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Abstract: Precision oncology is an emerging approach in cancer care. It aims at selecting the optimal
therapy for the right patient by considering each patient’s unique disease and individual health
status. In the last years, it has become evident that breast cancer is an extremely heterogeneous
disease, and therefore, patients need to be appropriately stratified to maximize survival and quality
of life. Gene-expression tools have already positively assisted clinical decision making by estimating
the risk of recurrence and the potential benefit from adjuvant chemotherapy. However, these
approaches need refinement to further reduce the proportion of patients potentially exposed to
unnecessary chemotherapy. Nuclear magnetic resonance (NMR) metabolomics has demonstrated to
be an optimal approach for cancer research and has provided significant results in BC, in particular for
prognostic and stratification purposes. In this review, we give an update on the status of NMR-based
metabolomic studies for the biochemical characterization and stratification of breast cancer patients
using different biospecimens (breast tissue, blood serum/plasma, and urine).

Keywords: metabolomics; NMR; breast cancer; precision medicine; chemotherapy

1. Breast Cancer: Why Precision Oncology?

Precision medicine, also called personalized medicine, is an emerging approach for
disease treatment and prevention that takes into account genetics, epigenetics, metabolism,
environment, and lifestyle of each individual person with the goal to select the optimal
therapy for the right patient. In oncology, tumor molecular profiling leads to the identifi-
cation of patient specific alterations that could inform about the optimal treatments and
maximize patient’s survival.

For several years breast cancer (BC) has been seen as a single clinical entity and treated
with one general approach. However, now it has become extremely clear that BC has to
be considered a highly heterogeneous disease with different subclasses. The discovery of
endocrine receptors, and the understanding that endocrine therapy significantly improves
outcomes in patients with hormone receptor-positive disease, marks the beginning of
the target therapy for patients with BC [1–3]. By the late 1990s, it was discovered that
a subgroup of breast tumors (15–20%) overexpresses the HER2 receptor or have HER2
gene amplification. HER2-positive disease had a dismal outcome until the development of
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targeted agents, which has significantly improved outcomes in both the (neo)adjuvant [4–8]
and the metastatic setting [9,10]. The more recent gene-expression assays allow clinicians
to assess the risk of recurrence in early breast cancer (EBC) [11–13], as well as to predict
potential benefit from adjuvant chemotherapy [14–17]. In many patients found to have a
disease with favorable gene-expression profile, chemotherapy could be avoided; however,
a significant population of EBC patients may still be overtreated. Precision oncology aims
at identifying the optimal treatment for each patient, specifically tailored to each unique
cancer profile and to each individual health status in order to maximize survival and
quality of life. Omics sciences are instrumental for this aim (Figure 1).
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2. Metabolomics and NMR

Metabolomics, one of the latest -Omic sciences, entails the comprehensive characteri-
zation of the ensemble of endogenous and exogenous metabolites presents in a biological
specimen. Metabolites simultaneously represent the downstream output of the genome, the
transcriptome, and the proteome, as well as the upstream input from various external factors
such as environment, lifestyle, diet, and drug exposure [18]. As a consequence, in the last few
years, metabolomic phenotyping has been extensively applied in biomedical research.

Nuclear Magnetic Resonance spectroscopy (NMR) and mass spectrometry are the
two most widely used analytical platforms for metabolomics. These two techniques can
be considered complementary, since the weaknesses of one platform are compensated
by the strengths of the other [19]. In contrast to the approach typically adopted in mass
spectrometry, which is focused on target metabolites of interest, NMR metabolomics is usually
performed using a high-throughput, untargeted approach, which provides a complete picture
of all metabolites present or quantifiable in the sample above the NMR detection limit
(concentrations > 1 µM) [19,20]. To date, NMR metabolomics are increasingly used for
successful patient stratification in various diseases, and it provided unique insights into the
fundamental causes of several physiological and pathophysiological conditions [21–35].

In principle, any biospecimen (i.e., cells, biofluids, and tissues) can be analyzed via
NMR. The most common biological fluids analyzed by metabolomics are blood serum/
plasma, urine, and saliva, as they can be collected with low invasiveness, and yield plentiful
in biological information. Blood derivatives contain all the molecules that are secreted by
different tissues in response to different physiological stimuli, conditions, or stressors [36].
Due to its important systemic role, the concentrations of metabolites in the blood are
strongly controlled by feedback cycles, so serum/plasma samples are not subjected to
extreme daily variations and can give information at a systemic level. Conversely, urine
essentially contains metabolic waste, and thus is more affected by diet, environment
lifestyle, and drug administration, resulting in significant day-to-day variability [37]. Saliva
is an important physiological fluid that contains a highly complex mixture of substances,
and it reflects both the systemic status [38] and the local health condition of the oral
cavity [39]. A number of other local biofluids, such as exhaled breath condensate [40–42],
cerebrospinal fluid [43,44], amniotic fluid [45], bile [46], synovial fluid [47,48], seminal
fluid [49], and fecal extracts [50] can also be analyzed to investigate the metabolome of
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specific compartments. Cell lysates, cell growth media, and extracts of tissues can also
be analyzed [51,52]. Further, the development of high resolution (HR) 1H magic angle
spinning (MAS) spectra [53] has made viable the acquisition of data on small slices of tissue
without the need of any extraction or pre-treatment [54–56].

Metabolomic fingerprints, as well as the identification and quantification of the most
abundant metabolites (metabolomic profiling), can be directly obtained by the analysis
of basic one-dimensional (1D) NMR spectra. 1D NOESY [57], 1H CPMG (Carr–Purcell–
Meiboom–Gill) [58], and 1H diffusion-edited [59] are the pulse sequences most commonly
used in metabolomics studies. NOESY spectra enables the detection of all molecules
present in the sample above the NMR detection limit, CPMG spectra allow the selective
detection of low molecular weight metabolites, whereas diffusion-edited spectra permit the
observation of only high-molecular weight macromolecules (i.e., proteins and lipoproteins).
The latter two sequences are particularly useful in biofluids such as serum/plasma that
contain high amounts of both low and high molecular weight compounds.

