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ABSTRACT

Conventional therapeutic techniques treat patients by delivering biotherapeutics to the entire body.
With targeted delivery, biotherapeutics are transported to the afflicted tissue reducing exposure to
healthy tissue. Targeted delivery devices are minimally composed of a stimuli responsive polymer
allowing triggered release and magnetic nanoparticles enabling targeting as well as alternating mag-
netic field (AMF) heating. Although more traditional methods, like emulsion polymerization, have been
used to realize such devices, the synthesis is problematic. For example, surfactants preventing agglom-
eration must be removed from the product increasing time and cost. Ultraviolet (UV) photopolymeriza-
tion is more efficient and ensures safety by using biocompatible substances. Reactants selected for
nanogel fabrication were N-isopropylacrylamide (monomer), methylene bis-acrylamide (crosslinker), and
Irgacure 2959 (photoinitiator). The 10nm superparamagnetic nanoparticles for encapsulation were
composed of iron oxide. Herein, a low-cost, scalable, and rapid, custom-built UV photoreactor with
in situ, spectroscopic monitoring system is used to observe synthesis. This method also allows in situ
encapsulation of the magnetic nanoparticles simplifying the process. Nanogel characterization, per-
formed by transmission electron microscopy, reveals size-tunable nanogel spheres between 40 and
800 nm in diameter. Samples of nanogels encapsulating magnetic nanoparticles were subjected to an
AMF and temperature increase was observed indicating triggered release is possible. Results presented
here will have a wide range of applications in medical sciences like oncology, gene delivery, cardiology,
and endocrinology.

ARTICLE HISTORY
Received 24 July 2017
Revised 24 August 2017
Accepted 25 August 2017

KEYWORDS

Magnetic nanoparticles;
stimuli-responsive polymer;
targeted biotherapeutic
delivery; induction heating;
photopolymerization

Introduction zero applied magnetic field, and there should be no applied
field necessary to return the magnetization to zero, also
known as magnetic remanence and coercivity, respectively.
This necessitates the employment of iron oxide only a few
tens of nanometers in diameter (Lu et al., 2007).

On the contrary, poly(N-isopropylacrylamide) (PNIPAM) is
regarded as the gold-standard, stimuli-responsive polymer

(SRP). This is attributed to its biocompatibility and a lower crit-

For the past several decades, iron oxide magnetic nanopar-
ticles (IOMNPs) have attracted significant attention due to
their broad potential use in environmental remediation
(Wanna et al, 2016), data storage (Hyeon, 2003), adhesive
hardening (Schmidt, 2005), and catalysis (Lu et al., 2004), as
well as biotechnological applications such as magnetic hyper-

thermia (Nemati et al., 2016), cell labeling/separation (Lin
et al, 2017), and magnetic resonance imaging (MRI) contrast
enhancement (Li et al., 2016; Nakamura et al., 2017). One rea-
son they are appropriate in the latter category of applications
is their biocompatibility (Pankhurst et al., 2003). Their utility
is defined by their propensity to be directed/guided with a
static magnetic field in addition to their tendency to heat
the local environment upon exposure to an alternating mag-
netic field (AMF). The physical mechanism behind this second
characteristic is explained by linear response theory (LRT),
which determines the heating efficacy of the IOMNPs based
on their Néel and Brownian relaxation times (Dennis & Ivkov,
2013). Typically, superparamagnetic (SPM) response is desir-
able; the IOMNPs should exhibit no residual magnetization at

ical solution temperature (LCST) near that of human body
temperature. This LCST can easily be set above that of body
temperature by way of changes in crosslinking density during
polymerization (Schmaljohann, 2006). Like other SRPs (Sood
et al, 2016), PNIPAM exhibits a nearly discontinuous volume
phase transition (VPT) upon exposure to temperature or other
stimuli like pH, electromagnetic fields, glucose, stress/strain,
and ultrasound (Shibayama & Tanaka, 1993). This phase transi-
tion is explained in terms of the enthalpy/entropy dominance
of PNIPAM’s Gibbs free energy. At temperatures below the
LCST, the polymer is enthalpy dominated and water will
hydrogen bind to its central amide section. Upon heating past
the LCST, entropy dominates the Gibbs free energy and the
isopropyl and acryl sections collapse on the amide section
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isolating it from surrounding water molecules (Schild, 1992).
PNIPAM has proven to have appeal to researchers in a broad
range of fields like tissue engineering (Healy et al.,, 2017), gene
delivery (Zhang et al, 2016), waste water recovery (Ngang
et al, 2017), sensors (Wang et al.,, 2017), and targeted drug
delivery (Ahmad et al., 2016).

