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Abstract

Objectives—This study sought to develop a fully automated framework for cardiac function 

analysis from cardiac magnetic resonance (CMR), including comprehensive quality control (QC) 

algorithms to detect erroneous output.

Background—Analysis of cine CMR imaging using deep learning (DL) algorithms could 

automate ventricular function assessment. However, variable image quality, variability in 

phenotypes of disease, and unavoidable weaknesses in training of DL algorithms currently prevent 

their use in clinical practice.

Methods—The framework consists of a pre-analysis DL image QC, followed by a DL algorithm 

for biventricular segmentation in long-axis and short-axis views, myocardial feature-tracking (FT), 

and a post-analysis QC to detect erroneous results. The study validated the framework in healthy 

subjects and cardiac patients by comparison against manual analysis (n = 100) and evaluation of 

the QC steps’ ability to detect erroneous results (n = 700). Next, this method was used to obtain 

reference values for cardiac function metrics from the UK Biobank.

Results—Automated analysis correlated highly with manual analysis for left and right 

ventricular volumes (all r > 0.95), strain (circumferential r = 0.89, longitudinal r > 0.89), and 

filling and ejection rates (all r ≥ 0.93). There was no significant bias for cardiac volumes and 

filling and ejection rates, except for right ventricular end-systolic volume (bias +1.80 ml; p = 
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0.01). The bias for FT strain was <1.3%. The sensitivity of detection of erroneous output was 95% 

for volume-derived parameters and 93% for FT strain. Finally, reference values were automatically 

derived from 2,029 CMR exams in healthy subjects.

Conclusions—The study demonstrates a DL-based framework for automated, quality-controlled 

characterization of cardiac function from cine CMR, without the need for direct clinician 

oversight.
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learning; quality control

Cardiac magnetic resonance (CMR) enables full coverage of the heart using high spatial and 

temporal resolution, without the constraints of limited acquisition windows or use of 

ionizing radiation, as with echocardiography or computedtomography (1). Cine CMR has 

become the gold standard for non-invasive quantification of cardiac volumes and ejection 

fraction (EF) (1). However, cine CMR images hold significantly more detailed information 

that allow for quantification of advanced markers of cardiac function such as ventricular 

shape (2), ejection and filling rates (3), myocardial wall motion, and myocardial strain (ε) 

(4,5). These parameters have shown to be valuable biomarkers for earlier detection and 

monitoring of disease (2–5). However, obtaining them is time and labor intensive. Moreover, 

although largescale studies have provided meaningful reference values and standards for 

analysis of cardiac volumes and EF (6,7), such studies are absent for the remaining 

biomarkers. As a result, the use of these advanced markers in clinical practice has so far 

been limited.

Recent advances in deep learning (DL) algorithms show great promise for the automation of 

CMR analysis. Convolutional neural networks (CNNs), have achieved previously unmatched 

accuracy in many image analysis challenges (8). Using CNNs, a wide set of cardiac 

functional parameters could potentially be obtained automatically from CMR. Several 

groups have shown that CNNs can provide accurate enddiastolic and end-systolic cardiac 

segmentations from CMR in preselected images (9–11). Although these results have gained 

significant attention, the practical implementation of DL algorithms in clinical practice and 

research is hindered by a lack of appropriate quality control (QC). Variable image quality, 

image artefacts, and unusual anatomic variations (not seen during training) are unavoidable 

in clinical imaging, and can result in significant errors if such images are analyzed 

automatically. Therefore, robust QC measures to detect (potential) erroneous output are a 

prerequisite to the translation of DL algorithms into clinical practice (12).