Limiting the analysis to the most common biofluids employed in metabolomics, the
number of molecules detectable and quantifiable by 1D-NMR span from slightly more
than ten in breath condensate, to more than one hundred in urine. Assignment is mostly
based on literature data, public databases, such as the de-facto reference standard Human
Metabolome Database (HMDB) [60–62], commercially available databases and profiling
software (i.e., ChenomX, AssureNMR). Spectra acquired at high magnetic field and two-
dimensional experiments can be non-routinely employed in selected samples to identify
unknown metabolites or to confirm NMR assignment [63]. Remarkably, besides small
metabolites, serum and plasma also contain lipoproteins that with appropriate software (i.e.,
the Bruker IVDr platform) can be finely analyzed to derive, from serum and plasma NMR
spectra, about 100 different lipid parameters that describe the distribution and analytical
composition of lipid main fractions and subclasses [64]. This is especially important in
the lipidomics domain, because the composition of lipoproteins has a strong influence on
disease development, including BC [65].

If applied for population screening, NMR-based metabolomics/lipidomics could be-
come a powerful clinical tool in precision oncology. However, to permit experimental
reproducibility among different studies and/or different collection centers, it is extremely
important that metabolomic data are collected under rigorously controlled standard oper-
ating procedures (SOPs). SOPs need to be strictly followed in all the main steps involved
in the metabolomic work-flow, including sample collection, preanalytical processing, and
storage [66–68]; NMR spectra recording [69]; and data/metadata compilation, description
and storage [70].

In this review, we will present an overview on the current status of NMR-based
metabolomics studies in the setting of breast cancer using three different biological samples:
breast tissue, serum/plasma and urine (Figure 2, Table 1). The translation in the clinical
practice and the future perspectives for this analytical approach will be also examined
and discussed.

The scientific publications reviewed in the present article were identified by database
searching in three electronic databases [National Library of Medicine (Medline via PubMed®),
Web of Science and Scopus] without any restriction on date of publication or publication
status. Keywords were used as follows: (“metabolomics” OR “metabonomics) AND
(“NMR” OR “nuclear magnetic resonance spectroscopy”) AND (“breast cancer”) AND
(“biospecimen”, where biospecimen is tissue or plasma or serum or urine). The results of
the searches were manually refined in order to remove non pertinent articles. In addition,
previous systematic reviews were checked to ensure complete data collection.
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Table 1. List of evaluated publications.

Ref. Biospecimen Population Study (n) Cohort Allocation EBC/MBC ER Status HER2 Status Mean Age (Yrs) NMR (MHz)

Borgan et al.,
2010 [71] T 46 BC Trondheim

(Norway) 46 EBC 41 ER+/5 ER− Not reported 64 600

Li et al., 2011
[72] T 31 (13 BC; 18 HC) Seoul (South Korea) 13 EBC (11 IC; 2 DCIS) 11 ER+/2 ER− 12 HER2+/1

HER2 50 500

Bathen et al.,
2013 [73] T 228 BC Trondheim

(Norway) 228 EBC 168 ER+/49 ER− Not reported 60.7 600

Chae et al., 2016
[74] T 60 BC Seoul (South Korea) 60 EBC (30 DCIS; 30

DCIS + IC) 40 ER+/20 ER− 4 HER2+/36
HER2− 48.7 400

Park et al., 2016
[75] T 31 BC Seoul (South Korea) 31 EBC (IC) 21 ER+/10 ER− 23 HER2+/8

HER2− 54.2 600

Gogiashvili
et al., 2018 [76] T 18 BC Oberhavel

(Germany) 18 EBC Not reported Not reported Not reported 600

Giskeødegård
et al., 2010 [77] T 160 BC Trondheim

(Norway) 160 EBC (IC) 119 ER+/39 ER− Not reported 62 600

Choi et al., 2012
[78] T 34 BC Seoul (South Korea) 34 EBC (IC) 26 ER+/6 ER− 5 HER2+/27

HER2− 52.2 500

Cao et al., 2014
[79] T 75 BC Trondheim

(Norway) 75 EBC (IC) 44 ER+/31 ER− 30 HER2+/45
HER2− 64 600

Tayyari et al.,
2018 [80] T 82 (47 BC; 35 HC) Multicenters USA 47 EBC (44 IC; 3 DCIS) 29 ER+/18 ER− 47 HER2+/0

HER2− Not reported 800

Cheng et al.,
1998 [81] T 19 BC Boston (USA) 19 EBC (18 IC;1 DCIS) Not reported Not reported 60 400

Bathen et al.,
2007 [82] T 77 BC Trondheim

(Norway) 77 EBC (IC) 62 ER+/15 ER− Not reported 62 600

Sitter et al., 2006
[83] T 85 (83 BC, 1 LC, 1 HC) Trondheim

(Norway) 83 EBC Not reported Not reported 62 600

Sitter et al., 2010
[84] T 29 BC Trondheim

(Norway) 29 EBC (IC) 18 ER+/11 ER− Not reported Not reported 600

Choi et al., 2013
[85] T 37 BC Seoul (South Korea) 25 ER+/12 ER− 14 HER2+/25

HER2− 50.5 500
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Table 1. Cont.

Ref. Biospecimen Population Study (n) Cohort Allocation EBC/MBC ER Status HER2 Status Mean Age (Yrs) NMR (MHz)

Euceda et al.,
2017 [86] T 122 BC Trondheim

(Norway) 122 EBC (IC) 101 ER+/21 ER− 122 HER2− 49 600

Cao et al., 2012
[87] T 30 BC Trondheim

(Norway) 30 EBC (IC) 27 ER+/3 ER− Not reported 62 600

Giskeødegård
et al., 2012 [88] T 98 BC Trondheim

(Norway) 98 EBC (IC) 71 ER+/24 ER− Not reported 69 600

Cao et al., 2012
[89] T 85 BC Trondheim

(Norway) 80 EBC, 5 MBC (IC) 50 ER+/34 ER− Not reported 49 600

Haukaas et al.,
2016 [90] T 228 BC Oslo

(Norway)
228 EBC (224 IC; 4

DCIS) 178 ER+/40 ER− 26 HER2+/192
HER2− 55.5 600

Yoon et al., 2016
[91] T 53 BC Seoul (South Korea) 53 EBC (IC) 36 ER+/17 ER− 12 HER2+/41

HER2− 49.6 600

Debik et al., 2019
[92] T, S 118 BC Oslo (Norway) 118 EBC (IC) 100 ER+/18 ER− 118 HER2− 48.9 600

Bro et al., 2015
[93] P 838 (419 BC; 419 HC) Denmark not reported not reported not reported not reported 600

Cala et al., 2018
[94] P 58 (29 BC; 29 HC) Bogotà (Colombia) 29 EBC (19 IDC; 10

ILC) 19 ER+/10 ER− 6 HER2+/23
HER2− 51 400

Lecuyer et al.,
2018 [95] P 602 (206 BC; 396 HC) France not reported not reported not reported 49.3 500

