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Somatic mutations in mitochondrial genomes (mtDNA) accumulate exponentially during aging.  14 
Using single cell sequencing, we characterize the spectrum of age-accumulated mtDNA 15 
mutations in mouse and human liver and identify directional forces that accelerate the 16 
accumulation of mutations beyond the rate predicted by a neutral model. “Driver” mutations that 17 
give genomes a replicative advantage rose to high cellular abundance and carried along 18 
“passenger” mutations, some of which are deleterious.  In addition, alleles that alter mtDNA-19 
encoded proteins selectively increased in abundance overtime, strongly supporting the idea of a 20 
“destructive” selection that favors genomes lacking function. Overall, this combination of 21 
selective forces acting in hepatocytes promotes somatic accumulation of mutations in coding 22 
regions of mtDNA that are otherwise conserved in evolution. We propose that these selective 23 
processes could contribute to the population prevalence of mtDNA mutations, accelerate the 24 
course of heteroplasmic mitochondrial diseases and promote age-associated erosion of the 25 
mitochondrial genome. 26 
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 2 

Introduction  30 
Eukaryotic cells contain many copies of the mitochondrial genome (mtDNA). Normally all these 31 
copies are equivalent; however, largely due to replication errors or spontaneous base hydrolysis, 32 
mutations arise in individual copies creating heterogeneity or heteroplasmy1. To persist, a newly 33 
formed mutation must compete with the abundant copies of wild type genomes.  In the female 34 
germline of Drosophila and C. elegans a PINK1-dependent intracellular quality control 35 
mechanism puts mtDNA carrying deleterious mutations under a selective disadvantage thereby 36 
limiting propagation of detrimental mutations through generations2–5. 37 
 While mutational accumulation in somatic tissues does not necessarily affect evolutionary 38 
stability, sustaining mtDNA quality throughout life presents challenges.  An adult-human carries 39 
approximately 1016 mitochondrial genomes, and this huge population turns over such that about 40 
1,000 replacement-generations occur in a lifetime.  All possible simple mutations will occur 41 
billions of times and the resulting genomes will compete in an evolutionary process within our 42 
bodies6. Quality control could provide a purifying selection that would maintain mtDNA quality, 43 
however there is no evident purifying selection in adult Drosophila and cells of the human colon7,8. 44 
Furthermore, in multiple organisms, including mice and humans, mutant mtDNAs increase in 45 
abundance as organisms age9–11.  46 
 Mutations in mtDNA deleterious to oxidative phosphorylation can be masked by the co-47 
resident wild type genomes.  However, if levels of the deleterious allele rise above a critical 48 
threshold, usually in the range 60 to 90%, this protection wanes and symptoms result12.  Thus, 49 
mechanisms influencing the cellular abundance of mtDNA mutations dictate their impact.  50 
Levels of heteroplasmy fluctuate in cells, because mtDNA replication and segregation is random.  51 
Some simulations suggested that random chance might explain age-dependent accumulation of 52 
mtDNA mutations in somatic tissues13.  However, any form of selection will bias outcomes and 53 
influence whether mitochondrial mutations rise to become impactful.   54 
 Work in yeast and neurospora has identified mitochondrial genomes that enjoy a selective 55 
advantage despite having negative consequences on cellular function14,15.  These genomes 56 
acquired a replicative advantage that allowed them to out-compete the functional genomes.  Work 57 
in metazoan models, Drosophila and C. elegans, similarly identified mutations with a selfish 58 
replicative advantage despite a negative effect on the host organism16,17.  Likewise, biases in 59 
competition between diverged mammalian mtDNAs have been observed18. Additionally, in 60 
humans, specific mutations in the noncoding control region (NCR) climb to high abundance in 61 
particular tissues, apparently benefitting from a replicative advantage19. These findings suggest 62 
that a selfish ability to out replicate coresident genomes provides a general mechanism of selection.   63 
 Seminal work from the Shoubridge laboratory revealed directional selection for a specific 64 
mtDNA genotype in heteroplasmic mice that favored one genotype in one tissue and the opposite 65 
genotype in another20.  This result implicated tissue-specific nuclear genes as modifiers of the 66 
competition between two mitochondrial genomes21,22. This proposed nuclear influence is further 67 
supported by accumulation of specific mtDNA mutant alleles in the same tissues in different 68 
humans19, a genome-wide-association study in humans revealing nuclear loci associated with high 69 
abundance of particular mitochondrial alleles23, and direct genetic identification of nuclear 70 
modifiers of the competition between different mtDNAs in Drosophila24.  Although the 71 
mechanisms by which nuclear genes alter the competition among mitochondrial genomes are 72 
unknown, nuclear genes encoding mitochondrial replication and DNA binding functions have been 73 
implicated23,24, and many mitochondrial alleles impacted by nuclear genes occur in noncoding 74 
sequences that are thought to have roles in mitochondrial genome replication16,19.   75 
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 Evidence for purifying selection acting on mitochondrial genomes in the adult is limited. While 76 
little selection against a deleterious mutation was observed in adult Drosophila7, selection was 77 
observed upon introduction of additional mitochondrial stressors7,25. In humans heteroplasmic for 78 
a mutation in tRNA-leu(UUR), 3243A>G, the abundance of the mutant allele tends to decline in 79 
blood26,27 and its level is particularly low in T-cells, suggesting operation of negative selection in 80 
this population of cells28,29. 81 
 Although it might seem counter intuitive, evidence has been presented for selection that 82 
promotes an increase in abundance of deleterious mutations in the soma30–34. We refer to this 83 
proposed selection as “destructive” selection because it would raise the abundance of deleterious 84 
mutations to impactful levels, increase the population burden of mitochondrial disease alleles and 85 
enhance the severity of disease in heteroplasmic individuals. 86 
 Using single cell sequencing of liver cells from mice and humans, we have tested these ideas 87 
by analysis of the spectrum of mtDNA mutations that accumulate with age.  Rather than our 88 
starting expectation that purifying selection would act to limit accumulation of deleterious 89 
mutations, we found two selective processes that accelerated the accumulation of mtDNA 90 
mutations over time.  First, we identify “driver” alleles, which cause a rise in relative abundance 91 
of the affected genome within the cells in which they arise.  We show that linked (‘passenger”) 92 
mutations are carried along in selective sweeps that can promote the accumulation of deleterious 93 
mutations to high levels in individual cells.  Second, we found that, throughout the coding 94 
sequences of mtDNA, mutations that disrupt mitochondrial function preferentially increase in 95 
abundance, arguing for widespread action of destructive selection. We discuss how these findings 96 
help explain the bewildering variation in the progressive deterioration associated with 97 
heteroplasmic mitochondrial disease35. 98 
 99 
 100 
Results 101 
 102 
Numerous low abundance mutations accumulate with age in mice. 103 
In mice, de novo somatic mtDNA mutations seldom reach high abundance.  Most are present at 104 
levels much lower than 0.1% of the total mtDNA in a tissue, which is below detection capabilities 105 
of regular Illumina sequencing. We reasoned that each specific mtDNA mutation would occur in 106 
only a tiny fraction of the cells, but in these cells and their descendants, the relative abundance of 107 
the mutation would be much higher (~1,000-fold) than in the whole tissue and thus readily 108 
detectable with standard next-generation sequencing methods (Figure 1A). To extend sensitivity 109 
of allele detection, we developed high-throughput sequencing methods to profile mtDNA 110 
mutations in single cells (Figures 1B, S1 and S2).  111 
 To assay mtDNA sequences, we employed ATAC-seq36.  Although this technique is commonly 112 
used to assess chromatin accessibility, it also provides a simple workflow to generate libraries 113 
enriched in mtDNA sequences37,38 (Figures S1B and S2C). We coupled this with cell sorting, or 114 
the 10X Genomics platform, to analyze thousands of single cells (Figures 1D and 1E), and we 115 
increased our ability to profile multiple samples at once by using sample-specific barcodes adapted 116 
from a strategy previously introduced to allow multiplexing of samples in single-cell sequencing39 117 
(Figure S2; Conrad et al., in preparation). Figure 1C shows the results from 250 hepatocytes 118 
representing a larger data set from a 24-month-old C57BL6/J mouse. Most alleles are detected in 119 
less than one cell out of 1,000 (Figure 1D), and most alleles are present at very low abundance in 120 
the cell in which they are detected (Figure 1C and S3).  121 
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 To increase the depth of analysis, we profiled mtDNA mutations in heterozygous mutator mice 122 
that have a proofreading-deficient mtDNA polymerase40,41 (Figures S3C and S3D).  These mice 123 
exhibit error-prone replication, but lack the recessive premature aging phenotypes seen in the 124 
homozygote.  The mutator allele 125 
was introduced from the male to 126 
avoid a contribution of maternal 127 
mtDNA mutations. Compared to 128 
WT, the heterozygous mutator 129 
mice accumulated more distinct 130 
mtDNA mutations, nearly 131 
saturating mtDNA with distinct 132 
alleles (Figure 1E). As expected 133 
for a proof-reading defect, the 134 
increase in single nucleotide 135 
polymorphisms (SNPs) was 136 
especially high (169-fold), 137 
compared to insertions (4-fold) or 138 
deletions (15-fold) (young mice, 139 
Figure S3E). Like WT mice, most 140 
mutations in the heterozygous 141 
mutator mouse exhibited a low 142 
abundance in individual cells 143 
(Figure S3). Thus, once emerged, 144 
mutations behaved much as they 145 
do in WT mouse, and persisting 146 
wild type alleles ought to promote 147 
tolerance of the numerous low 148 
abundance mutations.  149 

 To facilitate interpretation of mutational spectra, we simulated accumulation of mtDNA 150 
mutations using population genetics software (SLiM42) and parameters informed by our data. This 151 
allowed us to gauge how variables such as time, mutation rate, selection and mtDNA copy number 152 
influence the cellular distribution of mutations (Figure 2). 153 

Figure 1. Single cell sequencing for profiling de novo somatic mtDNA mutations.  
(A) De novo somatic mtDNA mutations occur infrequently so that each allele is generally present in a few cells of a tissue.  
(B) Schematic of steps in plate-based and 10X-based single cell mtDNA sequencing to profile mtDNA mutations. 
(C) Spectrum of mtDNA mutations in 24-month-old C57BL6/J mouse liver. Distinct symbols indicate allele type, each 
occurrence is represented by a symbol indicating genomic position (X-axis) and abundance/percent of reads (Y-axis)(see 
Figure S1D for control) in the cell in which the mutation was recorded.  Data from 250 cells are aggregated in the plot.  
(D) Frequency of mutant alleles detection in the cells of 24-months-old C57BL6/J mouse liver. Most observed alleles are seen 
in one or few cells, but rare alleles are found in most or even all the cells.  
(E) The number of distinct mutant alleles identified increases with number of cells analyzed.  An analysis of 5,701cells from 
three 24-month-old heterozygous mutator mice detected 1,209,103 mutations representing 41,273 distinct alleles.  Analysis of 
3,195 cells from three similarly aged C57BL6/J WT mice detected 14,581 mutations representing 2,746 alleles. 
Data in C were generated with plate-based approach, data in D and E were generated with 10X-based approach. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 5 

 When a mutation first emerges, it is present as a single copy per cell amid about 10,000 copies 154 
of mtDNA in a mouse liver cell (Figure 2A) and is not detectable by our current methods.  In a 155 
neutral model, the abundance of newly emerged mutations will fluctuate over time with the only 156 
stable outcomes being loss or fixation.  Given that it starts as one out of 10,000 mtDNAs in mouse 157 
hepatocytes, the likelihood of fixation of the mutant allele is 1/10,000, with loss being by far the 158 
predominant fate43. Furthermore, simulations show that the rare mutations that rise to high 159 
abundance do so only after many cycles of turnover (Figures 2B-2D).  In an organism with a short 160 
lifespan, such as a mouse, somatic mutations emerging in a cell with high mtDNA copy number 161 
(e.g., ~10,000 in mouse hepatocytes) at a rate of 10-9 – 10-5 per base pair per replicative cycle and 162 
neutral behavior are exceedingly unlikely (probability <10-5) to climb above 10% (Figures 2E and 163 
2F).  Because mutations that impact function must climb to high abundance, we are especially 164 
interested in understanding what might promote the rise of some alleles.   165 

 We compared the spectrum of mtDNA mutations in livers of aged (24 months) and young (3 166 
months) C57BL6/J mice (Figures 1C, S3A and S3B). The number of detected mutant mtDNA 167 
alleles increased from 3 months to 24 months of age (Figure S3). Most alleles were present at low 168 
abundance at both ages, but not all. Alleles detected in many cells, but only in a single mouse, 169 

Figure 2.  Neutral de novo mtDNA mutations fluctuate in abundance but high abundance mutations are infrequent, and 
their likelihood increases slowly with age.   
(A) Droplet digital PCR (ddPCR) measurements of mtDNA copy number (blue points) in single hepatocytes from young and 
old mice and a middle-aged human. Boxes indicate the 25th and 75th percentiles, red line marks the median. The whiskers 
extend to the most extreme data points not considered outliers (conventionally defined as outside 1.5 times the interquartile 
range above the upper quartile and bellow the lower quartile; red points).  
(B) Simulation of mtDNA mutations accumulation.  MtDNAs were treated as individuals with a measured population size (n) 
in each cell, with other variables (blue) assigned.  See methods section for full description of the parameters.  
(C) Dynamics of accumulation of simulated neutral de novo somatic mutations. The plot tracks the fate of a generic allele as 
mutants emerge in many simulations. 234 mutations (colored lines) emerged in 250 simulations.  Most disappeared shortly after 
emergence.  Only 2 persisted at the end and only one reached an abundance of 10% (black dotted line).  Model parameters: 
mutation rate 3.16x10-8 per base pair per replication and 10,000 genomes per cell.  
(D, E, F) Simulations illustrating the impact of variables on the abundance distribution of mutations: time (number of 
generations) (D), mtDNA copy number (E) and mutation rate (F). Grey wedges highlight the difference in X-axis scale for D-
F panels. In the lifetime of a mouse (~80 replacement generations of mtDNA) chance accumulation of a mutation to critically 
high levels (usually 60%) in a cell with high mtDNA copy number is exceedingly unlikely. Models' parameters unless 
specified otherwise in the figure panel: 16,299bp genome, 10,000 genomes per cell, 3.16x10-8 mutation rate, 80 generations, 
10,000 simulated cells. 
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represent clonally expanded mutations that emerged early in development (e.g. one missense allele 170 
in Figure S3A). Alleles detected in many cells of all mice represent mutations at sites that are 171 
highly mutable.  These tend to be small indels in a homo-polymeric sequence (e.g. in the L origin 172 
of replication p.5172-5182). Additionally, large-scale deletions which have complex behaviors 173 
sometimes rising to high levels (Figures 1C and S3A-S3D). Beyond these special cases, many 174 
SNPs and simple indels also increase in level. Our analysis of this latter group describes a 175 
directional rise in abundance that provides evidence for two types of selective pressures, one that 176 
acts powerfully on very select alleles and one that has a weaker but widespread action. 177 
 178 
Mutant alleles differ in their behaviors  179 
Sites in mtDNA are expected to differ in mutation frequency and the mutant alleles are likely to 180 
have different impacts on selection. These allele specific features impact their “behavior” in single 181 
cell data. High mutability has its predominant impact on the number of cells in which the mutation 182 
occurs while positive selection has its predominant impact on the abundance of the mutation in the 183 
cells in which it occurs.  We use two approaches to relate allele behavior to selection and to 184 
mutation rate. 185 
 Graphing the average cellular abundance of an allele (AAA) in cells where it is detected versus 186 
the number of cells (C#) in which it is found produces an AAA vs C# scatter plot (Figure 3A) that 187 
gives an overview of allele-behavior. Alleles with a high mutation rate occur in more cells, with 188 
increasing mutation rates approximating a rising curve to the right on a AAA vs C# plot (simulation 189 
in Figure 3B, and grey line in Figure 3A). In contrast, alleles that are primarily influenced by 190 
positive selection rise to a high level of cellular abundance and cluster toward the top of the AAA 191 
vs C# plot (e.g. simulation in Figure 3C, and NCR alleles in Figure 3A). While statistical variance 192 
results in shifts in positions of a given allele, comparison of AAA vs C# plots from different mice 193 
show that alleles clustering in one locale on one AAA vs C# plot tend to cluster in a similar locale 194 
in an independent AAA vs C# plot (Figures 3D-3G) indicating that position on an AAA vs C# plot 195 
reflects allele specific behavior. 196 
 If, instead of just using average allele abundance, we record the abundance of a specific allele 197 
in each cell in which it is detected, we get an abundance distribution providing more detailed 198 
information.  Simulations of alleles having no selection (neutral), but different mutation 199 
frequencies give a spectrum of distributions distinct from those produced when different selective 200 
forces are assigned to alleles (Figure S4A).  Making the simplifying assumption that mutation rates 201 
and selective forces are constants for each allele, we used simulations to test parameter 202 
combinations to identify, at least approximately, the mutation rates and strength of selection for 203 
different alleles (Figures S4, 4C and 4D). 204 
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 205 