Conventional medical interventions typically involve expos-
ing the entire patient to a biotherapeutic (e.g. doxorubicin,
nucleic acids, etc.) when only a small fraction of the tissues
require treatment. This is true in chemotherapy in which the
patient often suffers from side effects, as well as gene therapy
in which controversial genetic material is often used indiscrim-
inately (Sun et al., 2008). What is wanted in these instances is
a more precise administration of the biotherapeutic that could
be achieved by the compositing of IOMNPs and PNIPAM. On
one hand, the IOMNPs lend their honing capabilities to the
application via attraction to a static magnetic field. They also
enable environmental heating, of the medium in which they
are dispersed, upon exposure to an AMF. On the other hand,
PNIPAM is capable of carrying a multitudinous range of bio-
therapeutics and releasing them upon heating stimulus.
Therefore, a targeted biotherapeutic delivery (TBD) device
would be capable of carrying a biotherapeutic to a target tis-
sue through remote guidance using a static field and trig-
gered release of the biotherapeutic upon AMF exposure. Such
devices promise to increase the efficacy of medical interven-
tions by eliminating biotherapeutic waste, drastically reducing
biotherapeutic exposure to otherwise healthy tissues, and
actively targeting afflicted tissues (Martinez et al., 2012).

The incorporation of IOMNPs into PNIPAM nanogels has
been achieved by several different methods. Often times
emulsion polymerization is employed to synthesize the
PNIPAM nanogels (Yuan & Wicks, 2007). This technique
involves relatively long reaction times and employs the use of
surfactants to ensure the nanogels have a narrow size distribu-
tion. More often than not the surfactants are not compatible
with human biology and must be removed via dialysis adding
expense and time to the process. A significantly different
approach utilizes spray-dry synthesis of the PNIPAM nanogel
(Byeon & Kim, 2012). Here, the resulting nanogels tend to
require additional drying after synthesis to evaporate away
excess water either in-flight or after collection. Furthermore,
attempts to utilize nebulizers, rather than atomizers to achieve
smaller initial droplets, are plagued with clogging of the
equipment during synthesis (McLean et al., 1998).

Previously, the SRP concentration dependent LCST of
PNIPAM as brought on by temperature increase due to AMF
heating of co-dispersed IOMNPs was reported on (Denmark
et al,, 2015). While these SPM IOMNPs effectively raised the
temperature of the co-solute PNIPAM bringing on its LCST,
its mere presence had the consequence of reducing the
LCST. This was attributed to an earlier onset of entropy dom-
inance in the Gibbs free energy (Denmark et al, 2016).
Herein, a unique method for the encapsulation of IOMNPs in
a PNIPAM nanogel, via photpolymerization, coincident with
in situ spectroscopic monitoring of that process is presented.
Prior to encapsulation attempts, control of PNIPAM nanogel
size is indicated by careful variation in the choice of mono-
mer, crosslinker, and photoinitiator concentrations of the

precursor solution. The separation of successfully embedded
IOMNPs, within PNIPAM nanogels, from empty nanogels and
bare IOMNP is demonstrated. Embedded IOMNPs are effect-
ive at heating their local environment upon AMF exposure as
revealed by the corresponding heating curves. The results
presented here will be invaluable to researchers endeavoring
to advance in the realization of TBD devices.