We aim to address this issue by developing a pipeline for comprehensive analysis of cardiac 

function (cardiac volumes, filling and ejection dynamics and myocardial strain) that includes 

robust QC mechanisms, which allows for automated cine CMR analysis without clinician 

oversight. Using our pipeline, we provide reference values for a range of automatically 

derived cardiac metrics that have not previously been reported in large subject cohorts.
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Methods

Image Analysis Pipeline

The developed image analysis pipeline consists of a DL algorithm for segmentation of short-

axis (SAX) and 2- and 4-chamber long-axis (LAX) cine CMR stacks, automated calculation 

of cardiac functional parameters and 2 QC steps: 1 before the segmentation and analysis 

steps (QC1) and 1 after (QC2). For an illustration of the pipeline see the Central Illustration 

and Video 1. Our pipeline is available for further training and use via the corresponding 

author.

Step 1: Pre-analysis Image QC (QC1)

All CMR images were screened for the presence of motion artefacts (artefacts due to 

inconsistent breath-holding, mistriggering or arrhythmias) and erroneous planning of the 4-

chamber view using 2 CNNs: a 2-dimensional CNN with a recurrent long short-term 

memory layer trained to detect motion artefacts and a 2-dimensional CNN trained to detect 

erroneous planning of the 4-chamber view (CNN4Ch). We have previously published a 

detailed description of the architecture, training, and validation of both algorithms (13,14).

Step 2: Image Segmentation

After QC1, a 17-layer CNN (CNNsegment) was used to segment the left ventricle (LV) and 

right ventricle (RV), including the LV myocardium, in all frames of the cine CMR. This 

network has been trained using manual segmentations of cine CMR images in 3,975 

subjects, consisting of both healthy volunteers as well as patients with a wide variety of 

cardiac diseases (10).

Step 3: Parameter Calculation

After segmentation, the SAX and LAX imaging stacks were aligned using an iterative 

alignment process to correct for different breath-hold positions and motion between the 

different cine-acquisitions (15). Next, LV and RV volume curves and LV mass (LVM) were 

calculated. From the volume curves, end-diastolic volume (EDV), end-systolic volume 

(ESV), stroke volume (SV), EF, peak ejection rate, peak early filling rate, atrial contribution 

(AC), and peak atrial filling rate were obtained.

Subsequently, CMR feature tracking (FT) was automatically performed on 3 SAX slices, 

and the 2- and 4-chamber LAX images. We previously published the details of this method 

(16). Briefly, CMR FT was performed using the Medical Image Registration ToolKit. The 

end-diastolic LV wall segmentations were used as the region of interest for the FT algorithm. 

Global circumferential strain (εcirc), radial strain (εrad), and longitudinal strain (εlong) were 

computed from the FT results.

Step 4: Post-Analysis QC (QC2)

In QC2, we first evaluated the orientation of the images, the presence of missing slices, and 

the coverage of the segmentations over the heart. We automatically compared the aligned 

LAX and SAX images and segmentations to determine the image plane intersections (e.g., 

did the LAX images intersect the mitral valve and apex in SAX?), presence of missing slices 
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(e.g., did the SAX stack cover the full length of the LAX segmentation?), and the coverage 

of segmentations (did LAX segmentation reach a similar level as the SAX segmentation and 

vice versa?). Next, the output parameters were inspected. If there was a >10% difference 

between LV and RV SV or a >10% difference between ventricular volumes on the first and 

last cardiac phase, the exams were flagged. Lastly, we implemented 2 support vector 

machine (SVM) classification algorithms to detect abnormalities in the obtained volume 

(SVMvol) and strain curves (SVMstrain). These SVMs were trained using output of the 

CNNsegment and FT algorithm from 500 UK Biobank subjects (300 healthy subjects and 200 

subjects with cardiomyopathy). These datasets were classified by an expert CMR 

cardiologist as right or wrong/unusual on the basis of the shape of the volume and strain 

curves, as well as the corresponding functional parameters.

All cases detected during the QC steps were flagged for clinician review.

Pipeline Validation

We validated our method in 2 ways. First, we compared the results obtained to manual 

analysis by an experienced CMR cardiologist (Validation1) in 50 healthy volunteers and 50 

patients with cardiomyopathy. These cases were not previously used during training of the 

algorithms and were randomly selected after having successfully passed the algorithm’s QC 

steps. During the manual analysis, ventricular volumes were segmented at each cardiac 

phase using commercially available CMR analysis software, CVi42 (Version 5.10.1, Circle, 

Calgary, Alberta, Canada). With the same software, CMR FT was performed to obtain strain 

values.