Figure 3.  Allele behavior on AAA vs C# plots.   
(A) An AAA vs C# scatter plot showing the average cellular abundance of each mutant allele (AAA) in the positive cells (Y-
axis), versus the number of cells (C#) in which the allele was detected (X-axis) with histograms: abundance distribution of 
data points (right) and distribution of data points versus cell number (top). Data shown for 3,195 cells from three 24-month-
old C57BL6/J mouse livers. Symbols are as in Figure 1C except that alleles in the NCR and OriL are colored with cyan and 
purple, respectively. Grey line shows expected location of neutral mutations emerging with varying rates.   
(B, C) Simulations showing positions of neutral alleles emerging with differing mutation rates (B) or alleles differing in both 
mutation rate, and selection coefficient (C) on AAA vs C# plots. Mutation rate and selection coefficient indicated by color 
and size scales, respectively. Simulation parameters: 10,000 genomes/cell, 80 generations, 3,195 cells.  
(D, E) Position on an AAA vs C# plot is an allele specific property. (D) Schematic (top panel) shows four alleles (colored) 
that were detected in three matched mice (symbols). Distances between the three data points on the AAA vs C# plots for each 
mouse were measured to obtain an average mean separation (MS) as a measure of the correlation in the positions in 
independent mice. The bottom panel shows an AAA vs C# plot for alleles detected in all three mice and the alleles are colored 
according to the measured MS. (E) Unrelated alleles show a high mean separation.  For each allele we measured the distance 
to all other unrelated alleles (schematic, top panel) and plotted the same alleles as shown in D colored according to the 
unrelated mean separation (bottom panel). For this analysis data from each cell were subsampled to 100,000 reads mapping 
to mtDNA and equal number of cells from each mouse was analyzed (n = 400 cells).  
(F, G) A group of non-synonymous (NS) alleles in one locale in an AAA vs C# plot from one 24-month-old C57BL6/J mouse 
(F) shows biased localization in AAA vs C# plot of another 24-month-old mouse from an independent experiment (G). 
Data presented in this figure were generated with 10X-based approach.  
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Mutations conferring a selfish advantage 206 
Certain NCR alleles were detected 207 
repeatedly, typically at high cellular 208 
abundance (Figures 3, 4A, 4C and 209 
S5).  They were frequent in aged but 210 
rare in young mice (Figures 4A, 4B, 211 
S3 and S5). A search of parameter 212 
space showed that adjustments of 213 
mutation rate alone could not 214 
recapitulate the cellular 215 
distributions of this group of NCR 216 
mutations, while inclusion of a 217 
competitive advantage for the 218 
mutant genome resulted in 219 
distributions that closely resemble 220 
the data (Figures 4D and S4B).  221 
These findings suggest that many of 222 
the recurrent and especially 223 
abundant NCR mutations conferred 224 
a competitive advantage to the 225 
mitochondrial genomes on which 226 
they emerged.   227 

Simulations of mutation levels in 228 
bulk tissue show that accumulation 229 
of neutral alleles is linear, while 230 
accumulation of positively selected 231 
alleles follows a power function 232 

Figure 4. Specific mutations in NCR confer a competitive advantage.  
(A) The NCR region of 24-month-old WT mice is characterized by mutations that reach exceptionally high cellular abundance.  
Alleles present above 20% in at least 1 cell in at least 3 out 5 mice are highlighted with differently colored vertical bars.  
(B) The exceptional alleles (colored bars as in A) were not detected in four 3-month-old WT mice suggesting that they come to 
predominate with age.   
(C) Abundance distribution of highlighted NCR mutations among liver cells of 24-month-old WT mice.  
(D) Simulations show that varied mutation frequencies (lower panel) fail to mimic the abundance distributions shown in (C), 
while inclusion of positive selective coefficients (specified in the figure, upper panel) yields distributions resembling the data. 
Note the difference in Y-axis scale. 
(E) Simulations (n=5) ran for different numbers of cycles (proportional to age) show linear tissue level accumulation of a neutral 
allele.  Mutation rate = 3.16x10-5/base pair/cycle, and mtDNA copy number = 10,000.  
(F) Simulations (n=5) show that a positively selected (coefficient = +0.175) mutant allele accumulates at the whole tissue level 
at an accelerating rate. Mutation rate = 3.16x10-8/ base pair/generation, and mtDNA copy number = 10,000.  
(G, H) Accumulation dynamics of the indicated driver alleles as measured by allele-specific ddPCR assays in bulk liver of WT 
mice. N = 5 mice per time point for each allele tested.  
(E-H) Box plots show simulated or ddPCR data. Red lines show linear (E) and power (F-H) function fitting, R2= 0.999, 0.945, 
0.834 and 0.617, respectively. 
(I) Driver mutations are localized in the NCR (blue) in association with sequences thought to govern mtDNA replication: the 
termination associated sequence (TAS); the conserved sequence boxes (CSB1-3); the light strand promoter (LSP) and the heavy 
strand promoter (HSP).  The LSP initiates an RNA (arrow) that primes DNA synthesis within the CSBs.  DNA synthesis 
continues to a pause point in TAS and can be continued to promote a synthesis of new heavy strand.  The allele labeled in cyan 
showed selective amplification in both WT and heterozygous mutator mice, whereas, at least using stringent criteria to identify 
drivers, the alleles labeled in green were only seen as a driver in the WT, and alleles labeled in orange were only seen as drivers 
in the heterozygous mutator line.  
Data in A-D were generated with 10X-based approach.  
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(Figures 4E and 4F). We developed ddPCR assays to measure abundance of 15468A>G and 233 
16012G>A mutations in bulk mouse liver and found that tissue-level abundance of these alleles 234 
increased with age in WT mouse liver closely following a power function (Figures 4G and 4H). 235 
These observations further suggest that the recurrent mutations in the NCR are positively selected.  236 
 The positively selected alleles are clustered in the NCR region in mouse and associated with 237 
DNA sequences contributing to replication (Figure 4I). As was previously argued from such 238 
associations in human19, we suggest that the positive selection results from a replicative advantage 239 
incurred by the mutant genomes.   240 
 241 
Passenger mutations.  242 
Individual cells carrying positively selected NCR-mutations occasionally had other mutations at 243 
similarly high levels (Figure 5). We suggest that in such cases a positively selected NCR allele 244 
emerged on a genome with an existing mutation. The NCR allele then acted as a “driver” 245 
promoting the relative abundance of 246 
itself and of the linked “passenger” 247 
allele.  In two of the three cells 248 
shown in Figure 5, the NCR-249 
mutation and its passenger were 250 
present at >50% of total mtDNAs, 251 
and therefore must co-reside on at 252 
least some of the mtDNAs (Figures 253 
5A and 5C). In the third example, 254 
linkage of one of several candidate 255 
passengers is documented by 256 
individual sequencing reads 257 
recording both the NCR mutation 258 
and the nearby passenger (Figure 259 
5G). Since associations between a 260 
driver and particular passenger are 261 
exceedingly rare, examining the 262 
abundance of “driver” and 263 
“passenger” alleles in other 264 
sequenced cells should show their 265 
independent behavior (Figures 5B, 266 
5D and 5F).  Driver alleles were 267 
found at abundant levels in multiple 268 

Figure 5. Passenger mutations piggyback on mitochondrial genomes with a competitive advantage.   
(A) A mtDNA mutation spectrum of a single liver cell from 24-month-old WT mouse showing two alleles at high abundance.  
(B) Abundance distribution of 12040T>C and 16276CTA>C mutations among all sequenced cells.  
(C) A mtDNA mutation spectrum of a single liver cell from 24-month-old heterozygous mutator mouse.  
(D) Abundance distribution of 4938A>G, 10620T>C and 16293T>C mutations among all sequenced cells of the sample. 
(E) A mtDNA mutation spectrum of a single liver cell from 24-month-old heterozygous mutator mouse.   
(F) Abundance distribution of 15417T>A and 15468A>G mutations among all sequenced cells.  
(G) Raw reads showing linkage of 15417T>A and 15468A>G mutations. Grey lines represent individual reads. Dark grey regions 
represent overlap of two opposing reads of the same DNA fragment. Green and orange bars mark mismatch between the read and 
reference sequences.  
See Figure 1C for the correspondence of symbols and allele type. Data in A, B, E, F and G were generated with 10X-based 
approach, data in C and D were generated with plate-based approach.  
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cells indicating an autonomous advantage. In contrast, when the “passenger” allele occurred on its 269 
own, it was found at low abundance. This is consistent with a conclusion that in cells presented in 270 
Figure 5 the “passenger” alleles gained an advantage by a chance association with a driver allele.  271 
Notably, associations of apparently deleterious mutations with a driver mutation led to their rise 272 
in abundance to levels that could impair cellular metabolism (Figures 5A and 5C).  273 
 274 
Destructive selection.  275 
Since synonymous (S) mutations don’t interfere with protein function and nonsynonymous (NS) 276 
mutations can be disruptive, low ratios of accumulated NS to S mutations reflect elimination of 277 
NS alleles by purifying selection. Among closely related mammalian species, the mitochondrial 278 
coding sequences had an NS/S of 0.0588 indicating evolutionary conservation of protein 279 
function44.  In contrast, mutant mtDNA alleles detected in aged mouse livers exhibited an average 280 
NS/S of 3.3, higher than expected even in the absence of purifying selection (Figure 6A). Similarly, 281 
the ratio of all detected nonsense (STOP) alleles to all detected S alleles was higher than expected 282 
(Figure 6B). These data suggest 283 
not only a lack of effective 284 
purifying selection as measured by 285 
the NS/S ratio of all detected 286 
alleles, but action of a selective 287 
force favoring NS mutations.   288 
 When they first arise, mutations 289 
have not yet experienced selection, 290 
and their NS/S ought to 291 
approximate the expectation for 292 
random mutagenesis. NS 293 
mutations will directionally 294 
increase in abundance if they have 295 
a selective advantage.  We divided 296 
our data into abundance categories 297 
and determined the NS/S ratio for 298 
the different groupings.  For 299 
Figure 6. Excess of deleterious mtDNA mutations in aged mouse liver.  
(A, B) NS/S (A) and STOP/S (B) of all detected mutant alleles determined for six 24-month-old WT mouse livers (red lines) 
exceeds expected spread of NS/S and STOP/S (histograms) based on a 1,000 sets of simulations of mouse mtDNA random 
mutagenesis. The NS/S (0.0588) seen in evolution was taken from Pesole et al.44 (green line). Note that NS/S for three mice 
were very close and hence merged in a single thick line on the NS/S plot. Similarly, STOP/S ratios for two mice (0.2302 and 
0.2299) are indistinguishable on the STOP/S plot. 
(C, D) NS mutations (C) and STOP mutations (D) selectively increase in abundance.  Mean NS/S or STOP/S for mutations that 
fall in specified abundance intervals (log2 scale) from 6 mice (red line) or from 6 sets of 1,000 simulations of neutral behavior 
(grey line) with standard deviations.  Model parameters: 10,000 genomes per cell, 3.16x10-8 mutation emergence rate, 80 
generations. Mean values were computed when at least 3 out of 6 samples or simulations had finite NS/S ratios. Data within 
each abundance interval were tested against neutral model using two-sample t-test, ns – not significant, * - p<0.05, ** - p<0.01, 
*** - p<0.001. 
(E) Local NS/S for each NS allele on AAA vs C# plot shows clustering of NS alleles with similar ratios in 24-month-old WT 
mice. Data are the same as in Figure 3A, only NS alleles are plotted, N= 3 mice, 3,195 cells, 1,300 NS alleles. 
(F) Comparison of non-mutated (conserved) mtDNA sites in evolution (top bar) and in aging (bottom bar). Number of non-
mutated sites within 30bp windows along mtDNA genome was plotted as a heatmap with yellow colors representing conserved 
regions and grey color marking windows in which all sites were changed in the data set. Middle bar represents mtDNA map. 
The list of species used for analysis of non-mutated sites in evolution is reported in Table S2 (n = 120). Aging data are from 
24-month-old heterozygous mutator mice (n = 3 mice, 5,701 cells), which were also used in Figure 1E and S3.   
Data in this figure were generated with 10X-based approach.  
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mutations present at low levels (0.3 – 0.6%), the NS/S ratio was close to random expectation (2.16 300 
vs 1.9) but increased among mutations present at higher abundance. In contrast, simulated neutral 301 
mutations maintained a constant NS/S ratio across all abundance levels (Figure 6C). STOP/S also 302 
increased in the higher abundance bins (Figure 6D). This suggests that while mutations emerge 303 
randomly, NS and STOP mutations experience a selective advantage. 304 
 While clustering of positively selected NCR alleles at high abundance was obvious in AAA vs 305 
C# plots (Figure 3A), clustering of NS alleles was not. To better visualize the behavior of NS 306 
alleles on AAA vs C# plot we determined a local NS/S for every NS allele for three 24-month-old 307 
mice (see methods).  As can be seen in Figure 6E, this approach showed clustering of high scoring 308 
NS alleles up and to the right of most NS alleles suggesting that select NS mutations are more 309 
strongly positively selected.  310 
 In contrast to our conclusion here, an increase in NS/S is often taken as an indication that a 311 
change in protein function has an advantage, often termed positive selection. Positive selection 312 
acts on rare alleles that improve fitness while mutant alleles reducing fitness will be subjected to 313 
negative/purifying selection.  In contrast, if loss of function has an advantage, there should be no 314 
purifying selection for gene function.  To obtain a genome wide view of the influence of function 315 
on selection, we compared the distribution of age-accumulated mutations across the genome to 316 
the distribution of changes occurring during evolution (Figure 6F). To illustrate a wide range in 317 
conservation, we divided the mouse mtDNA reference sequence into 30 base-pair windows and 318 
scored each window according to the number of base pairs that never change across a data set.  319 
In a comparison of 120 distinct mammalian species, many windows have numerous conserved 320 
sites (white, yellow and orange-colored bands), and few windows (grey) in which all 30 base 321 
pairs change.  In contrast, age-associated somatic mutations were widely distributed sparing few 322 
coding sites.  The lack of evident conserved coding sequences in the aging data suggests a lack 323 
of selection for the function of coding sequences and is consistent with widespread destructive 324 
selection.  325 
 Notably, only the NCR region shows strong conservation during aging (Figure 6F). Because 326 
this region is involved in replication of the genome, we suggest that mutations at many sites in this 327 
region compromise replication and incur a competitive disadvantage while at a few NCR sites 328 
mutations are associated with the improved replicative competition of driver alleles. 329 
 330 
Selective forces in human liver.  331 
To test whether the same selective forces we observed in mice operate in human and how they 332 
play out on a longer time scale, we profiled mtDNA mutations in human hepatocytes from six de-333 
identified individuals of known ages (Figures 7A and S6A). As expected for a long-lived organism 334 
(Figures 2C and 2D), many more mutations accumulated to higher levels in aged human samples 335 
than in mice (Figures 1C, 7A and S6A). This is especially true for the oldest (81-year-old) human 336 
sample (Figures S6A and S6B) in which many mutations have abundances near 100% (most of 337 
these are likely fixed and fall short of 100% abundance due to measurement inaccuracies; Figure 338 
S2 and methods). Two time-dependent mechanisms are expected to contribute to high abundance 339 
of alleles: random drift and positive selection (Figures S6C and S6D).   340 
 As was the case with mouse data (Figure 3A), plotting the data in the AAA vs C# format shows 341 
enrichment of NCR alleles at high abundance (Figures 7B and S7), and the distribution of cellular 342 
abundance of these alleles in individual cells matches that expected for driver alleles (Figures 7A, 343 
7C and 7D). Furthermore, examination of mutations in single cells shows evidence of 344 
driver/passenger linkage as we described in mouse (Figures 7E and 7F). We found variation in the 345 
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drivers present in different individuals: in all we identified 18 driver alleles with high confidence 346 
among the six samples analyzed that lie within the NCR region. Several of these were previously 347 
identified as highly abundant alleles that occurred in a tissue-specific pattern in multiple 348 
individuals (Table S3)19,30,45.  In accord with Samuels et al.19, we conclude that, a 349 
selfish/replicative advantage contributes to positive selection of NCR mutations in human liver as 350 
we saw in mouse.  Furthermore, our findings agree with previous work in finding individual-to-351 
individual variation in alleles exhibiting driver behavior (Table S3). 352 
 We next examined the data for signs of destructive selection. As in mice, the NS/S ratio 353 
increased among mutations present at higher abundance (Figure 7G). The STOP/S ratio behaved 354 
in a similar fashion (Figure 7H). We also examined the local NS/S ratios of all NS mutations alleles 355 
in AAA vs C# plots and again, as in 356 
mice, we found a cluster of NS 357 
alleles with an exceptionally high 358 
local NS/S ratio (Figure 7I). These 359 
data reveal that destructive 360 
selection operates in human liver in 361 
agreement with our data in mice 362 
and with a previous report30.  363 
Notably, over the lifetimes of the 364 
human samples, even a weak 365 
continuous positive selection 366 
drives alleles to fixation, yet the 367 
rise of the NS/S and STOP/S ratios 368 
reaches a plateau (Figures 7G and 369 
7H) and NS alleles cluster at lower 370 
abundance levels than the driver 371 
alleles on AAA vs C# plots 372 
(Figures 7B and 7I).  We suggest 373 
that the coefficient of selection 374 
imparted by destructive selection 375 
declines with increasing 376 
abundance, perhaps due to rising 377 
opposition from some form of 378 
purifying selection.  379 

