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Abstract

Gene evolution is traditionally considered within the framework of the molecular clock (MC) model whereby each gene is charac-

terized by an approximately constant rate of evolution. Recent comparative analysis of numerous phylogenies of prokaryotic genes

has shown that a different model of evolution, denoted the Universal PaceMaker (UPM), which postulates conservation of relative,

rather than absolute evolutionary rates, yields a better fit to the phylogenetic data. Here, we show that the UPM model is a better fit

than the MC for genome wide sets of phylogenetic trees from six species of Drosophila and nine species of yeast, with extremely high

statistical significance.Unlike theprokaryoticphylogenies that includedistantorganismsandmultiplehorizontalgene transfers, these

aresimpledatasets thatcovergroupsofclosely relatedorganismsandconsistofgenetreeswiththesametopologyas thespecies tree.

The results indicate that both lineage-specific and gene-specific rates are important in genome evolution but the lineage-specific

contribution is greater. Similar to the MC, the gene evolution rates under the UPM are strongly overdispersed, approximately 2-fold

compared with the expectation from sampling error alone. However, we show that neither Drosophila nor yeast genes form distinct

clusters in the tree space. Thus, the gene-specific deviations from the UPM, although substantial, are uncorrelated and most likely

dependonselective factors thatare largelyuniqueto individualgenes.Thus, theUPMappears tobeakey featureofgenomeevolution

across the history of cellular life.
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Introduction

Molecular clock (MC) is one of the central concepts of molec-

ular evolution. The MC was discovered in 1962 by

Zuckerkandl and Pauling who observed that the number of

amino acid differences between the sequences of homolo-

gous proteins was roughly proportional to the time that

elapsed since the radiation of the corresponding species

from their last common ancestor (Zuckerkandl and Pauling

1962, 1965). The MC became the foundation of molecular

dating whereby the age of an evolutionary event, usually the

radiation of two evolutionary lineages from the common an-

cestor, is estimated from the sequence divergence using dates

known from the fossil record as calibration points (Kumar and

Hedges 1998; Hedges 2002; Graur and Martin 2004; Welch

and Bromham 2005). In phylogenetic terms, when genes

evolve along a rooted tree under the MC, branch lengths

are proportional to the time between speciation (or duplica-

tion) events and the distances from each internal tree node to

all the descendant leaves are the same (ultrametric tree), up to

the sampling error.

The general validity of the MC was supported by numerous

independent subsequent studies (Kimura 1987; Zuckerkandl

1987; Bromham and Penny 2003; Lanfear et al. 2010).

However, the MC has been shown to be strongly overdis-

persed, that is, the differences between the root to tip dis-

tances in most subtrees of a given phylogenetic tree typically

greatly exceed the expectation from sampling error, under the

assumption of a Poisson mutational process (Takahata 1987;

Cutler 2000; Wilke 2004; Bedford and Hartl 2008) (more pre-

cisely, the rates on individual tree branches are overdispersed

relative to the expectation but the phrase “overdispersed

clock” has become common). The overdispersion of the MC

appears to be lineage-specific: In lineages with large effective

population sizes, the MC is overdispersed to a significantly

greater extent than the MC in lineages with small populations,

with the implication that deviations from the MC are at least
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partially caused by selection (Bedford et al. 2008). The dem-

onstration of the overdispersion of the MC inspired the various

flavors of relaxed MC model under which the gene-specific

evolutionary rate is allowed to differ between branches, either

in a correlated manner or through independent sampling

from a prior distribution. However, in both cases, the variance

of the rates is constrained by design, for the uncorrelated

models by the choice of the prior distribution (Thorne et al.

1998; Drummond et al. 2006; Drummond and Suchard

2010). The relaxed MC models underlie most of the modern

methods of molecular dating.

An important evolutionary phenomenon that can be

viewed as being complementary to the MC is lineage-specific

change of gene evolutionary rates. For example, genes of

rodents in many cases evolve substantially faster than the

orthologous genes in primates (Bromham 2009, 2011).