Secondly, we evaluated the ability of the full pipeline to detect errors in the analysis 

(Validation2) in a further 700 cases (500 healthy subjects and 200 patients with 

cardiomyopathy) randomly selected from the UK Biobank cohort, again excluding cases 

used during training. An experienced CMR cardiologist, blinded for the pipeline’s verdict, 

critically reviewed the segmentations, volume and strain curves and parameters obtained in 

step 3 and classified them as correct or erroneous. This process was facilitated by visually 

representing the images with segmentations and outcome-parameters for each case in a 

single panel to ensure apt identification of errors (Supplemental Figure 1, Video 2).

Obtaining Reference Values

After validation, we utilized the developed pipeline to obtain reference values. Healthy 

subjects were selected from a total of 9,619 cases in the UK Biobank that underwent CMR 

(17), excluding all subjects with a history of cardiovascular disease, cardiovascular risk 

factors, other systemic diseases, those taking medication for any systemic disease, and 

subjects with a body mass-index >30 kg/m2 (see all exclusion criteria in Supplemental Table 

1).

Statistics

Validation1—Dice coefficients were calculated to compare the manual and automated 

segmentations. Bland-Altman analysis and Pearson’s correlations were used to compare the 

obtained cardiac volumes, filling and ejection rates, and peak global strains to the manual 
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analysis. To verify the significance of the biases, paired t-tests versus zero values were 

applied. Finally, we compared the mean absolute errors of all parameters between healthy 

subjects and patients with disease using paired t-tests.

Validation2—Sensitivity (% of manually labelled erroneous output that was correctly 

detected by the pipeline during QC), specificity (% of output manually labelled as error-free 

that was not flagged by the pipeline during QC), and balanced accuracy were calculated for 

the total pipeline’s performance for volume and strain analysis, as well as for each individual 

parameter.

Reference values—Data were stratified by sex, and age by decade (45 to 54, 55 to 64, 

and 65 to 74 years), and the means and reference ranges (95% prediction intervals) were 

defined (18). Outliers, defined a priori as values 3 interquartile ranges below the first or 

above the third quartile, were removed from the analysis. Cardiac volumes were indexed to 

body surface area using the Dubois and Dubois formula (19). We used linear regression 

analysis to assess the impact of age on ventricular volumes, filling and ejection dynamics 

and strains. For all analyses, p values were corrected using Bonferroni correction for 

multiple comparisons. A p value of <0.05 after correction was considered statistically 

significant.

Results

Validation1

Overall, the Dice score between manual and automated segmentations was 0.93 ± 0.03% for 

the LV blood pool, 0.84 ± 0.02% for the LV myocardium, and 0.91 ± 0.03% for the RV 

blood pool segmentations. There was a good correlation between automatically and 

manually obtained cardiac volumes (LVEDV r = 0.99; LVESV r = 0.98; LVM r = 0.94; 

RVEDV r = 0.98; and RVESV r = 0.91), filling and ejection parameters (peak ejection rate r 

= 0.98; peak early filling rate r = 0.98; peak atrial filling rate r = 0.97 and AC r = 0.93) and 

strain (εcirc r = 0.91; εrad r = 0.85; εlong 2-chamber r = 0.91; and εlong 4-chamber r = 0.89). 