Figure 7. Selective forces impact competition among mtDNAs in human liver. 
(A) A spectrum of mtDNA mutations identified in 41-year-old human hepatocytes. Note that annotation of mouse and human 
mtDNAs differ with linearization of the human genome splitting the NCR in two. 

(B) AAA vs C# plot of 41-year-old human hepatocytes. Blue asterisk marks the 3243A>G allele.   
(C) A spectrum of mutations in the NCR of 4,942 hepatocytes from the 41-year-old human also shown in A. Colored bars 
indicate sites that meet our criteria for positively selected driver alleles. Mutations were classified as drivers if the allele was 
detected in at least 10 cells at levels above 50%, and there were more cells with >50% abundance than cells with <50% 
abundance. 

(D) Abundance-distribution of the driver mutations identified in NCR of 41-year-old human hepatocytes.  
(E) An example of a driver-passenger pair in a single liver cell from 41-year-old human. 
(F) Abundance distribution of the driver and the passenger alleles shown in (E) among the 4,942 sequenced cells of the sample. 
(G, H) The NS/S and STOP/S rises with increase in mutations abundance. 
(I)  Local NS/S for each NS allele on AAA vs C# plot for 41-year-old human hepatocytes shown in (B). 
Data in this figure were generated with 10X-based approach. 
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 Mutations that enjoy a positive selection and yet are detrimental to function are expected to 380 
climb to unusual abundance in the human population and to make a dominant contribution to 381 
mitochondrial disease.  Indeed, a well-known SNP (3243A>G) that is a common cause of 382 
mitochondrial disease satisfied our criteria for a driver allele in at least one individual (Figure 7B 383 
and Table S3) and showed a consistently high cellular abundance in our other human samples 384 
(Figure S7).  Furthermore, the distributions of 3243A>G abundance in individual cells resemble 385 
those produced by inclusion of a positive selection coefficient (Figure S7E and S7F). The nature 386 
of this allele and its position on AAA vs C# plots (Figures S7A-S7D) could be consistent with 387 
either an especially strong destructive selection, and/or a replicative drive (see Discussion).   388 
 Together, these findings show that the same selective processes we identified in mice impact 389 
mtDNA in human hepatocytes and that time greatly magnifies the level of mutational 390 
accumulation. 391 
 392 
 393 
Discussion 394 
Single cell sequencing of mtDNA from mammalian liver revealed how selection affects the 395 
accumulation of mitochondrial mutations with age.  We expected that purifying selection would 396 
limit accumulation of mutations in two ways: mitochondrial quality control would target 397 
mitochondria carrying deleterious mutations for elimination, and death of metabolically 398 
compromised cells would eliminate cells with a heavy burden of mtDNA mutations.  In contrast 399 
to a purifying action of selection, we found two pathways that accelerate the accumulation of 400 
mitochondrial mutations with age beyond that predicted for random mutation and neutral (non-401 
selective) propagation, in mouse and in human hepatocytes.  Here, we consider why these 402 
processes exist even though they appear to undermine fitness. We also discuss how they could 403 
impact age-associated accumulation of mtDNA mutations and influence the genetics of 404 
mitochondrial disease.    405 
 406 
Accumulation of mitochondrial mutations in the absence of selection is not so bad   407 
Mutation-rate is a major determinant of how many mutant alleles emerge (Figure 1E), but it does 408 
not promote a rise in abundance of these alleles after they emerge. Even alleles with such high 409 
emergence rates that the mutation occurs multiple times in the same cell seldom rise to high cellular 410 
abundance (e.g., small indels in homopolymeric stretches; Figures 1C and 3A). Importantly, a cell 411 
can tolerate many mtDNA mutations at low abundance since other genomes can provide wild type 412 
function. Thus, mechanisms promoting a rise in the cellular abundance of mutations render these 413 
mutations impactful.  Our single cell analysis of mtDNA mutations shows that only a few of the 414 
many possible alleles, those that benefit from positive selection, rise to high levels in hepatocytes. 415 
Consequently, we suggest that the types of selection we have characterized provides major routes 416 
to the emergence of cellular phenotypes, and hence will promote the progressive worsening of 417 
symptoms in patients with mitochondrial disease and enhance the deterioration of the 418 
mitochondrial genome with age.   419 
 While we conclude that neutral propagation of mtDNA alone cannot account for the observed 420 
age-dependent accumulation of mtDNA mutations in hepatocytes, we note that in other cell types, 421 
especially rapidly turning over cells with few copies of mtDNA, chance variation will be more 422 
impactful (Figure 2E).  It will be important to understand the interaction of neutral variation with 423 
selective forces in various circumstances.    424 
 425 
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A replicative advantage creates “selfish” selection 426 
In mouse liver, we identified a prevalent class of mtDNA alleles that promote an increase in the 427 
relative abundance of affected genomes within the cells in which they are detected. Unlike other 428 
abundant mutations, such as maternally transmitted or early emerging mutations, these selfishly 429 
amplifying alleles appear in all mice in an inbred population, directionally increase in cellular 430 
abundance with age, and cluster in non-coding genomic sequences associated with replication.  We 431 
refer to these alleles as driver mutations, because we find that they “drive” other linked mutations 432 
or “passengers” to high abundance.   433 
 We identified similar driver alleles in human hepatocytes.  Since driver alleles achieve a high 434 
tissue abundance, it is not surprising that our list of human driver alleles overlaps with previously 435 
described mutations (Table S3). Notably, Samuels et al.19 described “recurrent, tissue-specific 436 
mutations” that occurred at high abundance in specific tissues of unrelated aged-individuals. 437 
Because these alleles were clustered in noncoding sequences adjacent to the origin of heavy strand 438 
replication and its regulatory sequences, it was argued that these mutations give genomes a 439 
replicative advantage in specific tissues.  Our work further supports this and another past report30 440 
in arguing for positive selection by a replicative advantage.  This conclusion is in line with findings 441 
made in model systems from fungi to primates where mtDNAs have been found that preferentially 442 
replicate even when burdened with mutations deleterious to function14–18.   443 
 444 
Modulation of mitochondrial replicative drive by nuclear genes   445 
Samuels et al.19 emphasized the tissue specificity of some members of his group of recurrent 446 
mutations.  A similar tissue-specificity of competition between two mitochondrial genomes in a 447 
heteroplasmic mouse led Jenuth et al.20 to argue for “the existence of unknown, tissue-specific 448 
nuclear genes important in the interaction between the nuclear and mitochondrial genomes”. If 449 
differences in nuclear gene expression alters competition between mitochondrial genomes in 450 
different tissues, so might differences in the nuclear genome between individuals, a possibility 451 
supported by genetic demonstration of numerous nuclear modifiers of this competition in 452 
Drosophila24.  Indeed, human drivers vary from individual to individual as expected for an 453 
influence of genetic background.  For example, Samuels et al.19 found the 16093C>T allele at high 454 
levels in multiple tissues in only one of two individuals, and we saw this allele as a strong driver 455 
mutation in the hepatocytes of one individual but not in the hepatocytes of five others (Table S3).  456 
Similarly, other alleles show varied tissue distributions and sporadic variations from individual to 457 
individual30,45 (Table S3). Additionally, while we found the same driver alleles repeatedly in 458 
different individuals in an inbred strain of mice (C57BL6/J), among the sets of drivers we 459 
identified in two different mouse strains (C57BL6/J and mutator), only one driver was shared 460 
(Figure 4I). 461 
 Nuclear genes that promote replication of one mitochondrial genotype would disfavor other 462 
genotypes.  Thus, a genome that is positively selected in one genetic background, can be negatively 463 
selected in another24. The extraordinary distinctions in the abundance of 16093C>T in different 464 
individuals is likely to include negative selection in individuals in which the allele was 465 
undetectable (Table S3). Finally, differences in nuclear gene expression associated with 466 
developmental stage, age, stress and diet are likely to alter the strength of selection for or against 467 
mtDNA loci sensitive to nuclear modification. Thus, while we have identified 18 driver alleles in 468 
human hepatocytes from six individuals (Table S3), a survey of additional tissues, individuals, and 469 
various life conditions is predicted to uncover many more.  470 
 471 
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A nexus of genetic conflict    472 
It is reasonable to assume that the NCR sequence controlling replication has been optimized over 473 
evolutionary time scales, in which case one would not expect to find driver alleles. However, 474 
evolution would select for the optimal replicator only in the germline, and somatic tissue-specific 475 
selection can “re-optimize” the NCR for replication in different somatic tissues.  Since “re-476 
optimization” of the NCR is the result of alterations of nuclear gene-action, change in the nuclear 477 
genome or changes in nuclear gene expression will give new driver alleles a selective advantage. 478 
Outbreeding, which changes the genetic background, will widely trigger selection to re-optimize 479 
mtDNA for replication, including in the germline.  Driver alleles, while not detrimental in and of 480 
themselves, will amplify linked alleles, even if these passenger alleles are detrimental to the 481 
organism.  Thus, by triggering selection for new drivers, outbreeding could promote germline 482 
trapping of passenger alleles, and such events could promote a heritable amplification of a disease 483 
allele. Given that such a process can be detrimental, we suggest that outbreeding-promoted 484 
selection for drivers might also be playing a role in the “hybrid breakdown” phenomenon which 485 
is suppressed by matching of maternal genotype and mtDNA46,47.   486 
 487 
Destructive selection    488 
Previous studies have revealed an unexpected enrichment in NS alleles in mtDNA in the soma of 489 
D. melanogaster33, and humans30. Additionally, use of whole genome sequence data to identify 490 
population levels of mtDNA heteroplasmy also detected a selective rise in NS alleles in the 491 
elderly48.  These studies suggest that alleles disrupting coding gene function have a selective 492 
advantage. We also see age-associated enrichment of NS alleles in mouse and human. The extent 493 
of the rise in abundance of different NS alleles varies, consistent with allele-specific impacts on 494 
gene function. But, given that such selection is ultimately destructive, why would such a process 495 
exist?  496 
 While there are several proposals for why defective mitochondrial genomes might have a 497 
selective advantage33,49, evidence from studies in C. elegans supports previous suggestions that 498 
use of feedback repression to control replication of mtDNA can give defective genomes an 499 
advantage50–52. According to these suggestions, mutations damaging function would allow the 500 
mutant genomes to avoid surveillance and the resulting feedback repression of their replication. 501 
Some strains of C. elegans harbor a large deletion mutant of mtDNA at high copy number17.  502 
Studies of genes impacting its copy number revealed the importance of ATFS-1. ATFS-1 is both 503 
a nuclear transcription factor regulating genes impacting the mitochondria and a mitochondrial 504 
protein where, among other things, it promotes mtDNA replication53,54. Functional mitochondrial 505 
genomes promote ATFS-1 degradation in the mitochondria, a negative-feedback on mtDNA 506 
replication that is not engaged by the deleted genome.  It was found that mutational inactivation 507 
of this feedback reduced the copy number of the deleted genome relative to normal genomes, 508 
arguing that the defective genome obtained at least part of its advantage by evading this feedback 509 
loop.  Based on these findings, we suggest that evolutionary fitness benefits of feedback repression 510 
to control mtDNA copy number in the soma have outweighed the costs incurred by promoting 511 
accumulation of defective mitochondrial genomes.   512 
 Whatever its mechanism, destructive selection acts widely to increase the overall NS/S ratio of 513 
somatic mtDNA mutations.  Its actions, if unopposed by other selective actions, would promote a 514 
relentless rise in mutations that are deleterious to function within individual cells in which such 515 
mutations occur.    516 
 517 
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Is there a covert version of purifying selection?   518 
Purifying selection is a form of negative selection that eliminates mutations compromising fitness 519 
of the host organism.  Its action during evolution results in conservation of important coding 520 
sequences.  Our comparison of sequences conserved in evolution to sequences conserved in 521 
hepatocytes during mouse aging detected no obvious signature of purifying selection acting on 522 
coding sequences during aging (Figure 6F). Furthermore, we found that in mice the NS/S ratio 523 
increased progressively with the abundance of the surveyed alleles, arguing for continuous 524 
destructive selection at least in the early stages of accumulation. Despite these findings, it remains 525 
possible that purifying selection also occurs and is beneficial. Destructive selection acts in 526 
opposition to purifying selection.  Consequently, if both operate, the dominant one will prevail, 527 
thus masking the other in our analysis of the net outcome.    528 
 C. elegans offers a view of the interplay of destructive selection and purifying selection and 529 
how this genetic conflict plays out at the whole animal level55.  When propagated as small 530 
populations, C. elegans lineages accumulate high levels of deleted mtDNAs despite costs to 531 
fitness. These lineages persist with a relatively stable mix of intact and deleted genomes, 532 
apparently by balancing a destructive selection promoting amplification of the deleted genome by 533 
a fitness based purifying selection that continuously culls individuals with an especially high 534 
burden of the defective genome.  We suggest that a process parallel to this occurs in the soma in 535 
mammals.  We propose that, as detrimental alleles increase in cellular abundance, they 536 
compromise cell fitness leading to growth arrest or cell elimination, resulting in a counteracting 537 
purifying selection that stalls the climb in abundance of deleterious mutations. Our data suggest 538 
that this “flipping point” occurs at a relatively high abundance of the mutant alleles when they 539 
compromise cell function.  The balance of destructive selection and purifying selection, whether 540 
in the case of C. elegans deletions or the proposed balance in somatic tissues, comes at a fitness 541 
cost — either organisms or cells are eliminated.  Accordingly, destructive selection is, at its root, 542 
a detrimental influence.   543 
 The conservation of sequence in the NCR region seen during aging is likely due to a different 544 
kind of negative selection.  Mutations in this region are likely to compromise replication and suffer 545 
a strong competitive disadvantage.  Only rare alleles will improve replication to generate a “driver” 546 
with a selective advantage.  Accordingly, sequences in this region are likely to be under especially 547 
strong selective pressures, whether negative or positive.   548 
 549 
Selection could promote inheritance and accumulation of mtDNA disease alleles   550 
The prevailing class of inherited mtDNA disease alleles are transmitted in combination with wild-551 
type genomes. Such heteroplasmic alleles can circulate in the population without clinically 552 
identified symptoms and can sporadically rise in abundance to levels that produce disease. Even 553 
when the disease allele is detected, unpredictable shifts in abundance and varied tissue 554 
distributions bedevil accurate prognoses of transmission and of disease severity. A better 555 
understanding of the contributions of selection to disease allele propagation is likely to improve 556 
clinical management and perhaps lead to the discovery of approaches to limit disease allele levels 557 
in the population and disease severity in affected individuals. 558 
 There are many mtDNA-associated mitochondrial disease alleles, but one, 3243A>G, is 559 
responsible for more cases of mitochondrial disease than any other identified mtDNA single 560 
nucleotide change56. The 3243A>G mutation disrupts the gene TM-TL1 which encodes tRNA-561 
leu(UUR)57, as well as altering a sequence required for binding of a transcriptional terminator58.  562 
The mutation reduces mitochondrial translation59, which is thought to be responsible for the 563 
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deleterious consequences of the allele.  However, other mutant alleles share these molecular 564 
defects yet lack the high incidence of 3243A>G mutation, leaving us without an explanation for 565 
its disproportionate prevalence.  566 
 There have been many investigations of 3243A>G abundance in patients and their relatives.  In 567 
these cases, affected individuals inherited multiple copies of the mutant genome which were 568 
present in a large fraction of their cells.  Our study is unusual in examining behavior of this 569 
mutation as it emerges in somatic tissues de novo. In total, we analyzed 25,997 hepatocytes from 570 
6 individuals and detected the 3243A>G allele in 72 cells (~0.3%).  All samples included cells 571 
with an unusually high accumulation indicating positive selection of the 3243A>G allele (Figure 572 
S7), which is consistent with a previous observation51.  Despite an origin from a somatic mutation, 573 
3243A>G on average reached 50% abundance in these rare positive cells which is close to the 574 
upper range reported for patients with severe mitochondrial disease and translates into a staggering 575 
~2,500-fold increase in abundance from the initiating event.  We propose that the positive selection 576 
that we see following somatic emergence of this mutation contributes to both the population 577 
prevalence of 3243A>G allele as well as to disease progression in affected individuals. 578 
 Studies of 3243A>G in patients show particularly high levels of the allele in muscle (e.g 77%28), 579 
and especially low levels in peripheral blood mononuclear cells.  Extensive analyses of 3243A>G 580 
in patient peripheral blood have shown an age dependent decline suggesting purifying/negative 581 
selection particularly in the lymphoid lineage26–28. A detailed recent study using single cell 582 
analyses suggests that purifying selection in the lymphoid lineage is not limited to 3243A>G allele 583 
as the levels of mtDNA carrying large deletions is also reduced with patient’s age in these cells60.  584 
While these studies reveal complexities in the selective events influencing mitochondrial 585 
mutations in different cell types, we suggest that, in at least some cell types, newly emerged 586 
3243G>A mutations are carried to high cellular abundance by positive selection as we have seen 587 
in hepatocytes.  Importantly, even if it were only to occur in some genetic backgrounds, positive 588 
selection of 3243A>G in the germline61 could account for its prevalence and differential selection 589 
in different tissues could account for the diversity of disease presentations.  590 
  591 
Limitations of this study 592 
While our study argues strongly that the net outcome of the actions of selection in the livers of 593 
mice and humans promotes the accumulation of mutant mtDNAs beyond what is expected from 594 
neutral models, there have been several reports of the potential for purifying selection to do the 595 
opposite62.  There is evidence that cell death and/or reduced proliferation due to compromised 596 
mitochondrial function can select against cells with a high burden of dysfunctional mitochondrial 597 
genomes29,60, and that quality control eliminates defective mitochondria either by autophagy25,63 598 
or mitocytosis64, or selectively promotes biogenesis of functional mitochondria3,5. Importantly, the 599 
net outcome we report reveals the dominant selection, leaving open the possibility that purifying 600 
selection has a modulating action in liver, and perhaps a dominating influence in other tissues or 601 
developmental stages.  Both possibilities could be explored by assessing whether mutations 602 
compromising quality control mechanisms impact mtDNA integrity in liver and other tissues 603 
during aging.  604 
 Unfortunately, detailing the accumulation of mutations with age highlights some interesting 605 
“why” questions without answering them. Is the extraordinary germline conservation of mtDNA 606 
entirely due to selection for fitness, or do quality control filters influence mammalian transmission 607 
of mtDNA mutations?  And given the existence of quality control, why doesn’t it effectively 608 
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safeguard mtDNA during aging? Might it be that evolutionary pressure for elite performance in 609 
the adult is not compatible with conditions needed for quality control of mtDNA genes?    610 
  611 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 19 