Louis et al., 2015
[96] P 145 (73 BC; 72 HC) Hasselt (Belgium) 73 EBC (61 IDC; 11

ILC; 1 DCIS) 62 ER+/11 ER− not reported 58.5 400

Richard et al.,
2017 [97] P 65 BC Mons (Belgium) 50 EBC (IC); 15 MBC not reported not reported 57.6 500

Suman et al.,
2018 [98] P 122 (72 BC; 50 HC) Lucknow (India) not reported not reported not reported 44.3 800

Vignoli et al.,
2020 [99] P 43 BC Aviano (Italy) 43 EBC (IC) 22 ER+/21 ER− 43 HER2+ 49 600

Jobard et al.,
2021 [100] P 1582 (791 BC; 791 HC) Lyon (France) 791 EBC (685 IC; 69

DCIS)
EBC: 536 ER+/100

ER− Not reported 56.8 600



Int. J. Mol. Sci. 2021, 22, 4687 6 of 26

Table 1. Cont.

Ref. Biospecimen Population Study (n) Cohort Allocation EBC/MBC ER Status HER2 Status Mean Age (Yrs) NMR (MHz)

Keun et al. [101] S 21 BC London (England) Not reported Not reported Not reported 59 600

Asiago et al.,
[102] 2010 S 56 BC Houston (TX, USA) 56 EBC (IC) 26 ER+/25 ER− not reported 53.7 500

Gu et al., 2011
[103] S 57 (27 BC; 30 HC) Detroit (MI, USA) not reported not reported not reported 55.9 500

Stebbing et al.,
2012 [104] S 88 BC London (England) 13 EBC; 75 MBC 64 ER+/24 ER− 34 HER2+/54

HER2− 59 600

Hart et al., 2017
[105] S 699 BC International 590 EBC (IC); 109

MBC
EBC: 552 ER+/37

ER−

EBC: 108
HER2+/388

HER2−
41.5 600

Jiang et al., 2018
[106] S 29 BC Singapore 29 MBC not reported 6 HER2+/7

HER2− 52.7 800

Jobard et al.,
2017 [107] S 79 BC France 79 BC not reported 79 HER2+ 50.5 800

Jobard et al.,
2014 [108] S 190 BC Lyon (France) 104 EBC; 86 MBC not reported 32 HER2+/156

HER2− 57.1 800

McCartney et al.,
2019 [109] S 115 BC New York (USA) 28 MBC; 87 EBC (IC) 115 ER+ 115 HER2− 54 600

Oakman et al.,
2011 [110] S 140 BC Prato (Italy) 89 EBC (IC); 51 MBC 111 ER+/29 ER− 28 HER2+/108

HER2− 57 600

Singh et al., 2017
[111] S 42 (27 BC; 15 HC) Lucknow (India) 27 EBC (IC) not reported not reported 58.6 800

Tenori et al.,
2012 [112] S 579 BC International 579 MBC not reported not reported not reported 600

Tenori et al.,
2015 [113] S 175 BC New York (USA) 95 MBC; 80 EBC (IC) 62 ER+/110 ER− 47 HER2+/126

HER2− 53 600

Wei et al., 2013
[114] S 28 BC Tübingen

(Germany) 28 EBC 19 ER+/9 ER− 13 HER2+/15
HER2− 47.9 600

Wojtowicz et al.,
2020 [115] S 95 (9 BC; 86 HC) Wroclaw (Poland) not reported 9 ER− 9 HER2− 56.67 600
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Table 1. Cont.

Ref. Biospecimen Population Study (n) Cohort Allocation EBC/MBC ER Status HER2 Status Mean Age (Yrs) NMR (MHz)

Flote et al., 2016
[116] S 56 BC Norway 56 EBC (IC) 52 ER+/4 ER− 3 HER2+/53

HER2− 55.1 600

Madssen et al.,
2018 [117] S 60 BC Norway 56 EBC (4 DCIS; 56 IC) 52 ER+/4 ER− 3 HER2+/53

HER2− 55.4 600

Zhou et al., 2017
[118] S; U 22 (11 BC; 11 HC) Xi’an (China) 10 EBC (IC); 1 MBC not reported not reported 58 600

Men et al., 2020
[119] U 144 (106 BC; 38 HC) Tengzhou (China) 106 EBC (IC) not reported not reported 50.6 600

Silva et al., 2019
[120] U 78 (40 BC; 38 HC) Funchal (Portugal) not reported not reported not reported 59 400

Slupsky et al.,
2010 [121] U 170 (48 BC; 50 OC; 72

HC) Edmonton (Canada) 37 IDC; 7 DCIS; 4 ILC not reported not reported 56 600

P: Plasma; S: Serum; U: Urine; T: tissue; BC: breast cancer; HC: healthy controls; IDC: invasive ductal carcinoma; ILC: Invasive lobular carcinoma; DCIS: ductal carcinoma in situ; EBC: early breast cancer;
MBC: metastatic breast cancer; LABC: locally advanced breast cancer; HER2+: human epidermal growth factor receptor 2 positive; RBC: relapsed breast cancer; NRBC: non-relapsed breast cancer; TNBC:
Triple-negative breast cancer.
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Figure 2. Selection of the scientific articles included in this NMR-based metabolomics review. The
figure shows the workflow of the papers’ selection.

3. NMR Metabolomics of Breast Tissue

High resolution magic angle spinning (HR-MAS) NMR spectroscopy allows the quan-
tification of approximately 40 metabolites with a safe, non-destructive method that requires
minimal sample preparation. Since HR-MAS analyzes intact tissue, it offers the potential
to further characterize the same specimen via histopathology or utilizing transcriptomics
and/or proteomics [71,90]. Several studies (Table 2) have shown that HR-MAS is able to
discriminate between malignant and normal breast tissue [72,73], and between in-situ and
infiltrating carcinoma [74]. Two studies have shown that the metabolic profile does not
differ significantly based on intra-tumoral location and biospecimen type [75,76].

3.1. Correlation with Clinicopathological Factors

Metabolomics has been shown to be capable of predicting the status of BC prognostic
factors such as estrogen receptor (ER), progesterone receptor (PR), and axillary lymph
nodes (Table 3) [77]. In the study of Choi et al. [78], higher choline levels were found to
correlate with ER-negative and PR-negative tumors. In addition, triple negative status
(i.e., the absence of ER, PR, and HER2 receptors) was associated with higher choline-to-
creatine and total choline-to-creatine ratios. In a study of Cao et al. [79], the metabolomic
characterization of triple negative tumors confirmed higher choline levels, but also showed
an association with lower creatine and glutamine levels, together with higher levels of
glutamate, glycine, and lactate (Table 3). Tayyari et al. [80] performed a metabolic analysis
to identify the potential differences between triple negative and hormone receptor-positive
tumors, within both African-American and Caucasian patients. African-American patients
with triple negative tumors showed higher concentrations of choline, glutamine, and
glutathione compared to patients with hormone receptor-positive tumors. Conversely,
Caucasian patients with triple negative tumors showed lower levels of glutamine in
comparison with African-American patients with triple negative tumors.