Materials and methods
Materials

For the purposes of PNIPAM nanogel synthesis, the precursor
solution was composed of solutes corresponding to the
monomer, crosslinker, and photoinitiator. The monomer was
N-isopropylacrylamide (NIPAM), the crosslinker was methy-
lene bis-acrylamide (MBA), and the photoinitiator was
Irgacure 2959. For all prepared solutions, the solvent was
deionized water (DIW), which was also passed through a
220 nm porous cutoff filter for additional quality assurance.
Both NIPAM and MBA were purchased from VWR (Radnor,
PA) and the photoinitiator was purchased from Sigma Aldrich
(St. Louis, MO). All solutes were used as received without fur-
ther purification. In order to make any of the solutions dis-
cussed below the required amount of solute was weighed
out and added to enough filtered DIW to yield the concen-
tration indicated. After vigorous mechanical agitation, at least
thirty 30 min of ultrasonic agitation was employed to ensure
homogenous solutions. It should be noted that surfactants
were not used in this work in order to make the product
more compatible with biological applications like TBD.

IOMNPs

The IOMNPs used in this work were characterized previously
(Denmark et al., 2016). Briefly, their discreet size was meas-
ured by transmission electron microscopy (TEM) and found
to be approximately 10nm in diameter on average. Their
magnetization as a function of applied magnetic field
revealed a saturation magnetization of approximately
60emug™' and no apparent coercivity, indicating they can
be considered SPM. These IOMNPs were reported to be
coated with PVP, for easy dispersal in water, by the manufac-
turer from which they were purchased (99.5% pure, US
Research Nanomaterials, Inc., Houston, TX).

In situ photopolymerization monitoring

The custom-built system that uniquely enabled the in situ
monitoring of the ultraviolet (UV) source’s spectrum, while
the photopolymerization synthesis of the PNIPAM nanogel
was taking place, is shown in Figure 1. The source was
mounted to the reaction chamber, which was sealed from
the laboratory environment, so that its radiation could propa-
gate into the chamber. Prior to the start of sample exposure,
the chamber was purged with N, long enough to purge it of
O, at least three times over. This was done to prevent the
absorption of UV energy from the source before it could be
used to power the synthesis. Similarly, a quartz cuvette was
considered optimal for holding the precursor solution during
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Figure 1. (a) Schematic and (b) photograph of experimental apparatus for photopolymerization synthesis of PNIPAM nanogels and in-situ monitoring.

UV photo-irradiation of the sample; plastic and glass cuvettes
were found to absorb UV light during their characterization.
Note, the synthesis requires no additional input of electrical
energy to heat the sample, only what is required to power
the source. Any light propagating through the precursor
solution was transmitted by a fiber optic cable to a spec-
trometer and integrated charged coupled device for monitor-
ing the spectrum of the source during photopolymerization.
Again, for emphasis, any attenuation of the source as a result
of the photoreaction was monitored by the same system car-
rying out the synthesis.

The UV source was a Hg gas filled discharge tube. In gen-
eral, its spectrum was similar to that of standard Hg calibra-
tion tubes and well documented in NIST archives (data not
shown). However, the selected source was specially coated
on its glass tube to emit a significant UV peak at approxi-
mately 253.73+0.03nm and thought to be responsible for
the cleavage of the photoinitiator molecule forming free radi-
cals and ultimately leading to polymerization. The source was
powered using a standard AC 60 Hz electrical power source.
Since, positive or negative voltage powering of the source
caused it to emit light, the emission frequency was approxi-
mately 120 Hz. Therefore, the source cycled once every 8 ms
and was not continuous emission intensity. For this reason, it
was decided to expose the ICCD detector to the source for a
constant exposure time of 200ms. In this way, any given
exposure would represent the accumulation of nearly 25 indi-
vidual pulses from the source, thus averaging out any error
in intensity from each.

The spectrometer was a 1237 SpectraPro-500 manufac-
tured by Acton Research Corporation (Greer, SC). Its focal
length was 500 mm and was set to a resolution of 0.05nm.
Its wavelength operational range was from 185nm to
850 nm: from UV to near infrared (NIR). The detector was a
PI-MAX:512 UNIGEN Digital ICCD Camera System manufac-
tured by Princeton Instruments Acton (Greer, SC). It was

512 x 512 pixels and specially coated for extra sensitivity in
the UV. The equipment was programed with WinSpec soft-
ware (Galactic Industries Corporation, Hamden, CT) to
observe the source’s 546 nm peak for approximately 35 min.
The reason for this is that, being the most prominent, the
546 nm peak was distinguishable amongst the surrounding
noise as the source was attenuated during an experiment, as
will be shown later.