Acknowledgments 612 
We are grateful to Saul Villeda for sharing aged mice and support with establishment of mutator 613 
mouse colony. We thank UCSF LARC for help with mouse husbandry.  We thank Spyros 614 
Darmanis (CZ Biohub) for sharing index primer sequences for mtATAC library preparation. We 615 
thank Eric Chow and UCSF CAT for providing access to basic and cutting-edge equipment, 616 
support and advice, and Steven Deluca for the suggestion to use ATAC-seq for mtDNA profiling. 617 
Sequencing was performed at the UCSF CAT, supported by UCSF PBBR, RRP IMIA, and NIH 618 
1S10OD028511-01 grants. This study was supported in part by the Liver Cell Isolation, Analysis 619 
& Immunology Core of the UCSF Liver Center (P30DK026743) and HDFCCC Laboratory for 620 
Cell Analysis Shared Resource Facility through a grant from NIH (P30CA082103).  Portions of 621 
this work were performed on the Wynton HPC Co-Op cluster which is supported by UCSF 622 
research faculty and UCSF institutional funds.  We thank the UCSF Wynton team for their 623 
ongoing technical support of the Wynton environment.  This work was funded by Larry L. 624 
Hillblom Foundation (2018-A-028-FEL to E.K., 2019-A-011-NET to P.OF. and 2019 John S. 625 
Spice award in Aging to E.K.), UCSF Program for Breakthrough Biomedical Research (2019-626 
2020 New Frontier Research Award to P.OF and Saul Villeda and 2021-2022 Postdoc 627 
Independent Research Grant to E.K.), CNV Stiftung to E.K., NIH R35GM136324 to P.OF. and 628 
NIH R33CA247744 to Z.J.G. We thank Sandy Johnson for critical reading of the manuscript. 629 
 630 
Author contributions  631 
E.K. and P.H.O'F. conceived the project, designed experiments, interpreted the results, and 632 
secured funding. E.K. and D.N.C. adapted MULTI-ATAC and 10X scATAC for profiling 633 
mtDNA sequences and performed the initial set of experiments employing the 10X-based 634 
approach. E.K. performed all other experiments and data analysis. Z.J.G. provided expertise for 635 
MULTI-ATAC and 10X scATAC. E.K and P.H.O’F. wrote the manuscript with input from all 636 
authors. 637 
 638 
Declaration of interests  639 
Z.J.G. is an author on a patent on MULTI-seq technology, and it has been licensed to Millipore. 640 
 641 
Supplemental information 642 
Document S1. Figures S1–S7 and legends. 643 
Tables S1-S3. Excel files containing additional data too large to fit in a PDF.  644 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 20 

References 645 
 646 
1. Kennedy, S.R., Salk, J.J., Schmitt, M.W., and Loeb, L.A. (2013). Ultra-Sensitive 647 

Sequencing Reveals an Age-Related Increase in Somatic Mitochondrial Mutations That 648 
Are Inconsistent with Oxidative Damage. PLoS Genet. 9. 649 
https://doi.org/10.1371/journal.pgen.1003794. 650 

2. Ma, H., Xu, H., and O’Farrell, P.H. (2014). Transmission of mitochondrial mutations and 651 
action of purifying selection in Drosophila melanogaster. Nat. Genet. 46, 393–397. 652 
https://doi.org/10.1038/ng.2919. 653 

3. Hill, J.H., Chen, Z., and Xu, H. (2014). Selective propagation of functional mitochondrial 654 
DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. 655 
Nat. Genet. 46, 389–392. https://doi.org/10.1038/ng.2920. 656 

4. Schwartz, A.Z.A., Tsyba, N., Abdu, Y., Patel, M.R., and Nance, J. (2022). Independent 657 
regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans 658 
primordial germ cells. Elife 11, 1–28. https://doi.org/10.7554/eLife.80396. 659 

5. Zhang, Y., Wang, Z., and Liu, Y. (2019). PINK1 Inhibits Local Protein Synthesis to Limit 660 
Transmission of Deleterious Mitochondrial DNA Mutations Article PINK1 Inhibits Local 661 
Protein Synthesis to Limit Transmission of Deleterious Mitochondrial DNA Mutations. 662 
Mol. Cell, 1–11. https://doi.org/10.1016/j.molcel.2019.01.013. 663 

6. Haig, D. (2016). Intracellular evolution of mitochondrial DNA (mtDNA) and the tragedy 664 
of the cytoplasmic commons. BioEssays 38, 549–555. 665 
https://doi.org/10.1002/bies.201600003. 666 

7. Tsai, P.I., Korotkevich, E., and O’Farrell, P.H. (2022). Mitigation of age-dependent 667 
accumulation of defective mitochondrial genomes. Proc. Natl. Acad. Sci. U. S. A. 119, 1–668 
9. https://doi.org/10.1073/pnas.2119009119. 669 

8. Greaves, L.C., Elson, J.L., Nooteboom, M., Grady, J.P., Taylor, G.A., Taylor, R.W., 670 
Mathers, J.C., Kirkwood, T.B.L., and Turnbull, D.M. (2012). Comparison of 671 
Mitochondrial Mutation Spectra in Ageing Human Colonic Epithelium and Disease: 672 
Absence of Evidence for Purifying Selection in Somatic Mitochondrial DNA Point 673 
Mutations. PLoS Genet. 8. https://doi.org/10.1371/journal.pgen.1003082. 674 

9. Cortopassi, G.A., and Arnheim, N. (1990). Detection of a specific mitochondrial DNA 675 
deletion in tissues of older humans. Nucleic Acids Res. 18, 6927–6933. 676 
https://doi.org/10.1093/nar/18.23.6927. 677 

10. Vermulst, M., Bielas, J.H., Kujoth, G.C., Ladiges, W.C., Rabinovitch, P.S., Prolla, T.A., 678 
and Loeb, L.A. (2007). Mitochondrial point mutations do not limit the natural lifespan of 679 
mice. Nat. Genet. 39, 540–543. https://doi.org/10.1038/ng1988. 680 

11. Wang, E., Wong, A., and Cortopassi, G. (1997). The rate of mitochondrial mutagenesis is 681 
faster in mice than humans. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 377, 157–166. 682 
https://doi.org/10.1016/S0027-5107(97)00091-2. 683 

12. Rossignol, R., Faustin, B., Rocher, C., Malgat, M., Mazat, J.P., and Letellier, T. (2003). 684 
Mitochondrial threshold effects. Biochem. J. 370, 751–762. 685 
https://doi.org/10.1042/BJ20021594. 686 

13. Elson, J.L., Samuels, D.C., Turnbull, D.M., and Chinnery, P.F. (2001). Random 687 
Intracellular Drift Explains the Clonal Expansion of Mitochondrial DNA Mutations with 688 
Age. Am. J. Hum. Genet. 68, 802–806. https://doi.org/10.1086/318801. 689 

14. Ephrussi, B., de Margerie-Hottinguer, H., and Roman, H. (1955). Suppressiveness: a New 690 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 21 

Factor in the Genetic Determinism of the Synthesis of Respiratory Enzymes in Yeast. 691 
Proc. Natl. Acad. Sci. 41, 1065–1071. https://doi.org/10.1073/pnas.41.12.1065. 692 

15. Pittenger, T.H. (1956). Synergism of Two Cytoplasmically Inherited Mutants in 693 
Neurospora Crassa. Proc. Natl. Acad. Sci. 42, 747–752. 694 
https://doi.org/10.1073/pnas.42.10.747. 695 

16. Ma, H., and O’Farrell, P.H. (2016). Selfish drive can trump function when animal 696 
mitochondrial genomes compete. Nat. Genet. 48, 798–802. 697 
https://doi.org/10.1038/ng.3587. 698 

17. Gitschlag, B.L., Kirby, C.S., Samuels, D.C., Gangula, R.D., Mallal, S.A., and Patel, M.R. 699 
(2016). Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in 700 
C. elegans. Cell Metab. 24, 91–103. https://doi.org/10.1016/j.cmet.2016.06.008. 701 

18. Moraes, C.T., Kenyon, L., and Hao, H. (1999). Mechanisms of human mitochondrial 702 
DNA maintenance: The determining role of primary sequence and length over function. 703 
Mol. Biol. Cell 10, 3345–3356. https://doi.org/10.1091/mbc.10.10.3345. 704 

19. Samuels, D.C., Li, C., Li, B., Song, Z., Torstenson, E., Boyd Clay, H., Rokas, A., 705 
Thornton-Wells, T.A., Moore, J.H., Hughes, T.M., et al. (2013). Recurrent Tissue-Specific 706 
mtDNA Mutations Are Common in Humans. PLoS Genet. 9. 707 
https://doi.org/10.1371/journal.pgen.1003929. 708 

20. Jenuth, J.P., Peterson, A.C., and Shoubridge, E.A. (1997). Tissue-specific selection for 709 
different mtDNA genotypes in heteroplasmic mice. Nat. Genet. 16, 93–95. 710 
https://doi.org/10.1038/ng0597-93. 711 

21. Battersby, B.J., Loredo-Osti, J.C., and Shoubridge, E.A. (2003). Nuclear genetic control 712 
of mitochondrial DNA segregation. Nat. Genet. 33, 183–186. 713 
https://doi.org/10.1038/ng1073. 714 

22. Jokinen, R., Marttinen, P., Sandell, H.K., Manninen, T., Teerenhovi, H., Wai, T., Teoli, 715 
D., Loredo-Osti, J.C., Shoubridge, E.A., and Battersby, B.J. (2010). Gimap3 regulates 716 
tissue-specific mitochondrial DNA segregation. PLoS Genet. 6, 1–9. 717 
https://doi.org/10.1371/journal.pgen.1001161. 718 