Similarly, a genome-wide analysis of ratios between the

evolutionary rates of orthologous genes in triplets of related

bacterial, archaeal, and mammalian species revealed near

constancy of these ratios, with only a small percentage of

gene-specific deviations that were attributed to functional di-

versification of individual genes (Jordan et al. 2001). Analysis

of phylogenetic trees for 44 mammalian genes demonstrated

that lineage-specific slowdown of evolution occurred

independently in several orders including primates and

whales (Bininda-Emonds 2007). Phylogenetic analysis of

mitochondrial DNA that extensively sampled numerous taxa

also detected robust lineage-specific rates that differed by up

to an order of magnitude between animal taxa (Martin et al.

1992; Nabholz et al. 2009). However, several studies have

revealed major differences between lineages in the relative

rates of evolution of different genes; these findings put the

validity of lineage-specific rates into question and led to the

concept of “erratic evolution” (Ayala 2000; Rodriguez-Trelles

et al. 2001).

The ultimate causes of lineage-specific accelerations or

decelerations of evolution rates are not well understood and

could be extremely diverse. However, the universal proximal

cause, most likely, is the increase or decrease of the effective

population size of the corresponding organisms that affects

the strength of selection and modulates the selection-

dependent components of the evolution rate. Accordingly,

one could expect that such changes of gene-specific evolu-

tionary rates apply to all genes in the evolving genomes. This

expectation is compatible with the observation that the shape

of the distribution of evolution rates across the complete sets

of orthologous genes in pairs of related genomes remains

virtually unchanged throughout the evolution of life, from

bacteria to mammals (Grishin et al. 2000; Wolf et al. 2009).

Together, the remarkable conservation of evolutionary rate

distribution across the entire spectrum of life and the obser-

vations on lineage-specific changes of evolutionary rates

prompted us to develop a new model of gene and genome

evolution that is more general than the MC and that we

denoted Universal PaceMaker (UPM) of Genome Evolution

(Snir et al. 2012). Under the UPM model, all genes evolve at

approximately constant rates relative to each other, that is, the

changes in the gene-specific rates of evolution are strongly

correlated genome wide. Clearly, this model of evolution

implies the conservation of the genome-wide distribution of

evolutionary rates without requiring that the absolute evolu-

tionary rates remain constant (the definition of the MC).

However, relative rates of evolution would remain approxi-

mately constant under the MC model as well.

To determine which model, MC or UPM, better fits the

available data on genome evolution, we devised a test that

involved fitting phylogenetic trees for individual genes to the

species tree constrained according to each of the two models

(Snir et al. 2012). Specifically, under the MC, the branch

lengths are constrained by the requirement for ultrametricity,

that is, the distances from each internal tree node to all its

descendant leaves are required to be the same (up to the

estimate precision determined by sampling error). There are

no such constraints under the UPM model, so the fit of each

branch in each gene tree (GT) to the respective branch in the

species tree can be optimized separately. Using the appropri-

ate information criteria to account for the different number of

degrees of freedom, we showed that for a set of several thou-

sand trees of conserved archaeal and bacterial genes, the UPM

model yielded a significantly better fit than the MC model to

the supertree (ST) that was employed to approximate the spe-

cies tree of prokaryotes.

Although a better fit to the data on the evolution of

numerous genes than the MC, the UPM is itself strongly over-

dispersed (Snir et al. 2012). By comparing the positions (ranks)

of individual genes in the rate distributions for multiple, diverse

groups of closely related organisms, we showed that,

although the gene-specific relative rate is an important feature

of genome evolution that explains more than half of the

evolutionary distance variation, the ranges of relative rate var-

iability are extremely broad even for universal genes (Wolf

et al. 2013).

In our previous analysis, the advantage of the UPM model

over the MC was demonstrated for a data set that included

genes of archaea and bacteria that are separated by billions of

years of evolution and for which the tree topologies are

strongly affected by extensive horizontal gene transfer.

Furthermore, there is no species tree in the strict sense for

prokaryotes, so the ST that appeared to reflect a central

trend of vertical evolution was used as a surrogate. We

sought to compare the UPM and MC models on simpler,

more robust data sets of eukaryotic genes for which the to-

pology is in agreement with an unequivocally defined species

tree. Using such robust data sets for Drosophila and yeast

species, we show here that the UPM model in each case

gives a superior fit to the data compared with the MC

model. We further develop a general theory that combines
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the two models of evolution. The results indicate that the UPM

model reflects a pervasive aspect of genome evolution.

Materials and Methods

Analysis of Drosophila Gene Families

Aligned sequences of Drosophila gene families and corre-

sponding tree topologies were obtained from the Dfam data-

base (http://www.indiana.edu/~hahnlab/fly/DfamDB, last

accessed May 22, 2014) (Clark et al. 2007; Hahn et al.