Turbidimetry

For the turbidimetry experiment described later on, a 25 mW
He-Ne laser (CW Radiation, Inc, Mountain View, CA) of
633 nm wavelength was made to pass through the samples.
The laser was detected on the other side of the sample with
a cadmium-sulfide photodetector. That detector’s resistance
was monitored with a Keithley 2100 multimeter.

AMF heating

These experiments were carried out with an Ambrell
EasyHeat LI heating system operating at applied magnetic
fields of approximately 32.3kA m~' (4050e), 47.7kA m™'
(600 0e), and 59.1kA m~' (743 Oe). The corresponding oper-
ating frequencies at these field strengths were 313kHz,
309kHz, and 307kHz. The temperature response of the
samples was monitored with an optical temperature sensor
(Photon Control) having an accuracy of +0.05°C. Note that
initial experiments involved the exposure of a control sample,
filtered DIW, to the fields described here so as to ascertain
their heating response to the equipment. Despite being
cooled with flowing water, the inductive heating coil, itself,
generates heat that is unassociated with AMF heating. It is
common practice to determine this heating response and
subtract it from that recorded with samples actually contain-
ing IOMNPs (Simeonidis et al., 2013).
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Table 1. Nomenclature of the precursor solution recipes investigated to dem-
onstrate PNIPAM nanogel size control.

Sample Dilution NIPAM MBA Irgacure 2959
1.0R1 1.0 3 1 1
0.5R1 0.5 3 1 1
0.1R1 0.1 3 1 1
1.0R2 1.0 10 1 1
0.5R2 0.5 10 1 1
1.0R3 1.0 1 1 1

Results and discussion

The nomenclature for the samples discussed in this work is
provided in Table 1. Note that R1 refers to recipe 1 which
indicates a monomer to crosslinker to photoinitiator ratio of
3:1:1 according to mass of the dissolved powder. R2 indicates
a 10:1:1 ratio and R3 indicates a 1:1:1 ratio. The factor in
front of a recipe name indicates to what extent that sample
was diluted from its original stock solution. For example,
0.5R2 indicates the 10:1:1 sample was diluted to half its ori-
ginal concentration. These samples comprise the investiga-
tion into PNIPAM nanogel size tunability discussed later.

Upon mixing the monomer, crosslinker, and photoinitiator
in filtered DIW, as described above, the solution appeared
transparent and indistinguishable from water, as shown in
Figure 2(a). After exposing the sample to the UV source for
approximately 35 min, the front window of the cuvette (clos-
est to the source) now exhibited a white film. The remainder
of the solution took on a white, cloudy quality. This was the
first indication of successful photopolymerization.

After an exposure, the sample was characterized using
TEM for determination of PNIPAM nanogel size and morph-
ology. As an example, the PNIPAM nanogels, synthesized
using the 1.0R1 precursor solution, are shown in Figure 2(b).
These nanogels are sphere-like and are on average approxi-
mately 200 nm in diameter. Note, the relatively light appear-
ance of the nanogels; they appear to be empty.

The intensity of the UV source’s 546 nm peak is plotted
against the duration of the exposure in Figure 2(c) for every
dilution of precursor solution R1. Obviously, the source is
being attenuated as the photopolymerization is taking place.
The data presented in Figure 2(c) are a quantitative confirm-
ation of the qualitative demonstration of source attenuation
documented in Figure 2(a). The undiluted sample data
(1.0R1) indicates that the synthesis is complete in only about
20-25 min. This is significantly faster than emulsion polymer-
ization techniques, which can take several hours (Yuan &
Wicks, 2007). Note, when precursor solution R1 is diluted to
half of its original concentration the attenuation of the
source is much less pronounced than in the undiluted sam-
ple. When the precursor solution is diluted to one tenth of
its original concentration the attenuation of the bulb is indis-
tinct from the control sample: plain filtered DIW. The reduc-
tion in intensity of the source seen by monitoring the filtered
DIW appears to indicate the source is stabilizing over this
time interval and could potentially be used to correct the
other data sets for this effect. This obvious variation in inten-
sity as a result in manipulation of the precursor solution’s
concentration is reminiscent of turbidimetry studies for inves-
tigating the sizes of solutes dispersed in a solvent (Camerini-
Otero & Day, 1978; Hall et al., 2016). In other words, Figure