The Bland-Altman plots for agreement between the pipeline and manual analysis are shown 

in Figures 1 and 2. There was no significant bias for cardiac volumes and filling and ejection 

parameters, except for RVESV (bias +1.80 ml; 2.3% of the mean RVESV; p = 0.01) and 

LVM (bias +2.95 ml; 2.7% of the mean LVM; p = 0.001). For strain, there was a significant 

bias for εcirc (+0.75%; p < 0.001) and 2- and 4-chamber εlong (+1.29%; p < 0.001 and 

+1.03%; p < 0.001, respectively). Lastly, there was no significant difference in mean 

absolute error between cardiac patients and healthy volunteers for the output parameters, 

except for LVESV (4.04 ± 4.04 ml vs. 6.65 ± 5.90 ml; p < 0.01) and AC (2.19 ± 2.17 ml vs. 

3.30 ± 2.31 ml; p < 0.01) (Supplemental Table 2).

Validation2

Table 1 shows the results of Validation2. For the total pipeline, sensitivity for volume 

parameters (volume curves, cardiac volume, and filling and ejection dynamics) was 94.99%, 

whereas the specificity was 82.93%. Stratified by group, the sensitivity was 94.83% in 

healthy subjects and 95.39% in cardiac patients. For strain assessment, sensitivity and 
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specificity were 93.21% and 77.14%, respectively, and sensitivity for each subgroup was 

92.69% in healthy subjects and 94.41% in cardiac patients. Supplemental Table 3 shows data 

for all the individual parameters. The total rate of CMRs flagged by the QCs was 26% in 

healthy volunteers and 32% in cardiac patients. The final rejection rate of the pipeline after 

clinician review was 15.2% for healthy subjects and 11% for the cardiac patients.

Obtained Reference Values

A total of 2,029 subjects of the UK Biobank matched our criteria for healthy subjects and 

were processed using our pipe line (Supplemental Figure 2). During QC1, 222 cases (11%) 

were rejected for image quality. During QC2, 75 exams (4%) were automatically flagged for 

errors in cardiac volume output, whereas 119 (7%) were flagged for errors in strain analysis. 

Baseline characteristics of the remaining subjects are shown in Table 2. Reference values for 

cardiac volumes, cardiac function and filling and ejection parameters as well as εcirc, εlong 

and εrad stratified by sex are shown in Tables 3 and 4. Supplemental Table 4 shows the 

regression analysis of changes in cardiac function in men and women with age.

Discussion

In this study, we presented and validated a pipeline for automated analysis of ventricular 

function from cine CMR. Our pipeline is not solely a DL image analysis algorithm, but a 

framework that includes extensive QC steps to allow fully automatic processing of large 

numbers of CMR datasets without direct clinician oversight. We show that, using our 

proposed technique, we were able to obtain a detailed description of cardiac function in 

>2,000 healthy individuals. To the authors’ best knowledge, this is the first comprehensive 

framework for automated cine CMR analysis that approaches clinical standards of QC.

Automated QC

QC is essential in developing DL algorithms for automated processing of clinical data, but 

has so far been mostly overlooked (12). In our framework, we implemented QC in 2 separate 

steps, a pre-analysis control of image quality, QC1, and a postanalysis control of the quality 

of the output parameters, QC2.

QC1 focused on detection of motion artefacts and off-axis planning of the obtained images. 

Motion artefacts do not result in static distortion of the image, which is easily recognized in 

post-analysis QC. Instead, the dynamic motion of the heart is affected due to incorporation 

of information from unrepresentative motion states (arrhythmias or mistriggering) or 

through- and in-plane motion (breathing artefacts). Similar to off-axis planning, these 

artefacts can have a significant impact on the computed parameters.

In QC2, we used a wide range of relevant criteria to evaluate the output of our pipeline, 

including clinical knowledge (similarity between LV and RV SV), anatomical relations 

(coverage of segmentations and images in LAX and SAX) and DL algorithms. This design 

ensured that erroneous and/or anomalous outputs were detected independent of their nature, 

even in cases not anticipated during development of the algorithms. This generalization 

facilitates implementation of the pipeline in clinical scenarios, such as large research 

databases or clinical practice, where the image quality and disease are not known a priori.
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Techniques for automated QC have been previously proposed, such as motion artefact 

detection in brain magnetic resonance imaging (20), image quality evaluation in fetal (21) 

and cardiac (22) ultrasound, and detection of missing slices (23), off-axis planning (24), or 

segmentation errors (25) in CMR. So far, these techniques have been aimed at a single 

source of error and lack a generalized QC of the output based on clinical criteria. Robinson 

et al. (25) proposed a method to obtain segmentation quality scores for SAX segmentations 

from previous ratings in a large cohort of CMR segmentations. Obtaining quality scores 

from segmentations using this method, or other techniques that include uncertainty into 

segmentation networks, can complement our framework to further improve the quality of 

automated CMR analysis.