23. Gupta, R., Kanai, M., Durham, T.J., Tsuo, K., McCoy, J.G., Kotrys, A. V., Zhou, W., 719 
Chinnery, P.F., Karczewski, K.J., Calvo, S.E., et al. (2023). Nuclear genetic control of 720 
mtDNA copy number and heteroplasmy in humans. Nature 620, 839–848. 721 
https://doi.org/10.1038/s41586-023-06426-5. 722 

24. Chiang, A.C.Y., McCartney, E., O’Farrell, P.H., and Ma, H. (2019). A Genome-wide 723 
Screen Reveals that Reducing Mitochondrial DNA Polymerase Can Promote Elimination 724 
of Deleterious Mitochondrial Mutations. Curr. Biol. 29, 4330-4336.e3. 725 
https://doi.org/10.1016/j.cub.2019.10.060. 726 

25. Kandul, N.P., Zhang, T., Hay, B.A., and Guo, M. (2016). Selective removal of deletion-727 
bearing mitochondrial DNA in heteroplasmic Drosophila. Nat. Commun. 7, 1–11. 728 
https://doi.org/10.1038/ncomms13100. 729 

26. Rahman, S., Poulton, J., Marchington, D., and Suomalainen, A. (2001). Decrease of 3243 730 
A→G mtDNA mutation from blood in MELAS syndrome: A longitudinal study. Am. J. 731 
Hum. Genet. 68, 238–240. https://doi.org/10.1086/316930. 732 

27. Grady, J.P., Pickett, S.J., Ng, Y.S., Alston, C.L., Blakely, E.L., Hardy, S.A., Feeney, C.L., 733 
Bright, A.A., Schaefer, A.M., Gorman, G.S., et al. (2018).  mt DNA heteroplasmy level 734 
and copy number indicate disease burden in m.3243A>G mitochondrial disease . EMBO 735 
Mol. Med. 10, 1–13. https://doi.org/10.15252/emmm.201708262. 736 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 22 

28. Walker, M.A., Lareau, C.A., Ludwig, L.S., Karaa, A., Sankaran, V.G., Regev, A., and 737 
Mootha, V.K. (2020). Purifying Selection against Pathogenic Mitochondrial DNA in 738 
Human T Cells. N. Engl. J. Med. 383, 1556–1563. 739 
https://doi.org/10.1056/nejmoa2001265. 740 

29. Walker, M.A., Li, S., Livak, K.J., Karaa, A., Wu, C.J., and Mootha, V.K. (2024). T cell 741 
activation contributes to purifying selection against the MELAS-associated m.3243A>G 742 
pathogenic variant in blood. J. Inherit. Metab. Dis. 47, 757–765. 743 
https://doi.org/10.1002/jimd.12726. 744 

30. Li, M., Schröder, R., Ni, S., Madea, B., and Stoneking, M. (2015). Extensive tissue-related 745 
and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations. 746 
Proc. Natl. Acad. Sci. 112, 2491–2496. https://doi.org/10.1073/pnas.1419651112. 747 

31. Lin, Y.F., Schulz, A.M., Pellegrino, M.W., Lu, Y., Shaham, S., and Haynes, C.M. (2016). 748 
Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial 749 
unfolded protein response. Nature 533, 416–419. https://doi.org/10.1038/nature17989. 750 

32. Fleischmann, Z., Cote-L’Heureux, A., Franco, M., Oreshkov, S., Annis, S., Khrapko, M., 751 
Aidlen, D., Popadin, K., Woods, D.C., Tilly, J.L., et al. (2024). Reanalysis of mtDNA 752 
mutations of human primordial germ cells (PGCs) reveals NUMT contamination and 753 
suggests that selection in PGCs may be positive. Mitochondrion 74, 1–6. 754 
https://doi.org/10.1016/j.mito.2023.10.005. 755 

33. Samstag, C.L., Hoekstra, J.G., Huang, C.H., Chaisson, M.J., Youle, R.J., Kennedy, S.R., 756 
and Pallanck, L.J. (2018). Deleterious mitochondrial DNA point mutations are 757 
overrepresented in Drosophila expressing a proofreading-defective DNA polymerase γ. 758 
PLoS Genet. 14, 1–27. https://doi.org/10.1371/journal.pgen.1007805. 759 

34. Herbst, A., Johnson, C.J., Hynes, K., McKenzie, D., and Aiken, J.M. (2013). 760 
Mitochondrial Biogenesis Drives a Vicious Cycle of Metabolic Insufficiency and 761 
Mitochondrial DNA Deletion Mutation Accumulation in Aged Rat Skeletal Muscle 762 
Fibers. PLoS One 8. https://doi.org/10.1371/journal.pone.0059006. 763 

35. Poulton, J., Finsterer, J., and Yu-Wai-man, P. (2017). Genetic counselling for maternally 764 
inherited mitochondrial disorders. Mol. Diagnosis Ther. 21, 419–429. 765 
https://doi.org/10.1007/s40291-017-0279-7. 766 

36. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). 767 
Transposition of native chromatin for fast and sensitive epigenomic profiling of open 768 
chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218. 769 
https://doi.org/10.1038/nmeth.2688. 770 

37. Ludwig, L.S., Lareau, C.A., Ulirsch, J.C., Christian, E., Muus, C., Li, L.H., Pelka, K., Ge, 771 
W., Oren, Y., Brack, A., et al. (2019). Lineage Tracing in Humans Enabled by 772 
Mitochondrial Mutations and Single-Cell Genomics. Cell 176, 1325-1339.e22. 773 
https://doi.org/10.1016/j.cell.2019.01.022. 774 

38. Lareau, C.A., Ludwig, L.S., Muus, C., Gohil, S.H., Zhao, T., Chiang, Z., Pelka, K., 775 
Verboon, J.M., Luo, W., Christian, E., et al. (2021). Massively parallel single-cell 776 
mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39, 451–461. 777 
https://doi.org/10.1038/s41587-020-0645-6. 778 

39. McGinnis, C.S., Patterson, D.M., Winkler, J., Conrad, D.N., Hein, M.Y., Srivastava, V., 779 
Hu, J.L., Murrow, L.M., Weissman, J.S., Werb, Z., et al. (2019). MULTI-seq: sample 780 
multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 781 
619–626. https://doi.org/10.1038/s41592-019-0433-8. 782 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 23 

40. Kujoth, C.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, 783 
T., Seo, A.Y., Sullivan, R., Jobling, W.A., et al. (2005). Mitochondrial DNA mutations, 784 
oxidative stress, and apoptosis in mammalian aging. Science (80-. ). 309, 481–484. 785 
https://doi.org/10.1126/science.1112125. 786 

41. Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, 787 
C.E., Bohlooly-Y, M., Gidloef, S., Oldfors, A., Wibom, R., et al. (2004). Premature aging 788 
in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423. 789 
https://doi.org/10.1038/nature02544.1. 790 

42. Haller, B.C., and Messer, P.W. (2019). SLiM 3: Forward Genetic Simulations Beyond the 791 
Wright-Fisher Model. Mol. Biol. Evol. 36, 632–637. 792 
https://doi.org/10.1093/molbev/msy228. 793 

43. Solignac, M., Génermont, J., Monnerot, M., and Mounolou, J.C. (1984). Genetics of 794 
mitochondria in Drosophila: mtDNA inheritance in heteroplasmic strains of D. mauritiana. 795 
MGG Mol. Gen. Genet. 197, 183–188. https://doi.org/10.1007/BF00330961. 796 

44. Pesole, G., Gissi, C., De Chirico, A., and Saccone, C. (1999). Nucleotide substitution rate 797 
of mammalian mitochondrial genomes. J. Mol. Evol. 48, 427–434. 798 
https://doi.org/10.1007/PL00006487. 799 

45. He, Y., Wu, J., Dressman, D.C., Iacobuzio-Donahue, C., Markowitz, S.D., Velculescu, 800 
V.E., Diaz, L.A., Kinzler, K.W., Vogelstein, B., and Papadopoulos, N. (2010). 801 
Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 802 
610–614. https://doi.org/10.1038/nature08802. 803 

46. Ellison, C.K., and Burton, R.S. (2008). Interpopulation hybrid breakdown maps to the 804 
mitochondrial genome. Evolution (N. Y). 62, 631–638. https://doi.org/10.1111/j.1558-805 
5646.2007.00305.x. 806 

47. Healy, T.M., and Burton, R.S. (2023). Genetic incompatibilities in reciprocal hybrids 807 
between populations of Tigriopus californicus with low to moderate mitochondrial 808 
sequence divergence. Evolution 77, 2100–2108. https://doi.org/10.1093/evolut/qpad122. 809 

48. Liu, C., Fetterman, J.L., Qian, Y., Sun, X., Blackwell, T.W., Pitsillides, A., Cade, B.E., 810 
Wang, H., Raffield, L.M., Lange, L.A., et al. (2021). Presence and transmission of 811 
mitochondrial heteroplasmic mutations in human populations of European and African 812 
ancestry. Mitochondrion 60, 33–42. https://doi.org/10.1016/j.mito.2021.07.004. 813 

49. De Grey, A.D.N.J. (1997). A proposed refinement of the mitochondrial free radical theory 814 
of aging. BioEssays 19, 161–166. https://doi.org/10.1002/bies.950190211. 815 

50. Shoubridge, E.A., Karpati, G., and Hastings, K.E.M. (1990). Deletion mutants are 816 
functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber 817 
segments in mitochondrial disease. Cell 62, 43–49. https://doi.org/10.1016/0092-818 
8674(90)90238-A. 819 

51. Yoneda, M., Chomyn, A., Martinuzzi, A., Hurko, O., and Attardi, G. (1992). Marked 820 
replicative advantage of human mtDNA carrying a point mutation that causes the MELAS 821 
encephalomyopathy. Proc. Natl. Acad. Sci. 89, 11164–11168. 822 
https://doi.org/10.1073/pnas.89.23.11164. 823 

52. Burt, A., and Trivers, R. (2006). Genes in Conflict (Harvard University Press) 824 
https://doi.org/10.4159/9780674029118. 825 

53. Melber, A., and Haynes, C.M. (2018). UPR mt regulation and output: A stress response 826 
mediated by mitochondrial-nuclear communication. Cell Res. 28, 281–295. 827 
https://doi.org/10.1038/cr.2018.16. 828 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 24 

54. Yang, Q., Liu, P., Anderson, N.S., Shpilka, T., Du, Y.G., Naresh, N.U., Li, R., Zhu, L.J., 829 
Luk, K., Lavelle, J., et al. (2022). LONP-1 and ATFS-1 sustain deleterious heteroplasmy 830 
by promoting mtDNA replication in dysfunctional mitochondria. Nat. Cell Biol. 24, 181–831 
193. https://doi.org/10.1038/s41556-021-00840-5. 832 

55. Dubie, J.J., Katju, V., and Bergthorsson, U. (2024). Dissecting the sequential evolution of 833 
a selfish mitochondrial genome in Caenorhabditis elegans. Heredity (Edinb)., 1–12. 834 
https://doi.org/10.1038/s41437-024-00704-2. 835 

56. Gorman, G.S., Schaefer, A.M., Ng, Y., Gomez, N., Blakely, E.L., Alston, C.L., Feeney, 836 
C., Horvath, R., Yu-Wai-Man, P., Chinnery, P.F., et al. (2015). Prevalence of nuclear and 837 
mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 838 
753–759. https://doi.org/10.1002/ana.24362. 839 

57. Goto, Y., Nonaka, L., and Hora, S. (1990). A mutation in the tRNALeu(UUR) gene 840 
associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 841 
651–653. 842 

58. Yakubovskaya, E., Mejia, E., Byrnes, J., Hambardjieva, E., and Garcia-Diaz, M. (2010). 843 
Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial 844 
transcription. Cell 141, 982–993. https://doi.org/10.1016/j.cell.2010.05.018. 845 

59. Kirino, Y., Yasukawa, T., Ohta, S., Akira, S., Ishihara, K., Watanabe, K., and Suzuki, T. 846 
(2004). Codon-specific translational defect caused by a wobble modification deficiency in 847 
mutant tRNA from a human mitochondrial disease. Proc. Natl. Acad. Sci. U. S. A. 101, 848 
15070–15075. https://doi.org/10.1073/pnas.0405173101. 849 

60. Lareau, C.A., Dubois, S.M., Buquicchio, F.A., Hsieh, Y.H., Garg, K., Kautz, P., Nitsch, 850 
L., Praktiknjo, S.D., Maschmeyer, P., Verboon, J.M., et al. (2023). Single-cell multi-omics 851 
of mitochondrial DNA disorders reveals dynamics of purifying selection across human 852 
immune cells. Nat. Genet. 55, 1198–1209. https://doi.org/10.1038/s41588-023-01433-8. 853 

61. Franco, M., Pickett, S.J., Fleischmann, Z., Khrapko, M., Cote-L’Heureux, A., Aidlen, D., 854 
Stein, D., Markuzon, N., Popadin, K., Braverman, M., et al. (2022). Dynamics of the most 855 
common pathogenic mtDNA variant m.3243A > G demonstrate frequency-dependency in 856 
blood and positive selection in the germline. Hum. Mol. Genet. 31, 4075–4086. 857 
https://doi.org/10.1093/hmg/ddac149. 858 

62. Youle, R.J. (2019). Mitochondria—Striking a balance between host and endosymbiont. 859 
Science (80-. ). 365. https://doi.org/10.1126/science.aaw9855. 860 

63. Suen, D.F., Narendra, D.P., Tanaka, A., Manfredi, G., and Youle, R.J. (2010). Parkin 861 
overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid 862 
cells. Proc. Natl. Acad. Sci. U. S. A. 107, 11835–11840. 863 
https://doi.org/10.1073/pnas.0914569107. 864 

64. Jiao, H., Jiang, D., Hu, X., Du, W., Ji, L., Yang, Y., Li, X., Sho, T., Wang, X., Li, Y., et 865 
al. (2021). Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 866 
184, 2896-2910.e13. https://doi.org/10.1016/j.cell.2021.04.027. 867 