2(c) seems to indicate that by diluting the precursor solution
R1 different size PNIPAM nanogels have been achieved.

To verify PNIPAM nanogel size control, TEM was employed
with all samples after UV exposure. The results of that study
are plotted in Figure 2(d) in the form of a dilution factor
study of average PNIPAM nanogel diameter as a function of
monomer to crosslinker to photoinitiator ratio (horizontal
axis). In this plot, dilutions are indicated according to: the
nanogels resulting from undiluted precursor solutions are
connected by a solid blue line, those diluted by half are con-
nected by a dashed blue line, and those diluted by a tenth
are indicated by an arrow and label. In general, the diameter
of the nanogels was made to range from as small as almost
40 nm to as large as almost 750 nm. In terms of the precursor
solution dilution, increased potency led to larger nanogels. In
terms of monomer to crosslinker ratios, the more concen-
trated the crosslinker was the larger the nanogels were. This
is consistent with the findings of other researchers (Neyret &
Vincent, 1997; Duracher et al, 2000). Ultimately, the largest
PNIPAM nanogel recipe (1.0R3) was considered optimal for
the IOMNP encapsulation study discussed next, because
larger nanogels would conceivably have more carrying cap-
acity making encapsulation more likely.

For encapsulation, the precursor solution 1.0R3 had
enough IOMNPs added to it to bring their concentration to
0.2mg mL™". This caused the formerly transparent sample
(see Figure 2(a)) to take on a reddish, brown quality, as seen
in Figure 3(a), which can be attributed to the presence of the
IOMNPs. After the sample was exposed to the UV source for
about 35 min, it again exhibits a film on the cuvette window
closest to the source, also shown in Figure 3(a). These photo-
graphs qualitatively document the cause of the UV source’s
attenuation as synthesis progresses.

The transmittance of the UV source’s 546 nm peak as a
function of exposure duration is shown in Figure 3(b). These
data represent the attenuation of the UV source quantita-
tively. With IOMNPs added to the sample the synthesis was
complete after only 5-10 min. Note the initial low transmit-
tance of the sample, at the beginning of the exposure, which
can be attributed to the presence of the IOMNPs.

An aliquot of this sample was prepared for TEM imaging
and the resulting nanogels are shown in Figure 3(c). Note
that these nanogels are apparently much darker than those
shown in Figure 2(b). In other words, it appears that IOMNPs
could be within the nanogels. Furthermore, the particle size
distribution of these nanogels reveals an average size of
nearly 1000 nm, significantly larger than those synthesized in
the absence of IOMNPs. If a perfectly spherical nanogel is
assumed, the nanogels synthesized in the presence of
IOMNPs have an approximate volume of 0.52 cubic microns,
while those synthesized without IOMNPs have an approxi-
mate volume of 0.22 cubic microns. This means those synthe-
sized in the presence of IOMNPs have over twice the volume
as those made without IOMNPs dispersed in the solution.
This certainly seems to suggest that the PNIPAM nanogels
shown in Figure 3(c) appear to encapsulate IOMNPs.