In the context of HER2-positive tumors, Choi et al. [78] showed a significant correlation
with higher levels of taurine, scyllo-inositol, and myo-inositol. Moreover, Cao et al. [79]
described an association with higher concentrations of creatine, succinate, glycine and
glutamine, and lower concentrations of alanine.
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Table 2. List of altered metabolite levels identified in breast tissue of breast cancer patients to study their metabolomic profiles.

Metabolite
BC vs. CTR

IC vs.
DCIS

Poor Prognosis vs.
Good Prognosis

GR vs. PR Changes in Response
to Treatment

High SER/SUV vs.
Low SER/SUVPre-Treatment Post-Treatment

[72] [73] [80] [81] [83] [74] [78] [84] [88] [89] [92] [85] [86] [87] [86] [87] [89] [91]

Choline ↑ ↓ ↑ ↓ ↑
Phosphatidylcholine/creatine ↓

Total choline ↑ ↑ ↑ ↑ ↓ ↓
Phosphatidylcholine ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↑

Glycine ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↑
Scyllo-inositol ↑
Myo-inositol ↓

Glycerophosphocholine ↓ ↓ ↓ ↑ ↓ ↓ ↓
Creatine ↑ ↓ ↑ ↓

Glutamine ↑
Glutamate ↑

Taurine ↑ ↑ ↓ ↓ ↓ ↑ ↓
Alanine ↓ ↑ ↓

Ascorbate ↑ ↑
Lactate ↑ ↑ ↑ ↑ ↑

Succinate ↓ ↑ ↓
Methionine ↑

Uridine ↑
Lipids ↓

Unsatured lipids ↓
ATP ↓

Glycerophosphocholine/hosphatidylcholine ↓
Glycerophosphocholine/choline ↓

Phosphatidylcholine/choline ↑
Glucose ↓ ↓ ↓ ↑ ↑

Glutathione ↑
Glycerophosphocholine/choline ↓

BC: breast cancer; CTR: control; IC: invasive carcinoma; DCIS: ductal carcinoma in situ; PR: poor responders; GR: good responders; SER: signal enhancement ratio; SUV: maximum standardized FDG uptake
value. ↑/↓ higher/lower level in the first group of each comparison.
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Table 3. List of altered metabolite levels identified in breast tissue of breast cancer patients to study clinicopathological factors.

Metabolite
ER+ vs. ER− PR+ vs.

PR−
HER2+ vs.

HER2− High G vs. Low G TN vs. NonTN N+ vs. N0 T > 2 cm vs.
T < 2 cm

High Ki67 vs.
Low Ki67

[77] [78] [79] [82] [77] [78] [78] [79] [78] [53] [83] [78] [79] [80] [82] [83] [83] [78] [84]

Choline ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↑
Choline/creatine ↑

Total choline/creatine ↑
Phosphatidylcholine/creatine ↑ ↑

Total choline ↑
Phosphatidylcholine ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↑

Glycine ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑
Scyllo-inositol ↓ ↑
Myo-inositol ↑ ↑

Glycerophosphocholine ↓ ↑ ↓ ↑ ↑ ↓
Creatine ↑ ↓ ↓ ↑ ↓ ↓

Glutamine ↑ ↑ ↓
Glutamate ↓ ↑

Taurine ↑ ↑ ↓ ↑ ↓ ↓
Alanine ↓ ↓ ↓

Ascorbate ↑ ↓
Lactate ↓ ↓ ↓ ↓ ↓

Succinate ↑
ATP ↓

Lactate/Choline ↑
Betaine ↓
Glucose ↑ ↓

↑/↓ higher/lower level in the first group of each comparison.
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Choline-containing compounds have been found to be correlated with tumor grade
and the proliferative marker Ki67. Choi et al. [78] showed that phosphocholine-to-creatine
ratio was significantly greater in high grade and highly proliferative tumors. In addition,
Ki67 was associated with increased phosphatidylcholine (PC) and total choline levels.
In a different study published in 1998, a higher lactate-to-choline ratio was significantly
correlated with high grade tumors [81]. Axillary lymph node involvement was associated
with increased glycine and phosphocholine, and reduced betaine and taurine in a study by
Bathen et al. [82].

Sitter et al. [83] showed that higher choline and glycine concentrations are characteris-
tic of tumor larger than 2 cm as compared with smaller tumors. A later analysis of the same
group [84] correlated the metabolic profile of 29 intact BC samples with clinical prognosis.
Patients with an estimated good prognosis, defined by the absence of disease in axillary
lymph nodes, primary tumors smaller than 2 cm, and ER- and PR-positive disease, were
found to have a trend toward a lower concentration of glycine compared to those patients
with poor prognosis. Moreover, the metabolomic analysis of tissue samples with a high
proliferation index correlated with low concentrations of glucose.

3.2. Correlation with Response to Neoadjuvant Therapy

Metabolic profiling of breast tumor tissue using HR-MAS has been correlated with
pathological response to neoadjuvant therapy in several studies (Table 2). In the study
by Choi et al. [85], patients who achieved a pathological complete response (pCR) fol-
lowing neoadjuvant chemotherapy and subsequent surgery were compared with patients
without a pCR result. No significant differences in the metabolite concentration of pre-
treatment samples were found between responders and non-responders. Moreover, the
metabolomic profile was not able to predict pCR prior to neoadjuvant treatment in a study
of Euceda et al. [86]. However, pre-treatment biopsies of responders showed lower lev-
els of glucose and higher levels of lactate compared with non-responders. Responders
also showed an increase in glucose, lactate, and glutamine levels after treatment, and a
decrease in phosphocholine, choline, and succinate. Cancer cells preferentially switch from
anaerobic to aerobic glycolysis as result of the Warburg effect [122]. This phenomenon is
associated with rapid glucose consumption and increased lactate production. As such, the
lower levels of glucose and higher lactate found in pre-treatment samples of responders
could reflect a more malignant metabolic profile that paradoxically also makes cells more
sensitive to chemotherapy. The increase of glucose observed after treatment may be an
expression of lower glucose consumption.