2007). Alignment positions with more than 50% of gap char-

acters were removed. Tree edge lengths for the given topol-

ogy were calculated using the RAxML program under

PROTGAMMALG evolution model (Stamatakis 2006). The

phylogenetic tree topology for 12 Drosophila species was ob-

tained from Clark et al. (2007). The data on the abundances of

protein and mRNA products of Drosophila melanogaster

genes were obtained from Laurent et al. (2010). The “evolu-

tionary age” of D. melanogaster genes was obtained from

Wolf et al. (2009).

Analysis of Saccharomycetales Gene Families

Sequences of the gene complements of Saccharomycetales

and their assignments to families were obtained from the

Génolevures site (http://www.genolevures.org/, last accessed

May 22, 2014) (Sherman et al. 2009). Sequence alignments

were generated using the MUSCLE program (Edgar 2004).

Alignment positions with more than 50% of gap characters

were removed. Phylogenetic tree reconstruction, tree edge

length calculation, and tree topology testing were performed

using the RAxML program under the PROTGAMMALG evolu-

tion model (Stamatakis 2006). The abundances of protein and

mRNA products of Saccharomyces cerevisiae genes were ob-

tained from Laurent et al. (2010). The “evolutionary age” of

Aspergillus fumigatus orthologs of S. cerevisiae genes was

obtained from Wolf et al. (2009).

ST Edges, Evolution Rates, and Model Comparison

As described previously (Snir et al. 2012), we assume that all

deviations of the observed GT edge lengths from their expec-

tations can be expressed as a single factor ", which assumes

independent randomly distributed values (eq. 5). Under the

further assumption that " comes from a normal distribution,

the maximum-likelihood solution for b and r is equivalent to

finding the minimum of the Euclidean norm for the deviation

of the observed edge lengths from the expected lengths:

E2 ¼
X

k

E2
k ¼

X

k

X

i

ðln li, k � ln birkÞ
2, ð1Þ

where the summation for i is done over the ST edges and the

summation for k is done over all GTs.

For the case analyzed here, that of a 1:1 mapping between

GT and ST edges, an analytical, closed form solution to

equation (1) can be obtained using a linear algebraic approach

(Strang 2005). However, this operation turned to be infeasible

for the amount of data handled in this work. We therefore

resorted to a numerical solution as follows.

For a given b, one can easily obtain optimal values for r as a

closed form solution by minimizing Ek
2 individually for each

gene g. Therefore, we employed a numerical optimization

program “fmin_slsqp” from the Python scipy.optimize pack-

age to search for the optimum values of b and used analyti-

cally computed values of r for each state of b to estimate the

corresponding value of E2. Typically, numerical approaches

use multiple starting points to avoid being trapped at local,

suboptimal maxima. However, as shown in our previous work

(Wolf et al. 2013), the surface under study has a unique local

(and hence also global) optimum point. Therefore, we pur-

sued the following approach. We sampled a small (~100)

random set of genes G0 and analytically found the optimum

of b over G0. Given the obtained optimal values of b (for the

subset G0), we infer the optimal values for the entire gene set

G and used these values as a starting point for the search

described above (the Python code implementing this algo-

rithm is available from the authors upon request).

Optimization under the UPM model used unconstrained

values of b; for the MC model, ultrametricity constraints

were applied (Snir et al. 2012), again using the constrained

optimization program fmin_slsqp. The Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC) were

used to compare the goodness of fit of the MC and UPM

models:

�AIC ¼ AICMC � AICUPM ¼ n ln
E2

MC

E2
UPM

� 2�d, ð2Þ

�BIC ¼ BICMC � BICUPM ¼ n ln
E2

MC

E2
UPM

��d ln n, ð3Þ

where E2
MC and E2

UPM are the deviation norms for the MC and

UPM models, n is the total number of edges in GTs, and �d is

the number of constraints in the MC model (five and eight for

Drosophila and Saccharomycetales, respectively).