Pipeline Validation

We validated the performance of the pipeline in 2 separate steps (Validation1 and 

Validation2). The direct comparison between automated and manual analysis in Validation1 

demonstrated that the data obtained using our method was in high agreement for both 

segmentations (see Dice scores in Results subsection ‘Validation1’) as well as output 

(Figures 1 and 2). Only for LVM (+2.95 g), RVESV (+1.80 ml), and εcirc εlong strain 

(+0.75% and +1.03% to 1.29%, respectively) was there a small bias. However, these biases 

are within the range of inter- and intraobserver variabilities previously reported (6,26) and 

are unlikely to have significant clinical impact. The validation results for cardiac volumes 

(EDV, ESV, and SV) correspond well to the ones obtained in the original publication of the 

CNNsegment (10), showing its reproducibility. The Dice scores we obtained were slightly 

lower compared with the original publication of the segmentation network. The original 

network was trained and tested on segmentations made by the UK Biobank’s core analysis 

lab (6). In our paper, validation was performed against a new set of ground truth 

segmentations, performed by our own CMR cardiologists. The lower performance is 

therefore likely a reflection of the slight differences in training paradigms and segmentation 

strategies between cardiac CMR centers.

To investigate the detection of erroneous data by the QC steps of our image-processing 

pipeline, we evaluated its performance in a second, larger population. Manual analysis of all 

700 cases in Validation2 is practically unrealistic. Therefore, we focused on critical review 

of the segmentations and output parameters to score their validity and evaluated the 

pipeline’s ability to detect the erroneous cases.

The results of Validation2 show that our 2-step QC robustly detects potential erroneous 

cases. Overall, the sensitivity of the pipeline to detect errors was high for both volume 

curves (94.99%) and strain (93.21%).

The specificity of the pipeline to correctly detect good cases was lower (82.93% for volume 

curves and 77.14% for strain). This is likely a consequence of the stringent QC criteria, 

resulting in flagging of cases with severely distorted anatomy (for example, after cardiac 

surgery) or abnormal volume curves (restricted ventricles with small volumes, low EF, and 

shallow early diastolic upslope of the curve). Although the lower specificity leads to 

unnecessary clinician review, we viewed it necessary to flag such cases to create a safe 
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clinical workflow. However, the additional time for manual review is minimal because 

incorrectly flagged cases can be directly accepted upon review without adjustments.

It is noteworthy that, except for the lower specificity, our method performed similarly well in 

patients with cardiomyopathy as in healthy subjects, see the comparisons of absolute mean 

errors in validation1 (Supplemental Table 2) and sensitivity of error detection in validation2 

(Table 1, Supplemental Table 3). Only for LVSV and AC were there small differences in 

mean absolute errors, but these are unlikely to have significant clinical impact. As can be 

appreciated from the Bland-Altman plots, the errors did not significantly increase at very 

high or very low values of the parameters. This further shows that the network has been 

robustly trained and is also accurate in outliers, such as patients with severe ventricular 

dilatation.

Reference Values

After validation, we used our pipeline to obtain sex-specific reference values for the 

ventricular function parameters in a group of 2,029 healthy volunteers (Tables 3 and 4).

The values for cardiac volumes (EDV, ESV, SV, and LVM) obtained using our automated 

method are in correspondence with those manually obtained in previous sizable studies 

(6,7). In addition to these values, we also present reference values for filling and ejection 

dynamics and strain. The latter parameters have not previously been reported in large cohort 

studies. However, our results do correspond with the largest available study for filling and 

ejection parameters (27), and a meta-analysis of normal values for CMR-derived strain (28).

