV3 is located
in the center of the fine mapping region and is near the two
lncRNAs. VAV3 is a member of the VAV gene family that activates
actin cytoskeletal rearrangement pathways and transcriptional
alterations (Zeng et al., 2000). VAV3 is versatile and also regulates
osteoclast function, bone mass, and the homeostasis of the
cardiovascular and renal systems (Faccio et al., 2005; Sauzeau
et al., 2006). Previous knock-out results have shown that Vav3-
deficient mice were protected from bone loss induced by systemic
bone resorption stimuli such as parathyroid hormone or RANKL
(Faccio et al., 2005). Furthermore, VAV3 is associated with
hypothyroidism in humans, food conversion ratio in a male
Duroc pig population, high body weight and growth rate in Boer
goats, as well as sperm concentration in Holstein-Friesian bulls
(Hering et al., 2014; Kwak et al., 2014; Wang et al., 2015; Onzima
et al., 2018).

Several genes near the ∼870 kb tightly linked region were
found to be related to growth and development or have been
identified in others studies (Table 2). For example, SLC25A24
encodes a carrier protein that mediates electroneutral exchange
of Mg-ATP or Mg-ADP against phosphate ions, is responsible
for low fat mass in humans and mice (Urano et al., 2015), and
is also related with bovine embryonic mortality (Killeen et al.,
2016). Mutations in SLC25A24 have been found to be associated
with fontaine progeroid syndrome in humans (Rodríguez-García
et al., 2018). Furthermore, STXBP3 (also known as Munc18c),
involved in insulin-regulated GLUT4 trafficking, has been found
to be positively associated with body weight in Large White and
Tongcheng pigs (Li et al., 2014). Finally, PRMT6, is reported to
be associated with bull sperm concentration (Hering et al., 2014),
and the expression of PRMT6 in skeletal muscle has been found
to be regulated with a strong cis-expression quantitative trait loci
(personal communication). Taken together, the region spanning
VAV3 and NTNG1 is a very important genetic factor underlying
the birth weight of pigs.

Most of the finely mapped SNPs obtained herein were located
in intergenic regions or within introns. Therefore, we propose
that these variants may have a regulatory effect on the expression
of nearby genes, such as SKOR2, SMAD2, VAV3, and NTNG1,
and thereby regulating body development. This research did not
confirm such regulatory mechanisms but has highlighted them
for further investigation.

CONCLUSION

We used the DNA markers from two different genotyping
approaches to perform GWAS, and identified significant loci
in chromosome 1 and chromosome 4 which explained 6.36%
and 4.25% of the phenotypic variance, respectively. To increase
the accuracy of fine mapping, we imputed the merged RAD-
seq and SNP chip SNPs at a sequence level using the SNPs
of high-coverage resequenced pigs as a reference panel. Then,
we employed BayesFM-MCMC software to narrow down the
genomic region of the clusters that contained causative variants.
One cluster was located in an intergenic region, and the
other in a gene coding region. Finally, we identified four
promising candidate genes, SKOR2, SMAD2, VAV3, NTNG1,
that have been associated with growth related traits in other
species including cattle, humans, and dogs. Most SNPs in the
fine mapping region were located in the intergenic region
or introns, and as such we propose that these variants may
have a regulatory effect on the expression of nearby genes,
which deserves further investigation. The birth weight of pigs
is an important economic factor in the livestock industry,
identification of a causal variant would be beneficial to the
molecular breeding of pigs.
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