  868 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 25 

Material and Methods 869 
 870 
Animals 871 
C57BL6/J, mtPWD (C57BL/6J-mtPWD/Ph/ForeJ) and mutator (B6.129S7(Cg)-Polgtm1Prol/J) mice 872 
were obtained from The Jackson Laboratory. Heterozygous mutator males were bred with 873 
C57BL6/J females to produce heterozygous progeny for experiments. Mice were housed in a 874 
specific pathogen-free facility with a standard 12-h light/dark cycle at the University of 875 
California, San Francisco, and given food and water ad libitum. Experiments were conducted in 876 
accordance with institutional guidelines approved by the University of California, San Francisco 877 
Institutional Animal Care and Use Committee.  878 
 879 
ddPCR 880 
Genomic DNA was isolated from 25mg of liver tissue using DNeasy Blood and Tissue kit 881 
(Qiagen, 69506) according to manufacturer’s guidelines. Primers and probes were synthesized 882 
by Integrated DNA Technologies (IDT) and their sequences are provided in Table S1. WT 883 
C57BL6/J mtDNA sequence (p15196 – p136) was cloned into pGEM-T (Promega, A1360) 884 
vector and used as pure WT control. A 500bp fragment of mouse mtDNA containing 15468A>G 885 
or 16012G>A mutations was synthesized by IDT and cloned in pUCIDT-AMP vector to use as 886 
positive controls. The ddPCR reaction mixture contained ddPCR Super Mix for Probes (Bio-887 
Rad, 1863024), 900 nM of forward primer, 900 nM of reverse primer, 250 nM of WT probe, 250 888 
nM of mutant probe, 0.5 μL of restriction enzyme (HaeIII; NEB, R0108L) and template DNA. 889 
Template DNA concentration was adjusted to be below 3,500 mtDNA copies per microliter of 890 
ddPCR reaction mixture. 20 μL of the reaction mixture and 70 μL of oil (Bio-Rad, 1863005) 891 
were loaded on a DG8 cartridge (Bio-Rad, 1864007) for droplet generation on QX100 Droplet 892 
Generator (Bio-Rad). 40 μL of droplet emulsion were transferred to 96-well plate (Bio-Rad, 893 
12001925) and sealed with a pierceable foil (Bio-Rad, 1814040) using PX1 PCR plate sealer 894 
(Bio-Rad). The optimized PCR thermal cycling was conducted on a conventional PCR machine 895 
(Bio-Rad, C1000 Touch). Thermocycling conditions for the 15468A>G assay: 10 min 896 
polymerase activation at 95°C; 40 cycles of denaturation at 94°C for 30 s, ramp rate 1°C/s, and 897 
combined annealing-extension at 54°C for 2 min, ramp rate 1°C/s; incubation at 98°C for 10 898 
min. Thermocycling condition for the 16012G>A assay: 10 min polymerase activation at 95°C; 899 
45 cycles of denaturation at 94 °C for 30 s, ramp rate 1°C/s, and combined annealing-extension 900 
at 52°C for 2 min, ramp rate 1°C/s; incubation at 98°C for 10 min. After thermocycling, samples 901 
were cooled to room temperature and analyzed on the QX100/200 Droplet Reader (Bio-Rad). 902 
Results were analyzed with QuantaSoft Analysis Pro v.1.0.596 software (Bio-Rad). 903 
 904 
Hepatocytes isolation 905 
Mouse hepatocytes were isolated by a two-step perfusion technique. Briefly, mouse was 906 
anesthetized by isoflurane (Piramal Critical Care). Mouse liver and heart were exposed by 907 
opening the abdomen and cutting the diaphragm away. The portal vein was cut and immediately 908 
the inferior vena cava was cannulated via the right atrium with a 22-gauge catheter (Exel 909 
International, 26746). Liver was perfused with liver perfusion medium (Gibco, 17701038) for 3 910 
minutes and then with liver digest medium (Gibco, 17703034) for 7 minutes using a peristaltic 911 
pump (Gilson, Minipuls 3). Pump was set to 4.4 ml per minute and solutions were kept at 37°C. 912 
After perfusion the liver was dissected out, placed in a petri dish with hepatocyte plating medium 913 
(DME H21 [high glucose, UCSF Cell Culture Facility # CCFAA005-066R02] supplemented 914 
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with 1x PenStrep solution [UCSF Cell Culture Facility # CCFGK004-066M02], 1x Insulin-915 
Transferrin-Selenium solution [GIBCO #41400-045] and 5% Fetal Bovine Serum [UCSF Cell 916 
Culture Facility # CCFAP002-061J02]) and cut into small pieces. Liver fragments were passed 917 
through a sterile piece of gauze. Hepatocytes were separated from non-parenchymal cells by 918 
centrifugation through 50% isotonic Percoll (Fisher# NC9256155) solution in HAMS/DMEM ( 1 919 
packet Hams F12 [GIBCO # 21700-075], 1 packet DMEM [GIBCO # 12800-017], 4.875g 920 
sodium bicarbonate, 20mL of a 1M HEPES pH 7.4, 20mL of a 100X Pen/Strep solution, 2L 921 
H2O) at 169g for 15 min. Isolated hepatocytes were used immediately for FACS or frozen in 922 
BAMBANKER (GC LYMPHOTEC, CS-02-001) and stored at -80oC for future experiments.  923 

Cryopreserved deidentified human hepatocytes were purchased from Xenotech, Lonza or 924 
UCSF Liver Center. 925 
 926 
Cell sorting 927 
Isolated hepatocytes were resuspended in PBS, stained with 5 μg/mL propidium iodide 928 
(Invitrogen, P1304MP) to mark dead cells, and kept on ice until FACS. Right before sorting 929 
hepatocytes were strained through 35-40 um cell strainer. Sorting was performed on FACSAriaII 930 
(Becton Dickinson) using 100 um nozzle. Instrument was calibrated using 23.9 um beads 931 
(Spherotech, ACURFP2.5-250-5). Single hepatocytes were sorted into 384-well plates (Bio-Rad, 932 
HSP3801 or 4titude, 4ti-0384) containing 0.45 ul of TD buffer (10 mM TrisHCl pH 8.0, 5 mM 933 
MgCl2, 10% dimethylformamide). Due to their large size and extreme size variability, sorting of 934 
mouse hepatocytes was inefficient and only 40-60% of wells contained cells while the rest of the 935 
wells were empty. Human hepatocytes sorting efficiency was 90%. One column of a plate was 936 
left empty to serve as a negative control. Immediately after sorting plates with hepatocytes were 937 
sealed with foil (Bio-Rad, MSF1001 or 4titude, 4ti-0500FL), briefly centrifuged, frozen on dry 938 
ice and stored at -80oC.  939 
 940 
Single cell ddPCR 941 
mtDNA copy number was quantified using single cell ddPCR. Frozen 384-well plate with single 942 
hepatocytes in 0.45 ul of TD buffer was thawed on ice. To lyse hepatocytes 0.45 ul of solution 943 
containing 10mM Tris-HCl pH 8.0, 50mM NaCl, 40 ng/uL MS2 RNA, 0.4% SDS and proteinase 944 
K (8U/ml; NEB, P8107S) was added to 96 wells of the plate with help of acoustic liquid handler 945 
Echo 525 (Beckman Coulter). Wells without cells were used to prepare positive and negative 946 
controls. gBlock encompassing amplified sequence was synthesized by IDT and used as a 947 
positive control. After lysis and control solutions were added, the plate was sealed, briefly 948 
centrifuged, and incubated at 50°C for 15 min and then at 95°C for 10 min. After lysis, ddPCR 949 
master mix (ddPCR Super Mix for Probes (Bio-Rad, 1863024), 250 nM of forward primer, 250 950 
nM of reverse primer, 250 nM of probe, 0.5 μL of restriction enzyme [AluI (NEB, R0137L) for 951 
mouse assay and HaeIII (NEB, R0108L) for human assay]) was added to each of 96 wells, plate 952 
was sealed and vigorously vortexed, briefly centrifuged and incubated at 37°C for 15 min to 953 
digest DNA. After restriction enzyme digestion, the plate was vigorously vortexed, briefly 954 
centrifuged and 20 ul of the reaction mixture was used for ddPCR as described above. Primers 955 
and probes sequences are provided in Table S1. Thermocycling conditions for mouse mtDNA 956 
copy number assay: 10 min polymerase activation at 95°C; 40 cycles of denaturation at 94°C for 957 
30 sec, ramp rate 2°C/s, and combined annealing-extension at 52°C for 1 min, ramp rate 2°C/s; 958 
incubation at 98°C for 10 min. Thermocycling conditions for human mtDNA copy number 959 
assay: 10 min polymerase activation at 95°C; 40 cycles of denaturation at 94°C for 30 sec, ramp 960 
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rate 2°C/s, and combined annealing-extension at 56°C for 1 min, ramp rate 2°C/s; incubation at 961 
98°C for 10 min.  962 
 963 
Plate-based single cell mtATAC 964 
Frozen 384-well plates with single hepatocytes were thawed on ice. Hepatocytes were lysed and 965 
DNA was tagmented in a single step. To this end, 0.45 ul of lysis solution (1% n-Dodecyl β-D-966 
maltoside [final concentration 0.5%], 90 mM NaCl [final concentration 45 mM], 10mM TrisHCl 967 
pH 8.0, 5 mM MgCl2, 10% dimethylformamide) supplemented with Tn5 (Illumina, 20034197; 968 
1.5 ul of enzyme for 150 ul of lysis solution) was added to each well of a plate with help of Echo 969 
525. Then, plates were sealed with foil (Bio-Rad, MSB1001), briefly centrifuged, and incubated 970 
at 37°C for 30 min. After lysis and tagmentation, Tn5 was stripped off DNA. To this end, 0.1 ul 971 
of 2% SDS was added to each well of a plate (final concentration 0.2%) using Echo 525, plates 972 
were sealed with a foil, briefly centrifuged, and incubated at 65°C for 15 min. Next, mtATAC 973 
libraries were constructed by PCR amplification of DNA fragments created by Tn5 with unique 974 
dual index primers for each well of a plate. To this end, PCR master mix (NEB, M0544S), 975 
tween-20 (final concentration 0.34%) and unique dual index primers (final concentration 500 976 
nM; sequences are provided in Table S1; IDT) were added to each well of the plate using Echo 977 
525 (final volume 3 ul), plate was sealed with a foil, briefly centrifuged and thermocycled as 978 
follows: incubation at 72°C for 5 min to fill the gaps; initial denaturation at 98°C for 30 s; 16 979 
cycles of denaturation at 98°C 10 sec and combined annealing-extension at 65°C 75 sec; final 980 
extension at 65°C 5 min. Incubation and PCR were performed in a standard thermocycler (Bio-981 
Rad, C1000 Touch or S1000). Uniquely labeled libraries from one or several plates were pooled 982 
together at equal volumes and cleaned up using home-made SPRI beads twice1. The first cleanup 983 
was one-sided with 1.2 beads to library volume ratio. The second cleanup was two-sided with 0.5 984 
ratio followed by 1.2 ratio. Cleaned up libraries were eluted in 20 ul of TE buffer. To quality 985 
control and quantify libraries 1 ul of cleaned mtATAC library was run on Bioanalyzer (Agilent). 986 
mtATAC libraries were sequenced on MiSeq (Illumina) using MiSeq Reagent Kit v2, 300-cycles 987 
(Illumina, MS-102-2002) as 151x12x12x151. 988 
 989 
10X-based single cell mtATAC 990 
Frozen hepatocytes were thawed, washed with PBS (Gibco, 10010-023) and fixed in 1% PFA for 991 
10 min at RT. After fixation PFA was quenched with glycine (125 mM final concentration) and 992 
washed with cold PBS supplemented with 1% BSA (Sigma, A1953). Next, hepatocytes were 993 
permeabilized. To this end, 1 million fixed cells were resuspended in 200 ul of lysis solution 994 
(0.5% n-Dodecyl β-D-maltoside, 45 mM NaCl, 10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 10% 995 
dimethylformamide) and incubated on ice for 5 min. For human hepatocytes n-Dodecyl β-D-996 
maltoside concentration was reduced to 0.1%. Permeabilization was stopped by adding 1.8 ml of 997 
wash buffer (45 mM NaCl, 10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 1% BSA). To enable pooling 998 
of distinct samples in a single 10X experiment, permeabilized cells from different mice were 999 
labeled with unique DNA barcode complexes (MULTI-ATAC; Conrad et al., in preparation). 1000 
MULTI-ATAC barcoding was also performed when cells from a single individual were analyzed 1001 
to improve identification of multiplets. In this case, an individual sample was divided into 3 to 7 1002 
fractions and each fraction was labeled with a unique MULTI-ATAC barcode. To this end, 1003 
Lignoceric Anchor oligo (2 uM; Sigma, LMO001A) was mixed with a unique barcode oligo (1 1004 
uM; BC) and reverse primer (1 uM; BE) at 1:1:1 molar ratio to form Anchor-BC-BE Complex 1005 
(20x, 1 uM). Note that BC contains an 8-nucleotide-long stretch of random nucleotides to serve 1006 
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as a unique molecular identifier (UMI) to enable barcode counting. Permeabilized hepatocytes 1007 
were resuspended at 106 cells/mL in cold PBS and Anchor-BC-BE Complex was added to cell 1008 
suspension (final 1x, 50 nM) followed by incubation on ice for 5 min. To stabilize labeling, 1009 
Palmitic Co-anchor oligo (2uM, 20x; Sigma, LMO001B) was added to the cell suspension (final 1010 
1x, 50 nM) followed by additional incubation on ice for 5 min. After MULTI-ATAC barcoding, 1011 
unbound complexes were washed away with PBS supplemented with 2% BSA, hepatocytes 1012 
isolated from different individuals were pooled together, resuspended in diluted nuclei buffer, 1013 
passed through 35-40um cell strainer, and used to prepare 10X-mtATAC libraries using 1014 
Chromium Next GEM Single Cell ATAC Reagent kit (10X Genomics, PN-1000176 and PN-1015 
1000406) according to the manufactures protocol (CG000209 Rev F and CG000496 Rev B) with 1016 
2 minor modifications. First, after step 3.2o 1 ul of the sample was used to prepare the MULTI-1017 
ATAC barcode library (described below). Second, the remaining 39 ul were used in step 4.1 1018 
where SI-PCR Primer B concentration was increased to 100 uM. Before permeabilization, after 1019 
permeabilization and after MULTI-ATAC barcoding cells were pelleted by centrifugation at 1020 
100g for 3 min, 300g for 3 min and 500g for 5 min, respectively.  1021 
 1022 

To prepare MULTI-ATAC barcode libraries, 1ul of sample from 3.2o step was amplified 1023 
in a PCR reaction: 1 ul of sample, 500nM SI-PCR-B primer, 500nM TruSeq primer, 1x Kapa 1024 
HiFi HotStart ReadyMix (Roche, KK2601). The reaction mixture was thermocycled using the 1025 
following conditions: 5 min polymerase activation at 95°C; 14 cycles of denaturation at 98°C for 1026 
20 sec, annealing at 67°C for 30 sec and extension at 72°C for 20 sec; incubation at 72°C for 1 1027 
min.  1028 
 1029 

To quality control and quantify libraries, 1 ul of 1:5 diluted 10X-mtATAC and MULTI-1030 
ATAC barcode libraries were run on Bioanalyzer. 10X-mtATAC and MULTI-ATAC barcode 1031 
libraries were pooled together and sequenced on NovaSeq6000, S1 200 as 101x12x24x101 or 1032 
NovaSeq X, 10B as 51x12x24x51 or 151x12x24x151. For optimal demultiplexing we aimed to 1033 
obtain 5,000 MULTI-ATAC barcode reads per cell.  1034 