The total analysis time of the network was ~ 8 min/subject. This is significantly shorter than 

the time needed for manual or semiautomated segmentation and FT of the full cardiac cycle 

in SAX and LAX using the current state-of-the-art commercial software that requires 

frequent manual adjustments of semiautomated analysis in basal and apical slices of the 

acquisition.

Study Limitations

At present, this method is designed using data from our Department of Cardiovascular 

Imaging and UK Biobank. Variability in type of CMR scanners and protocols results in 

variable image-characteristics between CMR labs. To obtain similar performance in other 

laboratories, additional training of the neural networks in the framework is needed using 

data from the new site. However, the principles, including the hardcoded QC measures, 

remain valid as vital components for automation of CMR analysis in general. If adapted 

using extra training input, this method can therefore potentially provide robust analysis in 

other large datasets, research studies, or even clinical CMR services. As part of the Open 

Science initiative, our method is available for further training and use via the corresponding 

author.

Conclusions

We presented and validated a pipeline for automated analysis of cardiac function from cine 

CMR using DL. Our proposed framework includes comprehensive QC designed to detect 
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potential erroneous results for clinician review, allowing fully autonomous processing of 

CMR exams. We showed that using this tool, we were able to obtain reference values in a 

large cohort (>2,000) of subjects to characterize cardiac function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations and Acronyms

ε myocardial strain

AC atrial contribution

CMR cardiac magnetic resonance

CNN convolutional neural network

DL deep learning

EDV end-diastolic volume

EF ejection fraction

ESV end-systolic volume

FT feature tracking

LAX long-axis

LV left ventricle/ventricular

LVM left ventricular mass

QC quality control

RV right ventricle/ventricular

SAX short-axis

SV stroke volume

SVM support vector machine
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Perspectives

Competency in Medical Knowledge: CMR can provide sensitive biomarkers for cardiac 

function. However, analysis is time and labor intensive. DL can automate CMR analysis, 

but adequate QC of the algorithms is pivotal.

Translational Outlook 1: This is the first study to develop a comprehensive method for 

DL-based CMR analysis that includes extensive QC measures to flag potential erroneous 

results.

Translational Outlook 2: We show that our pipeline enables detailed characterization of 

cardiac function in an automated and accurate way in large-scale studies and potentially 

clinical practice.
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Figure 1. Bland-Altman Plots for Cardiac Volumes
(A) Left ventricular (LV) end-diastolic volume (LVEDV), (B) left ventricular end-systolic 

volume (LVESV), (C) left ventricular end-diastolic mass (LVM), (D) right ventricular end-

diastolic volume (RVEDV), and (E) right ventricular end-systolic volume (RVESV). The 

grey dotted line represents the mean bias; the pink dotted lines the limits of agreement. 

The p values represent the difference in mean bias from zero using a paired t-test. (F) The 

mean error in LV is a normalized volume curve for all cases, and both subgroups is shown.
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Figure 2. Bland-Altman Plots for LV Filling and Ejection and Global Peak Strain Parameters
(A) Peak ejection rate (PER), (B) peak early filling rate (PEFR), (C) peak atrial filling rate 

(PAFR), (D) atrial contribution (AC), (E) peak global circumferential strain (Circ), (F) 2-

chamber longitudinal strain (Ell_2Ch), (G) 4-chamber longitudinal strain (Ell_4Ch), and (H) 
radial strain (Rad). The grey dotted line represents the mean bias; the pink dotted lines the 

limits of agreement. The p values represent the difference in mean bias from zero bias using 

paired t-test. LAX = long-axis; LV = left ventricular; SAX = short-axis.
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Central Illustration. Total Image-Analysis Pipeline Including Pre- and Post-Analysis QC Steps
An animation of the pipeline is shown in Supplemental Video 1. LV = left ventricle; QC = 

quality control; RV = right ventricle.
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Table 1
Results of Validation2