Cao et al. [87] showed that the pre-treatment levels of total choline (tCho) were higher
in patients with tumors responsive to neoadjuvant chemotherapy than those with non-
responsive tumors. Moreover, there was a reduction of tCho levels from pre-treatment to
post-treatment samples in patients with partial response while this was not observed in
patients with stable disease. However, these differences were not statistically significant.
Conversely, glycerophosphorylcholine (GPC) was significantly decreased in post-treatment
samples of patients in the responder group. The tCho signal is involved in cellular mem-
brane turnover, therefore a decrease in tCho levels after treatment could suggest lower
cellular proliferation.

3.3. Correlation with Survival

In the study by Giskeodegard et al. [88], the metabolic profile of BC tissue was
correlated with 5-year survival rates. Higher levels of lactate and glycine were found to
be associated with worse prognosis in patients with ER-positive BC undergoing upfront
surgery without any prior treatment. This was not observed in the ER-negative subgroup,
likely due to the small number of patients (n = 24), whilst also reflecting the metabolic
differences between ER-positive and ER-negative tumors.

Similar results were found by Cao et al. [89]. In this study, increased levels of lactate on
post-treatment tumor samples were associated with worse prognosis (survival < 5 years),
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while reduced levels of glycine and choline containing compounds correlated with better
prognosis. Patients disease-free after five years of follow up also showed increased levels
of glucose in response to treatment, in comparison with non-survivors. Conversely, pre-
treatment metabolic analysis of tumor samples gave no prognostic information, suggesting
that the difference observed between survivors and non-survivors resulted from a metabolic
response to treatment. In this study, the impact of ER status on metabolic profile variations
in response to treatment was not investigated.

Debik et al. [92] analyzed tissue samples from 132 women undergoing neoadjuvant
chemotherapy. The metabolic profile of tumor biopsies detected during treatment was
predictive of 5-year survival. In concordance with previous studies, patients with short
survival had higher lactate and glycine levels in comparison with disease-free patients
at five years. Increased lactate levels after treatment may reflect the activation of aerobic
glycolysis and tumor response to hypoxia that led to high tumor aggressiveness and poor
prognosis. Conversely, decreased glycine and tCho levels in response to treatment may
be related to altered glycolysis and reduced cell proliferation, as an expression of lower
disease aggressiveness and better prognosis.

3.4. Correlation with Transcriptomics and Proteomics

Metabolomics has been combined with transcriptomics and proteomics to better
characterize breast tumors and to identify the mechanisms underlying BC heterogeneity.

Metabolite, gene expression, and protein data from 228 BC samples were analyzed by
Haukaas et al. [90]. At the time of sample collection, patients had not received any treat-
ment. HR-MAS identified three distinct metabolic clusters (MC1, MC2, and MC3). MC1
was characterized by the highest levels of GPC and phosphocholine (pCho); glucose was
the most concentrated metabolite in MC2; glycine, alanine and lactate were predominant
in MC3. These three clusters showed different expression of genes involved in glycolysis,
gluconeogenesis, and glycerophospholipid metabolism, and genes related to extracellular
matrix. They also expressed different cancer-related proteins. However, there were no sig-
nificant differences in the distribution of PAM50-characterized molecular subtypes between
the clusters. In a previous study merging transcriptomics and metabolomics [71], three
subgroups of luminal A tumors with different metabolic profile and gene expression were
identified. Thus, this supports the premise that metabolomics adds relevant information to
transcriptomics and proteomics, in turn contributing to a more refined subclassification of
breast tumors.

3.5. Correlation with Quantitative Conventional Breast Imaging

In the study by Yoon et al. [91], 53 BC specimens derived from pre-treatment core
needle biopsies (CNB) were analyzed with HR-MAS. The metabolomic profile of each
lesion was then correlated with conventional quantitative breast imaging parameters. It
was shown that patients with high signal enhancement ratio (SER) at MRI with dynamic
contrast enhanced (DCE), and with high FDG uptake value (SUV) at PET-CT scan, had
higher levels of phosphatidylcholine (PC), choline and glycine. Choline was significantly
correlated with SER, while PC correlated with SUV. Both these correlations were justified
by the role of choline and PC in cell membrane synthesis, required for tumor cell repli-
cation and angiogenesis. High SER and SUV levels have been related to poor prognostic
markers; therefore, choline and PC could be promising metabolites to be used to predict
poor prognosis.

4. NMR Metabolomics of Blood Plasma/Serum

Circulating blood metabolites and lipoproteins may not only reflect the tumor metabolism,
but more likely may provide a systemic picture of the fine balance between the tumor and
the host metabolism considering the global physiological and immunological conditions of
each patient with BC. For all these reasons, several aspects of the NMR-based metabolomic



Int. J. Mol. Sci. 2021, 22, 4687 13 of 26

signature of BC in plasma/serum have been explored as providing novel insight into the
molecular aspects of this disease.

4.1. Characterization of the Metabolomics Profile of BC Patients

Blood NMR-based metabolomics have been shown to have potential of distinguishing
patients with BC with respect to healthy controls (HC) with high discrimination accu-
racies [94,95,98,111,115]. The levels of several circulating amino acids, and glyco- and
lipo-proteins, have been shown to be statistically significantly altered in patients with BC
(Table 4), implying a disruption of energetic homeostasis and amino acid metabolism to
support cancer growth and evolution [94,95]. Recently, Jobard et al. [100] reported pertur-
bations in circulating plasma metabolites prior to a breast cancer diagnosis in a population
of 791 breast cancer cases and 791 matched controls. These alterations involved particu-
larly histidine, N-acetyl glycoproteins (NAC), glycerol, and ethanol, but are statistically
significant only in the premenopausal subgroup.

The metabolome of specific BC molecular subtypes has been also investigated. Study
of the metabolomic profile of patients with triple-negative BC has further refined the molec-
ular characterization of this BC subtype that accounts for 10–22% of all diagnosed BC and
has the worst survival rate [115]. A recent study on plasma unravels how ER status impacts
on the metabolomic profiles of patients with HER2-positive BC, with metabolomic data
also studied in association with levels of circulatory cytokines [99]. Blood metabolomics
has also shown how high expression of the receptor for the inositol 1, 4, 5 Trisphosphate,
of which deregulation promotes tumor growth and aggressiveness, influences the host
system metabolome by increasing lipoprotein content and the levels of lactate, lysine, and
alanine and by decreasing the levels of pyruvate and glucose [111].