Results

The Universal Genome Pacemaker and MC

In multicellular eukaryotes with a clear separation between

the germline and the soma, the histories of most of the in-

dividual genes agree with each other, and their common to-

pology represents the species tree. For organisms whose

history includes extensive horizontal gene exchange, all indi-

vidual gene phylogenies could, in principle, be different, so

instead of the species tree, the dominant vertical trend of

evolution can be represented by a ST. For the sake of gener-

ality, we will refer to the rooted tree topology that is assumed

to represent the history of the given set of organisms as the

“supertree” (fig. 1).
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As the ST is assumed to reflect the history of organisms (to

the extent the concept is applicable), its internal nodes (includ-

ing the root) represent speciation events. Excluding cases of

extreme compressed cladogenesis, where the new lineages

arise at such short intervals that the emerging clades inherit

nonsegregated polymorphisms from the ancestral population,

speciation events correspond to time points in the past. Thus,

the ST can be mapped to an ultrametric tree of the same

topology where the distances between each internal node

and each of its descendant leaves are equal to each other

and to the time elapsed since speciation. The lengths of the

edges in this tree also can be expressed in time units as the

duration of intervals between the speciation events. We will

refer to this tree as the “time tree” (TT; fig. 1).

Consider a set of “gene trees” (fig. 1) that reflect the (re-

constructed) phylogenetic history of individual genes. In gen-

eral, the GT topology may be different from that of the ST

because of artifacts of phylogenetic reconstruction, gene loss,

gene duplication, and horizontal gene transfer. Thus, the

mapping between each GT and the ST involves the correspon-

dence between a path (a set of consecutive edges) in the GT

and a path in the ST, and some of the leaves in both GT and ST

might have to be omitted to obtain the maximum agreement

subtree (MAST). However, for the purpose of this work, we

will consider only “perfect” GTs that contain exactly one leaf

from each of the organisms in ST and the GT topology is the

same as the ST topology. In this case, each GT is isomorphic to

the ST, and there exists an unambiguous one-to-one mapping

between the GT and ST edges.

Now consider a particular kth GT. For each ith edge of this

GT, the relationship between its length and the corresponding

ST and TT edges can be expressed as:

li, k ¼ birk�i, k ¼ ti�i rk�i, k, ð4Þ

where li,k is the length of the ith edge of the kth GT, bi is the

length of the ith edge of the ST, and ti is the length of the ith

edge of the TT. The length of the GT edge differs from the

length of the corresponding ST edge by a factor that can be

decomposed into two components, ri, which is common to all

edges in the kth GT, and �i,k, specific to this particular edge.

The lengths of the corresponding GT and TT edges (the latter

subject to ultrametricity constraints) differ by a factor �i. For

convenience, we will represent �i and �i,k in an exponential

form:

li, k ¼ birk expð"i, kÞ ¼ ti expðEiÞrk expð"i, kÞ: ð5Þ

In these terms, the expected length of the ith edge of the

kth GT is given by the product of the length of the ith ST edge

bi and the relative evolution rate of the kth gene ri. The devi-

ation of the observed length li,k from this expectation,

�i,k¼ exp("i,k), can be attributed to multiple causes including

the error of edge length estimation and local change of evo-

lution rate. Here, we assume that all these factors can be

represented by a single combined random variable ei,k with

the expectation of 0. This assumption allows us to obtain the

best estimate for the unknown lengths of ST edges (vector b)

and unknown relative evolution rates for the genes (vector r)
from the observed GT edge lengths by minimization of the

apparent variance of ". In particular, under the assumption of

a normal distribution of ", the minimum deviation between

the li,k from its expectation biri (minimum variance of ") corre-

sponds to the maximum-likelihood solution for b and r.
The relationships between the ST and TT edges, bi¼ ti,

exp(E i), can be described in the following terms. If

Var(E)¼0 for all edges, bi is proportional to ti (i.e., all lineages

evolve at the same rate relative to each other) and the ST is

also ultrametric. In this case, when one finds the solution for b
and r, one would need to apply ultrametricity constraints on

the values of b. In the opposite case of Var(E)!1, there is

no relation between the ST edge length and the duration of

time for which the (ancestral) lineage existed. In this case, one

would solve for the minimum variance of " with uncon-

strained values of b.