Granted, not all species within the post-UV exposed sample
are PNIPAM embedded IOMNPs. Certainly, some IOMNPs will
remain non-embedded and so will be referred to as bare. This
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Figure 2. (a) A typical precursor solution, containing monomer, crosslinker, and photoinitiator dispersed in filtered DIW, before and after almost 35 min of UV
exposure. (b) TEM of PNIPAM nanogels synthesized via UV exposure having an average size of approximately 200 nm as shown by the inset particle size distribution.
() Intensity of the UV source as a function of elapsed exposure time quantifying the attenuation of the UV source. (d) Results of the precursor solution concentra-
tion study for demonstration of nanogel size control. This dilution study of average PNIPAM nanogel average size versus monomer to crosslinker ratio reveals that
dilution leads to smaller nanogels and higher crosslinker content with respect to monomer leads to larger nanogels.

species, being most dense, will be most susceptible to gravita-
tional forces. At the same time, some empty PNIPAM nanogels
can be expected. This species is least dense and so least sus-
ceptible to gravity. Note that the embedded IOMNPs are sus-
ceptible to gravitational forces, while the empty PNIPAM
nanogels are not. As further evidence of successful IOMNP
encapsulation, their unique magnetic quality was employed.
Two identical aliquots of the post UV exposed sample were
prepared and vigorously agitated to ensure they were homo-
genously dispersed throughout. The control sample was set on
the laboratory counter over a 16-h period without being dis-
turbed except for gentle testing as described further down.
This control sample had only the gravitational force to act on
its contents. The experimental sample was also left alone on
the laboratory counter for the same period of time, but it had a
small neodymium magnet placed adjacent to one of the walls
of its container, far from the bottom so as not to disturb any

bare IOMNPs that settled there. Now that each sample was
probed with a He-Ne laser both immediately after being pre-
pared and again 16h after being allowed to sit with their
respective forces acting on them. Similarly, a sample of filtered
DIW was probed so that transmittance could be determined.
The initial transmittances of both the control and the experi-
mental sample were similar, as expected. However, after 16 h,
the sample with the magnet in proximity to it exhibited signifi-
cantly higher transmittance than the sample that only had
gravity working on its contents. This is further evidence of at
least some degree of successful IOMNP encapsulation within
the PNIPAM nanogel and suggests separation from the
other species is possible. These results are summarized in
Supplemental Table 1.

Separation of the successfully embedded IOMNPs from
the other species is presented next. This separation was
achieved in a facile manner by employing gravity and a
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Figure 3. (a) Photographs of the precursor solution 1.0R3 with 0.2mg mL ™" IOMNPs dispersed therein before and after being exposed to the UV source for about
35min. (b) The transmittance of the UV source through the sample photographed in (a) as a function of elapsed exposure time. (c) TEM of the PNIPAM nanogels
synthesized, in the presence of IOMNPs, via UV exposure. (d) A particle size distribution of the nanogels shown in (c) revealing an average size of approximately

1000 nm.

magnet on the post UV exposed sample. First the sample
was allowed to sit undisturbed for nearly two hours so that
gravity could effectively remove the bare IOMNPs from the
water column. After this, a small neodymium magnet was
located adjacent to a wall of the cuvette, relatively far from
its bottom so as not to disturb the bare IOMNPs settled
there. A little over 3 h later, the separation was achieved as
illustrated photographically and schematically in Figure 4.
Note that at the beginning of the separation process the
sample had been vigorously agitated so as to achieve homo-
geneity. As shown in the photograph and schematic of
Figure 4(a), this distributes all three species equally through-
out the water column. After separation, as shown in Figure
4(b), two distinct regions of reddish, brown are photograph-
ically documented at the cuvette bottom and wall nearest
the magnet. These can be attributed to the relatively strong
magnetic field here as magnetic field lines converge on the
poles. The schematic of Figure 4(b) depicts how the

successfully embedded IOMNPs have been isolated to the
wall of the cuvette. This, then, allows the embedded IOMNPs
to be washed and permanently isolated from the unwanted
species. Note the sample’s separation behavior, documented
here in Figure 4, was repeatable over an eight month period
of time suggesting the synthesis is stable over at least that
long, provided it is refrigerated at about 4 °C when stored.
Now that the separated sample was assessed for AMF
heating response at several different field strengths. The
heating response of the PNIPAM embedded IOMNPs, at
323kA m™' and 47.7kAm™', is given in Figure 5(a).
Obviously, by varying the strength of the AMF the heating
response can be controlled. In particular, stronger applied
fields (47.7kAm~") induce elevated temperature increase
(~0.4°C) as compared with weaker applied fields
(323kAm™") which induce less temperature increase
(~0.1°C) for a given trial duration. Heating rates, however,
can only inform on the heating efficacy of the entire sample.