Important efforts have been made in order to describe the differences on plasma/serum
metabolome across EBC and metastatic breast cancer (MBC) [97,105,108,110,113]. These
two groups of patients can be discriminated by NMR metabolomics with high accuracy, and
as reported in Table 4, several metabolites showed statistically different levels in patients
with EBC and MBC, implying a progressive disruption and rewiring of several metabolic
pathways following the evolution of the disease.

4.2. Blood Metabolomics: Prognosis and Risk of Relapse

Of interest to clinicians is the potential of metabolomics from a prognostic point of
view. Metabolomics could provide the ability to discern between patients with EBC at
high risk of recurrence, and those who may be cured by locoregional therapy alone. In the
current era of precision medicine, this would represent an invaluable tool for clinicians,
who may in turn offer more aggressive adjuvant therapies to the former group and sparing
the latter from treatments whose benefit–risk ratio is poor [123,124]. In 2010, the first
evidence supporting the usefulness of metabolomics as a potential biomarker of recurrence
was published by Asiago and coauthors [40]. In this retrospective analysis, a PLS-DA
model built using 11 metabolites provided a sensitivity of 86% and a specificity of 84% in
discriminating patients with previous EBC free from disease at six years and patients with
disease relapse. Of note, 55% of patients were correctly predicted to develop recurrence
about 13 months before the clinical diagnosis of the same.
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Table 4. List of altered metabolite levels identified in plasma/serum samples of BC patients to study several aspects of this pathology.

Metabolite

BC vs. CTR
ER+ vs.

ER− MBC vs. EBC REL vs. NR
Response to Chemotherapy

PR vs. GR Changes during Treatment

[115] [98] [95] [94] [111] [100] [99] [97] [98] [105] [108] [110] [113] [105] [102] [112] [106] [92]
(NAC)

[114]
(NAC)

[99]
(NAC)

[92]
(NAC)

[92] (NAC +
Bevacizumab)

[107]
(Trastuzumab+

Everolimus)

3-hydroxy-2-Methyl-butanoic acid ↓
3-Hydroxybutyrate ↑ ↑ ↓ ↑

Acetate ↑ ↓ ↓↑↑ ↓
Acetoacetate ↑ ↑ ↓↑↓ ↑ ↓

Acetone ↓ ↓ ↑
Alanine ↓ ↑ ↑ ↑ ↓ ↓

Albumin Lysyl ↓
Apo-B ↑ ↑

Arginine ↑ ↑
Betaine ↓ ↓

Cholesterol ↑ ↑
Choline ↑ ↑ ↓ ↓
Citrate ↑ ↑ ↓↓↓ ↓

Creatine ↑ ↑ ↓↑↑ ↓
Creatinine ↑ ↑ ↑ ↓↑↑ ↓

Dimethylglutarate ↑↓↑
Ethanol ↑ ↑
Formate ↓ ↑ ↓ ↓ ↓↓↓ ↓
Glucose ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↓

Glutamate ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑
Glutamine ↑ ↓ ↑ ↓ ↓ ↑
Glycerol ↑ ↑

Glycerol-derived compounds ↓ ↑
Glycerophosphocholine ↓

Glycine ↓ ↓ ↑ ↑ ↑↑↓
Glycoproteins ↓

Histidine ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓↑↑ ↓
Isoleucine ↓ ↑ ↑ ↓ ↑ ↑↓↓ ↓

Lactate ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑↓↓
Leucine ↑ ↑ ↑↓↑ ↑

Linolenic acid ↑
Lipids ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑

Lipoproteins ↑ ↓ ↑
Lysine ↑ ↑ ↑ ↓ ↑ ↑↓↑ ↓

Mannose ↑ ↑
Methanol ↓

Methionine ↑ ↓↑↑
Myo-Inositol ↓

N-acetyl glycoproteins ↑ ↓ ↑ ↑ ↑ ↑
N-Acetyl-Cysteine ↑
N-Acetyl-Glycine ↓
Nonanedioic acid ↓

Ornitine ↓↑↑
Phenylalanine ↑ ↑ ↑ ↑ ↑ ↓ ↓↑↑ ↓
Phospholipids ↑ ↑

Proline ↑ ↑ ↓ ↓
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Table 4. Cont.

Metabolite

BC vs. CTR
ER+ vs.

ER− MBC vs. EBC REL vs. NR
Response to Chemotherapy

PR vs. GR Changes during Treatment

[115] [98] [95] [94] [111] [100] [99] [97] [98] [105] [108] [110] [113] [105] [102] [112] [106] [92]
(NAC)

[114]
(NAC)

[99]
(NAC)

[92]
(NAC)

[92] (NAC +
Bevacizumab)

[107]
(Trastuzumab+

Everolimus)

Pyruvate ↓ ↓ ↑ ↓↓↑
Threonine ↑

Triglycerides ↑
Tyrosine ↓ ↑ ↑ ↑ ↑ ↑ ↓

Unsaturated lipids ↓
Valine ↓ ↑ ↑ ↑ ↑ ↓↑↑ ↓

BC: breast cancer; CTR: control; ER: estrogen receptor; PR: poor responders; GR: good responders; NAC: neoadjuvant chemotherapy; MBC: metastatic BC; EBC: early BC; REL: relapse; NR: no relapse. ↑/↓
higher/lower level in the first group of each comparison.
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Over the past years our group has pursued this research line establishing a repro-
ducible method of quantifying individual serum metabolomic fingerprints and demon-
strating, in monocentric and multicentric cohorts of patients, its ability to accurately
discriminate between MBC and EBC [105,109,110,113]. Furthermore, our data have shown
that patients with EBC classified as “metastatic” on the basis of their metabolomic finger-
prints presented high risk of disease recurrence. Thus, we hypothesized that EBC patients
with occult micro-metastatic disease may already have features of the metastatic signature
in their metabolomic fingerprint, and that this signature may be predictive for relapse.
Following this approach, in a monocentric cohort of ER negative EBC patients we were
able to predict cancer relapse with 82% accuracy [113]. These results have been reproduced
obtaining 71% predictive accuracy by analyzing serum samples collected in several centers
in South-East Asia, as a part of an unrelated Phase III adjuvant trial, from an heterogenous
group of patients with mainly ER positive EBC [105]. Moreover, we have demonstrated
that the serum NMR-based metabolomic fingerprinting approach can be effectively utilized
to further refining the genomic risk of relapse predicted using the OncotypeDX 21-gene
expression assay risk recurrence score [109].