Validation Total Pipeline

Sensitivity, % Specificity, % BACC, %

Volumes

    Healthy subjects        94.83        86.57   90.70

    Cardiac patients        95.39        76.78   86.09

    Overall        94.99        82.93   88.96

Strains

    Healthy subjects        92.69        77.34   85.02

    Cardiac patients        94.41        76.65   85.53

    Overall        93.21        77.14   85.18

Sensitivity, specificity and balanced accuracy (BACC) of the pipeline in detecting inaccurate or unusual output versus correct output with respect to 
manual assessment are shown.
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Table 2
Baseline Characteristics of the Healthy Subjects Included in the Analysis for Reference 
Values

Age Groups, yrs

45–54
(n = 601)

55–64
(n = 706)

65–74
(n = 454)

Age, yrs 50 ± 2 59 ± 2 67 ± 2

Male 304 (50.58) 384 (54.39) 241 (53.08)

Systolic blood pressure, mm Hg 125 ± 11 130 ± 14 137 ± 15

Diastolic blood pressure, mm Hg 76 ± 7 77 ± 8 78 ± 8

Heart rate, beats/min 59 ± 8 60 ± 9 59 ± 8

Weight, kg 74 ± 11 73 ± 12 74 ± 10

Height, cm 171 ± 8 171 ± 12 172 ± 8

Body surface area, m2 1.87 ± 0.19 1.86 ± 0.18 1.87 ± 0.17

Body mass index, kg/m2 25.0 ± 2.7 24.8 ± 2.6 25.0 ± 2.6

Values are mean ± SD or n (%).
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Table 3
Reference Values for Men by Automated Cine CMR Analysis