In order to comment on the heating efficacy of the individual
IOMNPs the specific absorption rate (SAR) must be deter-
mined according to
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Figure 4. (a) The sample was agitated after UV exposure, thereby suspending
bare IOMNPs, empty nanogels, and PNIPAM embedded IOMNPs in the water
column. (b) Bare IOMNPs settle relatively fast under the influence of gravity. A
static magnetic field can be made to isolate embedded IOMNPs, from the
empty nanogels and bare IOMNPs, along the cuvette wall.
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In Equation (1), the subscript sol indicates that the product in
the numerator is the sum of the three terms corresponding to
the components of the solution: the IOMNPs, the PNIPAM,
and the filtered DIW. The quantity c indicates the specific heat
of a particular species and m is its mass. The quantity AT is
the change in temperature for a given time interval, At. In
Equation (1), since the heating rate of a sample is normalized
by the mass of the IOMNPs, momne, it is independent of that
quantity and can, therefore, comment on their individual heat-
ing efficacy. According to linear response theory (LRT) SAR is
proportional to the square of the applied magnetic field
strength, H? (Rosensweig, 2002). When the SAR is plotted
against H? the result is indeed a linear relation, as shown in
Figure 5(b). It was previously reported that when IOMNPs are
dispersed by themselves in DIW, with no PNIPAM present, at a
concentration of 1Tmg mL™" the SAR was approximately
220W g’1 (Denmark et al., 2016). That data corresponded to a
field strength of 59.1kA m~'. However, here, when IOMNPs
were embedded in PNIPAM the SAR was approximately 150 W
g~ . This reduction in SAR can be attributed to a confining
action of the PNIPAM nanogel matrix on the IOMNPs thus
reducing their heating efficacy.

When IOMNPs are not coated with surfactants they have a
strong tendency to cluster together as a result of dipolar par-
ticle interactions. However, in the case of the IOMNPs that were
encapsulated within PNIPAM, described above, interactions are
weak. It follows that IOMNP/PNIPAM nanogels will disperse bet-
ter in the solvent. Through multiple hyperthermia experiments,
the SAR value was the same, meaning the PNIPAM nanogels
containing IOMNPs are homogeneously dispersed.

Through the use of Equation (1), estimation of the amount
of encapsulated IOMNPs within the PNIPAM nanogels is pos-
sible. Since bare IOMNPs exhibited a SAR value of 220Wg™"

SAR = (M

Miomnp

(b) 1T
1504 o Recipe 1.0R3

135 0.2 mg/mL IOMNP

| —— SAR = (4.95x1078) H2
120 R2 = 0.9960
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©
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Figure 5. (a) The AMF heating curves of the sample comprised of precursor solution 1.0R3 and IOMNPs after being exposed to the UV source. (b) The SAR as a

function of the square of the applied magnetic field amplitude.
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and the IOMNP/PNIPAM nanogels had a SAR value of
150 W g~ ', this suggests that approximately 70% of the initial
amount of IOMNPs were successfully encapsulated.

Conclusions

The work presented here furthers the field of TBD. Herein, a
unique system was presented that not only allows for photo-
polymerization synthesis of PNIPAM nanogels encapsulating
IOMNPs, but is also capable of monitoring that synthesis in
situ through recording the attenuation of the source’s spec-
trum as the photopolymerization progresses. By employing a
photoreaction, the synthesis was faster, energetically cheaper,
and safer for use in biological applications as compared to
more traditional techniques like emulsion polymerization.
Through tuning the initial concentration of the precursor
solution, the final PNIPAM nanogel size could be dialed in.
Finally, effective separation of the PNIPAM embedded
IOMNPs from the unreacted species was demonstrated in a
facile manner by employing gravitational and magnetic
forces. The results presented here will be of interest to those
researchers endeavoring to develop their own TBD devices.
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