 1035 
This method is prone to low level leakage of mutation signal between cells (Figure S2). 1036 

Since inbred mice have identical mitochondrial genomes and mutations are very rare this leakage 1037 
becomes noticeable only if clonal mutations are present. Unlike inbred mice, humans have 1038 
multiple haplotype- and individual-specific mtDNA variants. Consequently, leakage is 1039 
noticeable at multiple sites if different human samples are mixed in a single experiment. 1040 
Therefore, to simplify downstream analysis all human samples were processed individually. 1041 
Importantly, leakage also affects our readings of fixed mutations: as predominant WT signal 1042 
leaks into cells with fixed mutations, often times we detect these mutations at levels just below 1043 
100% instead of 100%.  1044 
 1045 
Sequencing data analysis 1046 
Reads mapping, coverage and variant analysis 1047 
The nucleus contains multiple segments derived from mtDNA sequence, so called NUMTs. 1048 
When sequencing reads from ATAC experiments are aligned to the whole genome a lot of truly 1049 
mitochondrial reads are erroneously mapped to the NUMTs. To avoid incorrect mapping of 1050 
mitochondrial reads to the nuclear genome sequencing reads from the plate-based approach were 1051 
aligned directly to the mitochondrial genome. Specifically, reads were aligned to the mouse 1052 
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mitochondrial genome (NC_005089) with bwa2 (v0.7.17) using the BWA-MEM algorithm. 1053 
Samples with less than 10,000 reads mapping to mtDNA (chrM) were excluded from further 1054 
analysis. Duplicate reads were marked with Picard tool3 (v2.27.4). Mapped reads were filtered 1055 
with bamtools4 (v2.5.2; filter -mapQuality ">=20" -isPaired "true" -isProperPair "true"). 1056 
Coverage was determined with samtools depth5 (v1.16.1). SNPs and small indels were called 1057 
using Freebayes6 (v1.3.6; -C 5 -F 0.003 -p 1 --pooled-discrete --pooled-continuous -m 30 -q 30 -1058 
-min-coverage 10). Multiallelic sites were split into multiple rows using bcftools5 (v1.16; norm -1059 
Ov m-both). Variants were filtered using vcffilter7 (vcflib v1.0.3; -f "SAF >1" -f "SAR >1"). 1060 
Complex alleles were reduced to primitive alleles using vcfallelicprimitives and sorted with 1061 
vcfstreamsort7 (vcflib v1.0.3). This process occasionally created duplicate variants where 1062 
mutation counts were split between the records which led to incorrect mutation frequency 1063 
calculation. This issue was fixed by merging duplicated records in a single entry with alternative 1064 
allele counts summed together. This was done after vfc files from individual cells were merged 1065 
using bcftools (merge -m none) and the resulting vcf file was converted to tab delimited file 1066 
using vcf2tsv7 (vcflib v1.0.3). The variants were spot checked in IGV8,9 (v 2.4.16). Variants 1067 
annotation (synonymous, non-synonymous, stop-gain and etc.) was done using SnpEff10 (v5.0). 1068 
When the same variant had multiple annotation (e.g., due to overlap of protein coding sequences) 1069 
the most severe annotation was used. Pindel11 (0.2.5b9) was used to detect large-scale deletions 1070 
(minimum deletion size 10bp, at least 10 supports). SIFT12 was used to predict whether mutation 1071 
affects protein function.  1072 
 1073 
Sequencing data from 10X-based experiments were first processed with Cell Ranger ATAC 1074 
(10X, v 2.1.0) using blacklisted reference genomes13. Blacklisting was necessary to prevent 1075 
erroneous mapping of mtDNA fragments to the nuclear DNA. Because our samples are non-1076 
standard and predominantly contain mtDNA reads, Cell Ranger ATAC does not discriminate 1077 
well between empty droplets and droplets containing cells. To classify droplets into those 1078 
containing cells and those that are empty as well as to assign cells to samples in multiplexed 1079 
experiments and identify droplets with multiple cells, we relied on MULTI-ATAC barcode UMI 1080 
counts. Barcode  UMI counts have a bimodal distribution where positive (high-count) and 1081 
negative (low-count) droplets for a specific barcode are clearly separated. To this end, a list of 1082 
droplets that contained at least 1,000 or more reads that passed filters (metrics provided by Cell 1083 
Ranger ATAC; the cutoff was set to include 1.5 to 2 times more droplets than expected recovery) 1084 
along with MULTI-ATAC barcode library FASTQ files were supplied to deMULTIplex214.  For 1085 
proper performance, deMULTIplex2 requires removal of most empty droplets before 1086 
demultiplexing. Hence, the barcodes count matrix created by deMULTIplex2 was filtered based 1087 
on total number of MULTI-ATAC barcode UMIs. The cutoff was determined by plotting a 1088 
histogram of barcodes counts and finding the middle between the two peaks representing 1089 
positive and negative droplets. Whenever possible faithfulness of demultiplexing was controlled 1090 
by analysis of distribution of sample-specific SNPs among multiplexed samples. Reads from 1091 
droplets that were classified as carrying a single cell were subset from possorted_bam.bam file 1092 
generated by Cell Ranger ATAC into separate bam files using samtools5 (v1.16.1). Reads 1093 
deduplication, reads filtering, variant calling, variant filtering and variant annotation were the 1094 
same as for plate-based approach. Cells with average mtDNA (chrM) coverage less than 50 were 1095 
excluded from the analysis. 1096 
 1097 
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In addition to standard variant filtering the following calls were excluded from the final datasets. 1098 
Large-scale deletions in minor and major arcs of mouse mtDNA cause misalignment at the 1099 
imperfect repeat regions creating false 4920C>T and 4925C>G, and 8686T>C, 14251T>A and 1100 
14260T>G mutations, respectively, that were excluded from the final dataset. Due to high 1101 
number of mismatches between C57BL6/J mtDNA (NC_005089) and PWD mtDNA 1102 
(DQ874614) sequences in NCR (p15400 - p15600), reads from mtPWD samples do not map to 1103 
C57BL6/J reference in this region. Therefore, PWD-specific SNPs in this region were excluded 1104 
from the dataset when analyzing C57BL6/J and mtPWD mixing results. Human mtDNA 1105 
reference sequence (NC_012920) contains N at position 3107 which denotes deletion. This N is 1106 
misinterpreted by the aligner as any nucleotide which leads to 3107N>C, 3107N>T and 1107 
3109T>C false mutations. These calls were excluded from the final dataset. The region between 1108 
p300 and p320 of human mtDNA had low coverage and multiple sequencing errors making it 1109 
difficult to distinguish true and false mutations. Therefore, variants in this region were removed 1110 
from the dataset. Finally, variants with mean abundance above 90% in a human sample were 1111 
considered haplotype or individual-specific polymorphisms and were excluded from the list of 1112 
mutations.  1113 
 1114 
Despite our best effort to remove false calls from the dataset, there are some remaining artifacts 1115 
present, in particular sequencing or alignment errors at the ends of the reads. Those usually are 1116 
present at very low levels and are unlikely to have any impact on our conclusions. All the 1117 
specific mutations (such as driver and passenger alleles) that we rely on to draw conclusions 1118 
were hand checked in IGV. 1119 
 1120 
Percent of reads mapping to mtDNA 1121 
Total number of reads and number of reads mapping to mtDNA (chrM) were calculated using 1122 
samtools view. Number of reads mapped to mtDNA was divided by total number of reads and 1123 
the values were converted into %. 1124 
 1125 
Number of mutant alleles 1126 
To calculate number of mutant alleles (Figure S3E) we used data produced with 10X-based 1127 
approach. The number of unique mutant alleles strongly depends on coverage and number of 1128 
analyzed cells. To mitigate biases due to coverage differences between samples we subsampled 1129 
deduplicated and filtered bam files for individual cells to 100,000 mtDNA (chrM) mapped reads. 1130 
Cells that had fewer reads were excluded from the analysis. Subsampled files were used for 1131 
variant calling as described above. Finally, we normalized samples by analyzing equal number of 1132 
cells from each sample.   1133 
 1134 
NS/S and STOP/S 1135 
NS/S and STOP/S were calculated using three approaches.  1136 

In the first approach, ratios were calculated for all detected alleles in a sample, so that 1137 
each unique allele was counted only once (Figures 6A and 6B).  1138 

In the second approach, ratios were calculated for all SNP mutations within abundance 1139 
intervals (specified in the figure; Figures 6C, 6D, 7G and 7H), i.e. each allele was scored 1140 
according to the number of cells in which it was detected. In this case clonal mutations were 1141 
excluded from the analysis as these mutations have a major impact on the ratio but unlikely to 1142 
reflect impact of selective forces. Clonal mutations are expected to be present in unusually high 1143 
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number of cells in only one or few of the examined individuals. To identify such alleles, we 1144 
applied Kruskal-Wallis test to the mutation cellular abundance data from multiple individuals. 1145 
Bonferroni adjustment of the p-values was performed to account for the large number of tested 1146 
alleles.  Adjusted p-value of 0.05 was used as a cutoff for decision between clonal and non-1147 
clonal alleles.  This method is sensitive to difference in coverage between analyzed samples, 1148 
therefore it was applied to mouse data from different experiments separately as those tend to 1149 
have different coverage. In case of human data, where each sample was prepared individually 1150 
and hence coverage varies among all the samples, we tried two approaches. In the first approach, 1151 
we subsampled human data to 100,000 mtDNA mapped reads per cell and then applied Kruskal-1152 
Wallis test. The obtained list of clonal alleles was then used to remove clones from the original 1153 
dataset. This approach might miss clonal mutations with low cellular abundance. In the second 1154 
approach we applied the test directly to the dataset without adjustment for coverage. In this case 1155 
along with true clonal mutations and number of low abundance alleles were removed.  While 1156 
both approaches identified different number of clonal alleles, the final results (shape of the curve 1157 
in Figures 7G and 7H) were similar.  Data presented in Figures 7G and 7H were generated with 1158 
the first approach.  1159 

In the third approach, we calculated local NS/S ratio on an AAA vs C# plot (Figures 6E 1160 
and 7I). For each NS allele on log10 transformed AAA vs C# plot we counted number of NS and 1161 
S alleles within a circle centered around the allele. Since there are a lot of data points on the left 1162 
side of the plot and only a few on the right side, we increased the radius of the circle from left to 1163 
right from 0.1 to 0.5 linearly.   1164 
 1165 
Analysis of conserved/non-mutable sites 1166 
120 complete mitochondrial genome sequences of mammalian species were downloaded from 1167 
NCBI. The list of all species and accession numbers are provided in Table S2. Fasta files were 1168 
aligned using MUSCLE online tool15. The alignments were parsed to find mtDNA sites that were 1169 
identical between all 120 species.  1170 
 1171 
Modeling 1172 
To model accumulation of de novo somatic mtDNA mutations in hepatocytes we used an 1173 
evolutionary simulation framework SLiM16 (v3.6). We regarded mtDNAs as individuals and all 1174 
mtDNAs within a single cell as a population. Modelling was done following authors 1175 
recommendations17 (section 14.9). The following parameters were used: 1176 

1. mtDNA reproduce clonally. 1177 
2. The recombination rate was set to zero. 1178 
3. Population size was kept constant and set to the number specified in a figure or figure 1179 

legend. Generally, population size of 10,000 genomes was used for modeling mouse 1180 
hepatocytes and population size of 5,000 genomes was used for modeling human 1181 
hepatocytes.    1182 

4. The half-life for mtDNA in rat liver was estimated to be 9.4 days18 which translates into 1183 
78 generations over 2 years (maximum age of analyzed mice) and 3145 generations over 1184 
81 years (maximum age of analyzed human samples). We assume that in mouse and 1185 
human the half-life of mtDNA is similar to what was measured in rat and, for 1186 
convenience, round it to 80 and 3000 replacements for 2-year-old mouse and 81-year-old 1187 
human, respectively.  1188 
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5. Mutation emergence rate and selection coefficient varied in the models and are specified 1189 
in figures and/or figure legends. Note, that this model does not include back-mutations. 1190 
Hence, simulations using high mutation rates will be progressively less accurate.  1191 

6. To model the emergence, disappearance, and accumulation of a specific mutant allele, we 1192 
simulated one site per genome and ran the simulation many times (Figures 2C, 3B, 3C, 1193 
4D, S4, S6C, S6D).  To model NS/S across abundance intervals, the genome was limited 1194 
to 11,338 sites which corresponds to number of protein coding sites in mouse mtDNA 1195 
(Figures 6C and 6D). To model accumulation of mutations in the whole genome, genome 1196 
size was set to 16,299bp (Figures 2D-2F).  To simulate accumulation of a specific mutant 1197 
allele at the tissue level we first simulated accumulation dynamics of the allele in 10,000 1198 
single cells and then computed the average abundance of the mutant allele across all 1199 
simulated cells (Figures 4E and 4F). 1200 

 1201 
Parameter space exploration 1202 
To find parameters that best describe the behavior of recurrent NCR mutations in 24-month-old 1203 
mice we searched the parameter space. Specifically, we ran 315 models where mutation 1204 
emergence rate varied from 10-9 to 10-2 and selection coefficient varied from -0.25 to +0.25. 1205 
Each simulation was run for 80 generations, population size was set to 10,000 genomes and it 1206 
was repeated 9,833 times to match number of sequenced cells. For simulated data we have a 1207 
record of all mutations present in a modeled cell, however in real sequencing data mutations 1208 
present at levels below detection capability could not be detected. To mimic the observed data, 1209 
each of 9,833 simulated cells was randomly assigned coverage of one of the cells from the 1210 
experimental dataset. Then, simulated mutations present at levels below a sensitivity cutoff were 1211 
set to zero. For each NCR mutation examined a sensitivity cutoff was calculated as 1212 
100% x 5/(assigned coverage at this site), where 5 is a minimum number of reads supporting the 1213 
mutation. The resulting abundance distributions from each of 315 models were compared to the 1214 
observed distribution of a mutation. First, the parameter sets that produced 2 time more or 2 1215 
times fewer positive cells than was observed were excluded. Next, we assessed the statistical 1216 
significance of differences in abundance means between simulated and observed data using a 1217 
permutation test. To calculate mean we used only cells/simulations that were positive for a 1218 
mutation. 1,000 permutations were run to obtain a p-value. Abundance distributions produced 1219 
with parameter sets close to the set with the highest p-value were inspected visually to identify 1220 
parameters producing the best data-matching distributions.  1221 
 1222 
Simulation of NS/S and STOP/S distribution for random emergence of mutations 1223 
To estimate NS/S and STOP/S expected for random mutagenesis of mtDNA, mutations in mouse 1224 
(NC_005089) and human (NC_012920) mtDNAs were simulated using Mutation-Simulator19 (v 1225 
3.0.1). The transitions to transversions ratios (Titv) measured for the mouse dataset presented in 1226 
Figure 1C (Titv = 4) and human (Titv = 5) dataset presented in Figure S6A were used as an input 1227 
parameter for Mutation-Simulator. On average, 1.3 mutations were generated per simulation. 1228 
The NS/S and STOP/S ratios were calculated for mutations generated in 360 simulations. This 1229 
was repeated 1,000 times to obtain the ratios distribution.  1230 
 1231 
Statistical analysis and data visualization were performed in Matlab (v. R2019a) and R (v. 4.1.3). 1232 
Sample sizes, statistical tests and p-values are indicated in the text, figures and figure legends. 1233 
 1234 
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Data availability. 1235 
The sequencing data have been deposited in the NCBI Sequence Read Archive under 1236 
PRJNA1146058. 1237 
 1238 
 1239 
Reference 1240 
1. Rohland, N., and Reich, D. (2012). Cost-effective, high-throughput DNA sequencing 1241 

libraries for multiplexed target capture. Genome Res. 22, 939–946. 1242 
https://doi.org/10.1101/gr.128124.111. 1243 

2. Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-1244 
MEM. 1245 

3. Picard Toolkit (2019). Broad Institute, GitHub Repos., 1246 
https://broadinstitute.github.io/picard/. 1247 

4. Barnett, D.W., Garrison, E.K., Quinlan, A.R., Str̈mberg, M.P., and Marth, G.T. (2011). 1248 
Bamtools: A C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 1249 
27, 1691–1692. https://doi.org/10.1093/bioinformatics/btr174. 1250 

5. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, 1251 
A., Keane, T., McCarthy, S.A., and Davies, R.M. (2021). Twelve years of SAMtools and 1252 
BCFtools. Gigascience 10, 1–4. https://doi.org/10.1093/gigascience/giab008. 1253 

6. Garrison, E., and Marth, G. (2012). Haplotype-based variant detection from short-read 1254 
sequencing. arxiv:1207.3907 [q-bio.GN]. 1255 

7. Garrison, E., Kronenberg, Z.N., Dawson, E.T., Pedersen, B.S., and Prins, P. (2022). A 1256 
spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, 1257 
cyvcf2, hts-nim and slivar. PLoS Comput. Biol. 18, 1–14. 1258 
https://doi.org/10.1371/journal.pcbi.1009123. 1259 

8. Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., 1260 
and Mesirov, J.P. (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26. 1261 
https://doi.org/10.1038/nbt.1754. 1262 

9. Robinson, J.T., Thorvaldsdóttir, H., Wenger, A.M., Zehir, A., and Mesirov, J.P. (2017). 1263 
Variant review with the integrative genomics viewer. Cancer Res. 77, e31–e34. 1264 
https://doi.org/10.1158/0008-5472.CAN-17-0337. 1265 

10. Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., 1266 
and Ruden, D.M. (2012). A program for annotating and predicting the effects of single 1267 
nucleotide polymorphisms, SnpEff. Fly (Austin). 6, 80–92. 1268 
https://doi.org/10.4161/fly.19695. 1269 

11. Ye, K., Schulz, M.H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: A pattern 1270 
growth approach to detect break points of large deletions and medium sized insertions 1271 
from paired-end short reads. Bioinformatics 25, 2865–2871. 1272 
https://doi.org/10.1093/bioinformatics/btp394. 1273 

12. Vaser, R., Adusumalli, S., Leng, S.N., Sikic, M., and Ng, P.C. (2016). SIFT missense 1274 
predictions for genomes. Nat. Protoc. 11, 1–9. https://doi.org/10.1038/nprot.2015.123. 1275 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


 34 

13. Lareau, C.A., Ludwig, L.S., Muus, C., Gohil, S.H., Zhao, T., Chiang, Z., Pelka, K., 1276 
Verboon, J.M., Luo, W., Christian, E., et al. (2021). Massively parallel single-cell 1277 
mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39, 451–461. 1278 
https://doi.org/10.1038/s41587-020-0645-6. 1279 

14. Zhu, Q., Conrad, D.N., and Gartner, Z.J. (2024). deMULTIplex2: robust sample 1280 
demultiplexing for scRNA-seq. Genome Biol. 25, 1–24. https://doi.org/10.1186/s13059-1281 
024-03177-y. 1282 

15. Madeira, F., Pearce, M., Tivey, A.R.N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, 1283 
N., Kolesnikov, A., and Lopez, R. (2022). Search and sequence analysis tools services 1284 
from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279. 1285 
https://doi.org/10.1093/nar/gkac240. 1286 

16. Haller, B.C., and Messer, P.W. (2019). SLiM 3: Forward Genetic Simulations Beyond the 1287 
Wright-Fisher Model. Mol. Biol. Evol. 36, 632–637. 1288 
https://doi.org/10.1093/molbev/msy228. 1289 

17. Haller, B.C., and Messer, P.W. (2016). SLiM slim manual: An Evolutionary Simulation 1290 
Framework. http://benhaller.com/slim/SLiM_Manual.pdf. 1291 

18. Gross, N.J., Getz, G.S., and Rabinowitz, M. (1969). Apparent turnover of mitochondrial 1292 
deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. Biol. 1293 
Chem. 244, 1552–1562. 1294 

19. Kühl, M.A., Stich, B., and Ries, D.C. (2021). Mutation-Simulator: Fine-grained 1295 
simulation of random mutations in any genome. Bioinformatics 37, 568–569. 1296 
https://doi.org/10.1093/bioinformatics/btaa716. 1297 

 1298 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.09.27.615276doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615276
http://creativecommons.org/licenses/by-nd/4.0/


.

tissue
a cell with 

WT and mutant mtDNAs 

mtDNA

0 2000 4000 6000 8000 10000 12000 14000 16000
genome position

10

20

30

40

50

60

70

80

90

100

m
ut

at
io

n 
ab

un
da

nc
e,

 %

1 mouse
250 cells

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

CYTB NCR12S 16S ND1 ND2 COX1 ND4 ND5COX2 COX3

x

x+
+

Silent

Missense

SNPs:

non-protein sequence

Stop-gain

Indels:

Frameshift

Small indel in non-protein 
sequence

Large scale deletion
Other types of SNPs

x+ Other types of small indels

0 2000 4000 6000 8000 10000 12000 14000 16000
genome position

0

10

20

30

40

50

60

70

80

90

100

m
ut

at
io

n 
ab

un
da

nc
e,

 %

A

B

D

C

FACS

10X Chromium controller

Illumina 
sequencing

ATGC

Hepatocytes 
isolation

Figure 1. Single cell sequencing for profiling de novo somatic mtDNA mutations. 
(A) De novo somatic mtDNA mutations occur infrequently so that each allele is generally present in a few cells of a tissue. 
(B) Schematic of steps in plate-based and 10X-based single cell mtDNA sequencing to profile mtDNA mutations.
(C) Spectrum of mtDNA mutations in 24-month-old C57BL6/J mouse liver. Distinct symbols indicate allele type, each occurrence is represented by a 
symbol indicating genomic position (X-axis) and abundance/percent of reads (Y-axis)(see Figure S1D for control) in the cell in which the mutation was 
recorded.  Data from 250 cells are aggregated in the plot. 
(D) Frequency of mutant alleles detection in the cells of 24-months-old C57BL6/J mouse liver. Most observed alleles are seen in one or few cells, but rare 
alleles are found in most or even all the cells. 
(E) The number of distinct mutant alleles identified increases with number of cells analyzed.  An analysis of 5,701cells from three 24-month-old 
heterozygous mutator mice detected 1,209,103 mutations representing 41,273 distinct alleles.  Analysis of 3,195 cells from three similarly aged C57BL6/J 
WT mice detected 14,581 mutations representing 2,746 alleles.
Data in C were generated with plate-based approach, data in D and E were generated with 10X-based approach.
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Figure 2.  Neutral de novo mtDNA mutations fluctuate in abundance but high abundance mutations are infrequent, and their likelihood 
increases slowly with age.  
(A) Droplet digital PCR (ddPCR) measurements of mtDNA copy number (blue points) in single hepatocytes from young and old mice and a middle-aged 
human. Boxes indicate the 25th and 75th percentiles, red line marks the median. The whiskers extend to the most extreme data points not considered 
outliers (conventionally defined as outside 1.5 times the interquartile range above the upper quartile and bellow the lower quartile; red points). 
(B) Simulation of mtDNA mutations accumulation.  MtDNAs were treated as individuals with a measured population size (n) in each cell, with other 
variables (blue) assigned.  See methods section for full description of the parameters. 
(C) Dynamics of accumulation of simulated neutral de novo somatic mutations. The plot tracks the fate of a generic allele as mutants emerge in many 
simulations. 234 mutations (colored lines) emerged in 250 simulations.  Most disappeared shortly after emergence.  Only 2 persisted at the end and only 
one reached an abundance of 10% (black dotted line).  Model parameters: mutation rate 3.16x10-8 per base pair per replication and 10,000 genomes per 
cell. 
(D, E, F) Simulations illustrating the impact of variables on the abundance distribution of mutations: time (number of generations) (D), mtDNA copy number 
(E) and mutation rate (F). Grey wedges highlight the difference in X-axis scale for D-F panels. In the lifetime of a mouse (~80 replacement generations of 
mtDNA) chance accumulation of a mutation to critically high levels (usually 60%) in a cell with high mtDNA copy number is exceedingly unlikely. Models' 
parameters unless specified otherwise in the figure panel: 16,299bp genome, 10,000 genomes per cell, 3.16x10-8 mutation rate, 80 generations, 10,000 
simulated cells.
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Figure 3.  Allele behavior on AAA vs C# plots.  
(A) An AAA vs C# scatter plot showing the average cellular abundance of each mutant allele (AAA) in the positive cells (Y-axis), versus the number 
of cells (C#) in which the allele was detected (X-axis) with histograms: abundance distribution of data points (right) and distribution of data points 
versus cell number (top). Data shown for 3,195 cells from three 24-month-old C57BL6/J mouse livers. Symbols are as in Figure 1C except that 
alleles in the NCR and OriL are colored with cyan and purple, respectively. Grey line shows expected location of neutral mutations emerging with 
varying rates.  
(B, C) Simulations showing positions of neutral alleles emerging with differing mutation rates (B) or alleles differing in both mutation rate, and 
selection coefficient (C) on AAA vs C# plots. Mutation rate and selection coefficient indicated by color and size scales, respectively. Simulation 
parameters: 10,000 genomes/cell, 80 generations, 3,195 cells. 
(D, E) Position on an AAA vs C# plot is an allele specific property. (D) Schematic (top panel) shows four alleles (colored) that were detected in three 
matched mice (symbols). Distances between the three data points on the AAA vs C# plots for each mouse were measured to obtain an average 
mean separation (MS) as a measure of the correlation in the positions in independent mice. The bottom panel shows an AAA vs C# plot for alleles 
detected in all three mice and the alleles are colored according to the measured MS. (E) Unrelated alleles show a high mean separation.  For each 
allele we measured the distance to all other unrelated alleles (schematic, top panel) and plotted the same alleles as shown in D colored according to 
the unrelated mean separation (bottom panel). For this analysis data from each cell were subsampled to 100,000 reads mapping to mtDNA and 
equal number of cells from each mouse was analyzed (n = 400 cells). 
(F, G) A group of non-synonymous (NS) alleles in one locale in an AAA vs C# plot from one 24-month-old C57BL6/J mouse (F) shows biased 
localization in AAA vs C# plot of another 24-month-old mouse from an independent experiment (G).
Data presented in this figure were generated with 10X-based approach.
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Figure 4. Specific mutations in NCR confer a competitive advantage. 
(A) The NCR region of 24-month-old WT mice is characterized by mutations that reach exceptionally high cellular abundance.  Alleles present above 20% in at 
least 1 cell in at least 3 out 5 mice are highlighted with differently colored vertical bars. 
(B) The exceptional alleles (colored bars as in A) were not detected in four 3-month-old WT mice suggesting that they come to predominate with age.  
(C) Abundance distribution of highlighted NCR mutations among liver cells of 24-month-old WT mice. 
(D) Simulations show that varied mutation frequencies (lower panel) fail to mimic the abundance distributions shown in (C), while inclusion of positive selective 
coefficients (specified in the figure, upper panel) yields distributions resembling the data. Note the difference in Y-axis scale.
(E) Simulations (n=5) ran for different numbers of cycles (proportional to age) show linear tissue level accumulation of a neutral allele.  Mutation rate = 3.16x10-
5/base pair/cycle, and mtDNA copy number = 10,000. 
(F) Simulations (n=5) show that a positively selected (coefficient = +0.175) mutant allele accumulates at the whole tissue level at an accelerating rate. Mutation 
rate = 3.16x10-8/ base pair/generation, and mtDNA copy number = 10,000. 
(G, H) Accumulation dynamics of the indicated driver alleles as measured by allele-specific ddPCR assays in bulk liver of WT mice. N = 5 mice per time point for 
each allele tested. 
(E-H) Box plots show simulated or ddPCR data. Red lines show linear (E) and power (F-H) function fitting, R2= 0.999, 0.945, 0.834 and 0.617, respectively.
(I) Driver mutations are localized in the NCR (blue) in association with sequences thought to govern mtDNA replication: the termination associated sequence 
(TAS); the conserved sequence boxes (CSB1-3); the light strand promoter (LSP) and the heavy strand promoter (HSP).  The LSP initiates an RNA (arrow) that 
primes DNA synthesis within the CSBs.  DNA synthesis continues to a pause point in TAS and can be continued to promote a synthesis of new heavy strand.  
The allele labeled in cyan showed selective amplification in both WT and heterozygous mutator mice, whereas, at least using stringent criteria to identify drivers, 
the alleles labeled in green were only seen as a driver in the WT, and alleles labeled in orange were only seen as drivers in the heterozygous mutator line. 
Data presented in this figure were generated with 10X-based approach. 
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Figure 5. Passenger mutations piggyback on mitochondrial genomes with a competitive advantage.  
(A) A mtDNA mutation spectrum of a single liver cell from 24-month-old WT mouse showing two alleles at high abundance. 
(B) Abundance distribution of 12040T>C and 16276CTA>C mutations among all sequenced cells. 
(C) A mtDNA mutation spectrum of a single liver cell from 24-month-old heterozygous mutator mouse. 
(D) Abundance distribution of 4938A>G, 10620T>C and 16293T>C mutations among all sequenced cells of the sample.
(E) A mtDNA mutation spectrum of a single liver cell from 24-month-old heterozygous mutator mouse.  
(F) Abundance distribution of 15417T>A and 15468A>G mutations among all sequenced cells. 
(G) Raw reads showing linkage of 15417T>A and 15468A>G mutations. Grey lines represent individual reads. Dark grey regions represent overlap of 
two opposing reads of the same DNA fragment. Green and orange bars mark mismatch between the read and reference sequences. 
See Figure 1C for the correspondence of symbols and allele type. Data in A, B, E, F and G were generated with 10X-based approach, data in C and D 
were generated with plate-based approach. 
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Figure 6. Excess of deleterious mtDNA mutations in aged mouse liver. 
(A, B) NS/S (A) and STOP/S (B) of all detected mutant alleles determined for six 24-month-old WT mouse livers (red lines) exceeds expected spread of 
NS/S and STOP/S (histograms) based on a 1,000 sets of simulations of mouse mtDNA random mutagenesis. The NS/S (0.0588) seen in evolution was 
taken from Pesole G. et al., 1999 (green line). Note that NS/S for three mice were very close and hence merged in a single thick line on the NS/S plot. 
Similarly, STOP/S ratios for two mice (0.2302 and 0.2299) are indistinguishable on the STOP/S plot.
(C, D) NS mutations (C) and STOP mutations (D) selectively increase in abundance.  Mean NS/S or STOP/S for mutations that fall in specified 
abundance intervals (log2 scale) from 6 mice (red line) or from 6 sets of 1,000 simulations of neutral behavior (grey line) with standard deviations.  
Model parameters: 10,000 genomes per cell, 3.16x10-8 mutation emergence rate, 80 generations. Mean values were computed when at least 3 out of 6 
samples or simulations had finite NS/S ratios. Data within each abundance interval were tested against neutral model using two-sample t-test, ns – not 
significant, * - p<0.05, ** - p<0.01, *** - p<0.001.
(E) Local NS/S for each NS allele on AAA vs C# plot shows clustering of NS alleles with similar ratios in 24-month-old WT mice. Data are the same as in 
Figure 3A, only NS alleles are plotted, N= 3 mice, 3,195 cells, 1,300 NS alleles.
(F) Comparison of non-mutated (conserved) mtDNA sites in evolution (top bar) and in aging (bottom bar). Number of non-mutated sites within 30bp 
windows along mtDNA genome was plotted as a heatmap with yellow colors representing conserved regions and grey color marking windows in which 
all sites were changed in the data set. Middle bar represents mtDNA map. The list of species used for analysis of non-mutated sites in evolution is 
reported in Table S2 (n = 120). Aging data are from 24-month-old heterozygous mutator mice (n = 3 mice, 5,701 cells), which were also used in Figure 
1E and S3.  
Data in this figure were generated with 10X-based approach. 
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Figure 7. Selective forces impact competition among mtDNAs in human liver.
(A) A spectrum of mtDNA mutations identified in 41-year-old human hepatocytes. Note that annotation of mouse and human mtDNAs differ with 
linearization of the human genome splitting the NCR in two.
(B) AAA vs C# plot of 41-year-old human hepatocytes. Blue asterisk marks the 3243A>G allele.  
(C) A spectrum of mutations in the NCR of 4,942 hepatocytes from the 41-year-old human also shown in A. Colored bars indicate sites that meet our 
criteria for positively selected driver alleles. Mutations were classified as drivers if the allele was detected in at least 10 cells at levels above 50%, and 
there were more cells with >50% abundance than cells with <50% abundance.
(D) Abundance-distribution of the driver mutations identified in NCR of 41-year-old human hepatocytes. 
(E) An example of a driver-passenger pair in a single liver cell from 41-year-old human.
(F) Abundance distribution of the driver and the passenger alleles shown in (E) among the 4,942 sequenced cells of the sample.
(G, H) The NS/S and STOP/S rises with increase in mutations abundance.
(I) Local NS/S for each NS allele on AAA vs C# plot for 41-year-old human hepatocytes shown in (B).
Data in this figure were generated with 10X-based approach.
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