4.3. Pharmacometabolomics in Breast Cancer Setting

The application of metabolomics for the study of drug effects and response—the
so-called pharmacometabolomics—can contribute to personalized drug therapy [125], with
relevant examples of its applications in the setting of BC already having been published.
The primary aim of metabolomics in this context is to predict which patients will benefit
most from a specific treatment. First in 2012, our group demonstrated that metabolomics
may play a role in identifying patients with MBC with HER2-positive disease with a greater
sensitivity to paclitaxel plus the anti-HER2 agent lapatinib [112]. Jiang and colleagues uti-
lized NMR-based pharmacometabolomics to predict response to gemcitabine/carboplatin
chemotherapy in a population of 29 patients with MBC. Baseline serum levels of for-
mate and acetate were identified as potential predictive biomarkers of chemotherapy
response [106]. In postmenopausal BC women treated with chemotherapy, the combination
of lactate, alanine, and glucose has been associated with cancer progression [104]; more-
over, high basal lactate levels were correlated with weight gain in postmenopausal women
receiving chemotherapy [101].

More recently, some metabolomics studies have focused their attention on neoadju-
vant chemotherapy (NAC). In breast cancer, NAC has become the approach of choice for
patients with large primary tumors and for locally advanced disease [126]. The neoadju-
vant approach offers the advantage of downstaging disease and reducing the size of tumors
prior to surgery, thus making patients with inoperable tumors candidates for surgical resec-
tion or enabling breast-conserving surgery rather than mastectomy [92,126]. However, less
than 30% of patients overall show complete pCR to NAC [114], with lower rates of response
found in ER-positive, HER2-negative disease. Published metabolomic studies have been
targeted at predicting response to NAC to enable the development of personalized treat-
ment protocols, and at characterizing the effects of NAC on the metabolome [92,99,107,114].
Plasma/serum metabolomics has been shown to be effective in predicting pCR in different
NAC regimes [99,114]. Moreover, it has been demonstrated that NAC induces relevant
changes in patient metabolism during treatment, and that these alterations also persist
some weeks after the completion of systemic therapy [92,107]. In particular, in the study
conducted by Jobard et al. [107], the effects of trastuzumab and everolimus in combina-
tion were associated with alterations that involve several metabolic pathways reflecting a
systemic effect, particularly on the liver and visceral fat.

4.4. NMR Lipidomics in Breast Cancer

Lipidomics represents a relatively new and promising complement to the more classi-
cal NMR metabolomics. In this particular setting, MS has been for a long time the preferred
technology, however recent advancements on NMR analysis of blood plasma and serum
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have permitted its wider use. The Bruker IVDr Lipoprotein Subclass Analysis platform™
(Bruker Biospin) has enabled a fast and reliable quantification of the main lipoprotein
parameters and their subfractions. This tool utilizes a chemometric approach based on
a PLS regression model to perform lipoprotein subclass analysis on 1H NMR NOESY
spectra [64,127].

The lipoproteins analysis via NMR was capable of providing further insights into the
host metabolic alterations induced by different clinicopathological factors: HDL subfrac-
tion contents were strongly associated with PgR expression, whereas Ki67 expression was
inversely associated with HDL phospholipids. Conversely no correlation was observed
between lipoproteins and ER expression. This metabolic information could be relevant
to characterize breast tumor aggressiveness and prognosis [116]. Moreover, it has been
observed that women characterized by lower plasma levels of lipoproteins, lipids, glyco-
proteins, acetone, glycerol-derived compounds, and unsaturated lipids present a higher
risk of developing BC over time [95].

Relevant alterations of the lipoproteins’ profiles of BC patients were also observed
in association with chemotherapy treatments. In particular, alterations of HDL, LDL,
VLDL cholesterols and triglycerides were observed during and after treatments. These
observations were hypothesized to be related to inflammation processes and lipids home-
ostasis [107,117].

5. NMR Metabolomics of Urine

Although urine samples can be easily and non-invasively collected in large volumes,
and require minimal pre-analytical and analytical preparation, the NMR-based urinary
metabolome of patients with BC is relatively unexplored to date. Indeed, database research
located only four published research articles.

In 2010, Slupsky and coauthors [121] described for the first time the urinary metabolic
phenotype of a population of 48 patients with BC via NMR. Patients with BC in comparison
to controls showed significantly lower levels of several metabolites (Table 5). However,
the BC group was very heterogenous in terms of histologic types (including both invasive
ductal and lobular carcinoma, as well as ductal carcinoma in situ), lymph node status
(10 patients had at least one positive lymph node), and age (ranging from 30 to 86).
These factors, if not properly considered, can present significant confounding factors. To
date, other three research articles (Table 1) have been published [118–120] comparing the
metabolic profiles of patients with BC to those of healthy controls. These studies confirmed
the reduction of excretion levels of several metabolites, with the exception of citrate which
showed a controversial trend (Table 5). The study by Men and coauthors [119] also
examined the urinary levels of heavy metals, with As, Cd, and Cr significantly increased
in the urine of patients with BC compared to controls. This finding suggests that urine
concentrations of heavy metals and BC development could be associated.

Although these published results are thought provoking and point to relevant metabo-
lite dysregulations in patients with BC, no large-scale study—mono- or multicenter—has
been performed to date. Moreover, clinically relevant markers and outcomes (i.e., cancer
stage, cancer recurrence, response to therapy) have never been explored via
urine metabolomics.
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Table 5. List of altered metabolite levels identified in urine samples of BC patients with respect to healthy controls.

Metabolite
Studies on Urine Samples

[119] [120] [121] [118]

2-oxoisocaproate ↓
3-methylglutarate ↓
4-cresol sulphate ↓

4-hydroxyphenylacetate ↓
acetate ↓ ↓
acetone ↓
alanine ↓ ↓ ↓

asparagine ↓
betaine ↓

carnitine ↓
choline ↓

cis-aconitate ↓
citrate ↓ ↑

creatine ↓ ↓
creatinine ↓ ↓ ↓

dimethylamine ↓ ↓ ↓
ethanolamine ↓

formate ↑ ↓
glucose ↓

glutamate (n-acetylaminoacides) ↓
glutamine ↓ ↓

glycine ↓ ↓
guanidoacetate ↓ ↓

hippurate ↓ ↓
histamine ↓

hypoxanthine ↓
isoleucine ↓ ↓

lactate ↓ ↓
leucine ↓ ↓

levoglucosan ↓
lysine ↓

malonate ↓
mannitol ↓

methylhistidine ↓
phenylacetylglycine ↓

pyroglutamate ↓
pyruvate ↓

serine ↓
succinate ↓ ↓
sucrose ↓
taurine ↓ ↓

threonine ↓ ↓
trans-aconitate ↓

trigonelline ↓
trimethylamine n-oxide ↓ ↓

uracil ↓
urea ↓

valine ↓ ↓ ↓
α-hydroxybutyrate ↑

α-hydroxyisobutyrate ↓
α-oxoglutarate ↓

β-hydroxyisobutyrate ↓
β-hydroxyisovalerate ↓

↑/↓ higher/lower level in the first group of each comparison.
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6. Translation of NMR-Based Metabolomics in Clinics

This review aimed at highlighting the relevant results obtained using metabolomics
by NMR in the BC setting and the possible role of this approach in the clinical practice.