Age Groups, yrs

45–54 55–64 65–74

Lower Mean Upper Lower Mean Upper Lower Mean Upper

Left ventricle

    Volumes

       LV end-diastolic volume, ml 127 179 231 122 175 227 127 170 213

       LV end-systolic volume, ml 48 77 106 46 73 99 51 72 93

       LV stroke volume, ml 68 103 137 68 102 136 68 99 129

       LV mass, g 71 104 137 73 100 126 74 98 123

       Indexed LV end-diastolic volume, ml/m2 66 90 114 64 89 114 67 88 110

       Indexed LV end-systolic volume, ml/m2 25 39 52 25 37 50 27 37 48

       Indexed LV stroke volume, ml/m2 36 52 68 35 52 70 36 51 67

       Indexed LV mass g/m2 38 52 66 39 51 63 40 51 61

       LV ejection fraction, % 48 57 67 49 58 67 49 58 66

       LV mass-to-volume ratio, g/ml 0.47 0.58 0.70 0.46 0.57 0.68 0.44 0.58 0.71

    Filling and ejection dynamics

       Peak ejection rate, ml/s 362 502 643 343 483 623 329 466 604

       Peak early filling rate, ml/s 239 417 594 202 369 537 167 332 496

       Peak atrial filling rate, ml/s 77 254 431 102 269 436 63 222 382

       Atrial contribution, ml 12 32 53 15 34 54 7 27 46

       Atrial contribution, % of SV 10 32 54 18 34 50 6 28 50

    Peak global strain

       Circumferential strain SAX, % −14 −18 −26 −14 −19 −26 −15 −19 −25

       TPK circumferential SAX, ms 280 341 423 279 339 420 291 340 408

       Radial strain SAX, % 27 41 68 30 44 66 28 45 70

       TPK radial SAX, ms 276 334 413 276 330 403 286 335 403

       Longitudinal strain 2CH, % −11 −16 −22 −11 −16 −22 −11 −16 −23

       TPK longitudinal 2CH, ms 288 360 451 283 358 452 300 353 446

       Longitudinal strain 4CH, % −10 −15 −21 −9 −15 −21 −10 −16 −22

       TPK longitudinal 4CH, ms 288 361 455 281 366 450 282 363 445

Right ventricle

    RV end-diastolic volume, ml 132 196 259 128 188 247 139 188 237

    RV end-systolic volume, ml 54 89 124 49 83 117 57 84 112

    RV stroke volume, ml 72 105 139 69 105 140 73 104 135

    Indexed RV end-diastolic volume, ml/m2 69 99 128 67 96 125 75 97 119

    Indexed RV end-systolic volume, ml/m2 29 45 61 26 42 58 31 43 56

    Indexed RV stroke volume, ml/m2 37 53 69 36 54 71 39 53 68

    RV ejection fraction, % 46 54 62 47 56 65 46 55 64
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Values are means and the lower and upper bound of the 95% prediction intervals.
2CH = 2-chamber; 4CH = 4-chamber; CMR = cardiac magnetic resonance; LAX = long-axis; LV = left ventricular; RV = right ventricular; SAX = 
short-axis; TPK = time to peak.
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Table 4
Reference Values for Women by Automated Cine CMR Analysis

Age Groups, yr

45–54 55–64 65–74

Lower Mean Upper Lower Mean Upper Lower Mean Upper

Left ventricle

    Volumes

        LV end-diastolic volume, ml 98 139 180 101 133 165 98 131 163

        LV end-systolic volume, ml 34 55 76 33 51 70 34 50 66

         LV stroke volume, ml 57 84 111 59 81 103 57 79 102

         LV mass, g 51 71 91 52 69 87 54 70 86

         Indexed LV end-diastolic volume, ml/m2 61 80 99 61 78 95 59 77 95

         Indexed LV end-systolic volume, ml/m2 20 32 43 20 30 40 20 30 39

         Indexed LV stroke volume, ml/m2 35 48 62 35 47 60 33 47 61

         Indexed LV mass, g/m2 32 41 50 32 40 48 33 41 49

         LV ejection fraction, % 51 61 70 52 61 71 52 61 70

         LV mass-to-volume ratio, g/ml 0.42 0.51 0.61 0.42 0.52 0.62 0.43 0.54 0.65

    Filling and ejection dynamics

         Peak ejection rate, ml/s 266 386 507 263 370 477 259 363 466

         Peak early filling rate, ml/s 231 364 497 207 322 436 179 302 425

         Peak atrial filling rate, ml/s 54 204 355 73 223 373 82 234 386

         Atrial contribution, ml 8 24 41 11 27 44 13 29 44

        Atrial contribution, % of SV 13 29 44 17 33 50 20 36 51

    Peak global strain

        Circumferential strain SAX, % −14 −20 −26 −14 −20 −26 −14 −20 −26

        TPK circumferential SAX, ms 278 356 413 279 356 416 277 357 417

        Radial strain SAX, % 24 47 68 28 47 69 27 46 68

        TPK radial SAX, ms 275 358 401 275 358 407 271 360 408

        Longitudinal strain 2CH, % −11 −17 −22 −10 −17 −22 −11 −17 −21

        TPK longitudinal 2CH, ms 277 374 451 281 374 451 277 378 458

        Longitudinal strain 4CH, % −9 −15 −21 −10 −15 −21 −10 −16 −21

        TPK longitudinal 4CH, ms 274 372 451 278 372 453 284 378 453

Right ventricle

    RV end-diastolic volume, ml 97 142 188 101 139 176 99 132 164

    RV end-systolic volume, ml 34 58 82 33 56 79 34 52 70

    RV stroke volume, ml 57 84 111 60 83 106 60 80 99

    Indexed RV end-diastolic volume, ml/m2 59 82 105 62 80 99 58 78 98

    Indexed RV end-systolic volume, ml/m2 21 33 46 20 33 45 20 31 41

    Indexed RV stroke volume, ml/m2 34 48 62 36 48 60 34 48 62

    RV ejection fraction, % 50 59 68 50 60 70 54 61 68
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Abbreviations as in Table 3.
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