BC is the most common type of cancer and the second most common cause of death in
women worldwide [128]. Early detection and prompt treatment has been associated with a
significantly improved prognosis observed over time in patients with BC.

The serum tumor markers, CEA and CA 15.3, are routinely used in therapy monitoring
and follow up of patients with BC; conversely, their sensitivity and specificity for early
diagnosis are poor [129]. Mammography is considered the gold standard in BC screening,
however it has a sensitivity of 86.9% with relevant variability depending on tissue density
and age [130].

Malignant tumors are characterized by increased gluconeogenesis, glycolysis, and
fat mobilization, and decreased protein synthesis. The results described in the previous
paragraphs show that these metabolic changes peculiar to malignant neoplastic change can
be detected by metabolomics. Metabolomics is able to discriminate between cancer and
normal breast tissue from the same patient with accuracy, sensitivity, and specificity around
90% [73]. Moreover, the metabolite analysis of blood and urine samples from BC patients
differs significantly from healthy controls [94,95,98,111,115,131,132]. This evidence offers
potential for the use of metabolomics, a minimally invasive technique, for early diagnosis
of BC in the general population [133].

BC is a heterogeneous disease with high variability in prognosis and response to
treatment driven by genetic, epigenetic, and phenotypic differences. The identification
of the mechanisms underpinning this heterogeneity support the development of new
drugs targeted to specific subgroup of patients, with the final aim to improve patient out-
come. Transcriptomics and proteomics have attempted to classify breast tumors according
to gene expression (intrinsic molecular subtypes—[134]) and protein expression (RPPA
subtypes—[135]). As shown in the previous sections of this review, metabolomics can pro-
vide additional information to these -omics, leading to a deeper tumor characterization. ER
and HER2 status are well estimated by metabolite analysis [79]. In addition, metabolomics
can identify metabolic clusters within breast tumors, not reflecting the intrinsic molecular
subtypes, but presenting significant differences in gene expression and protein expression
profiles, and unique susceptibility to metabolically targeted drugs [90].

Neoadjuvant chemotherapy is commonly used to treat BC, not only for downsiz-
ing tumors, but also for the potential to monitor individual drug response. Moreover,
in selected molecular subtypes, the achievement of a pCR after neoadjuvant treatment
correlates with excellent long-term outcomes and a lower risk of disease recurrence [136].
Currently HER2 positivity, triple negative subtype, high Ki67, and the presence of tumor
infiltrating lymphocytes (TILs) are the biomarkers most frequently used in recommending
neoadjuvant chemotherapy. Predicting response to chemotherapy can spare patients with
unresponsive disease from unnecessary side effects. Metabolomics was shown to play a
role in predicting response to NAC.

We have summarized in this review that metabolomic profiling of serum samples col-
lected before neoadjuvant chemotherapy was able to predict response in two small cohorts
of patients. The first cohort was unselected for molecular subtype [114], while the second
included only HER2-positive breast tumors [137]. The potential role of metabolomics in
predicting response to treatment was also evaluated on breast tumor tissue. This analysis
demonstrated that tumor metabolism changed significantly in response to neoadjuvant
treatment. Metabolomic analysis on post-treatment tissue samples was able to discrimi-
nate between patients who experienced disease response to treatment and those who had
non-responsive cancer. However, metabolomic analysis of pre-treatment tumor biopsies
was not predictive probability of response to chemotherapy [85–87].

Developing prognostic biomarkers is one of the focuses of metabolomics in BC. Clinico-
pathological features are used to predict the risk of recurrence or development of metastatic
disease. More recently, gene-expression assays such as Oncotype DX and Mammaprint
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have been introduced in clinical practice to refine risk estimation and prediction from
adjuvant chemotherapy. However, these assays are time consuming, expensive, and can
overestimate the risk of recurrence [138]. In addition, they are estimated on the primary
tumor tissue and cannot identify the presence or absence of occult micro-metastases.
Metabolomics can contribute to overcoming these limitations. As already detailed in the
above paragraphs, our group developed a metabolomic score that classified patients as
high or low risk of recurrent disease on the basis of the degree of metabolomic similarities
with MBC fingerprints [105,113]. A high metabolomic score correlates with increased risk
of recurrence and worse disease-free survival. Moreover, this metabolomic risk score can
be used to sub-stratify the three Oncotype DX risk categories [109].

However, how far are we now from adopting NMR-based metabolomics as a population-
wide screening method? The conceptual distance from the present situation to this ambitious
goal is still wide, but it can be bridged by working in two directions: first it is necessary to
standardize both the pre-analytical and the analytical procedures. Indeed, the biochemical
composition of biospecimens is affected by how samples are collected, stored, prepared,
and analyzed, and consequently differences in these steps can be particularly detrimental in
multi-center studies [139]. Specifications for pre-examination processes for metabolomics
in urine, venous blood serum and plasma have been already published by CEN (CEN/TS
16945:2016) [140]; however, these recommendations are still not universally employed.
Secondly, to increase the robustness and the reliability of the results already provided,
well-planned, large-scale, multicenter, population-based studies in which all heterogeneous
BC patient groups are well represented are needed. NMR-based metabolomics is a fast,
high-throughput, robust, and reproducible technique, thus moving from the analysis of
hundreds to thousands of samples is realistically an approachable target [19,141].

7. Conclusions

The NMR-based metabolomics studies presented in this review have demonstrated
that a metabolic signature of BC exists and can be detected in breast tissue, blood serum/
plasma, and urine. This approach has the potential to improve early diagnosis of BC,
to allow early prediction of recurrence and estimating prognosis, and to further stratify
the heterogenous spectra of BC patients and the individual response to (neo)adjuvant
treatments. Metabolomics by NMR can play a pivotal role in precision oncology and it is
mature enough to support, and eventually sub-stratify, the identification of risk groups
obtained by clinical and genomic tools already in use.
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