The two extreme cases (Var(E) ! 0 and Var(E) ! 1)

describe the two opposing modalities of molecular evolution:

MC and unconstrained UPM. The range of intermediate

regimes can be referred to as “constrained universal

pacemaker” or “relaxed molecular clock” (e.g., as described

in Renner [2005]). Under these models, the evolution rates

relative to time can differ between lineages, but abrupt rate

changes are penalized in likelihood computation.
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FIG. 1.—Relationships between the TT, ST, and GTs. Examples of

edges corresponding to each other in TT, ST, and GTs are highlighted in

the same color.
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Analysis under the most general constrained UPM model

requires disentangling the contributions from lineage-specific

rate variations among multiple genes and rate variations in

individual genes to the deviation of the observed GT edge

lengths from the TT edge lengths. Because the level of con-

straint is not known beforehand, such an analysis is subject to

much uncertainty. Thus, we use the simplifying assumption of

the strict MC and the unconstrained UPM as two alternative,

extreme regimes of evolution and seek to determine which of

these regimes yields a better fit to the genome-wide phyloge-

netic data.

UPM and MC in Drosophila

The initial data set consisted of 6,698 gene families that con-

tained exactly one gene from each of the 12 Drosophila spe-

cies in the Dfam database. Of these, 2,900 families have Dfam

tree topology that agrees with the known species tree topol-

ogy. We calculated the tree edge lengths for these families

and used them to find the maximum-likelihood estimates for

the ST edge lengths (b) and gene evolution rates (r) under the

UPM model.

The solution thus obtained shows an extremely high level

of deviation of the estimated edge lengths from the observed

values. The root mean square deviation (RMSD) for this set of

60,900 tree edges (21 edge in each of the 2,900 trees) was

1.66 natural log units (RMSD factor of 5.24�), compared with

the RMSD of 0.76 natural log units in our earlier published

estimates for prokaryotic gene families (Snir et al. 2012). At

face value, this result implies that the evolution of genes

within a single genus of insects is subject to a much greater

variability of evolution rates than the evolution of diverse gene

families that span the entire depth of the history of cellular life.

However, we suspected that the observed high variability in

these data was primarily an artifact caused by the presence of

numerous short edges in the GTs. Obviously, the lengths of

short edges are estimated from a small number of inferred

substitutions and thus are subject to a high uncertainty. We

tested this possibility using two approaches. First, from the

reconstructed UPM ST edge lengths, we selected 10 tree

edges that typically are longer than the other 11 edges and

repeated the UPM optimization with only these 29,000 edges.

Second, we discarded all trees that either include the shortest

edge with less than 0.0005 substitutions per site or the longest

edge with more than 3 substitutions per site. The 16,422

edges of the remaining 783 trees were used to find the opti-

mal UPM solution. The two procedures indeed reduced the

RMSD to 0.80 and 0.59 log units, respectively, in agreement

with our expectations.

To minimize the effect of short edges, we reduced the

original Drosophila data set to six species that are widely

separated in the original 12-species tree: Drosophila

ananassae, D. grimshawi, D. melanogaster, D. mojavensis,

D. pseudoobscura, and D. willistoni. Gene families with exactly

one gene from each of these species, and GT topology match-

ing that of the species tree were selected, and the edge

lengths calculated. After removing trees with excessively

long or short edges (using the thresholds of 3 and 0.0005

substitutions per site, respectively), 6,989 GTs were used for

the subsequent analysis (62,901 tree edges with nine edges in

each tree). In this data set, the deviation of observed edge

lengths from the expected edge lengths is reduced dramati-

cally (table 1 and fig. 2A) to 0.47 log units (RMSD factor of

1.61�). This is considerably less deviation than previously

found in the nearly universally conserved genes of prokaryotes

estimated across the whole tree of life (0.76 log units; Snir

et al. [2012]) and is comparable to the deviation that was

previously obtained for selected, optimally spaced pairs of ge-

nomes (0.41 log units; Wolf et al. [2013]).

In contrast to the UPM, the MC model implies an ultra-

metric ST. Ultrametricity constraints necessarily increase the

deviation of the observed edge lengths from the expected

values. For the six Drosophila species data set, the optimization

under the MC constraints increases the per-edge variance by

2.2% (0.23 vs. 0.22) compared with the optimization under

the UPM (table 1 and fig. 2B). The better fit of the UPM model

is achieved at the expense of extra degrees of freedom (5 for a

six-species tree). We employed the AIC and BIC to compare

the quality of fit for the two models. Despite the small differ-

ence in the variance, both comparisons indicate strong sup-

port for the UPM model (table 1), with relative likelihood

weights of 10+295:1 and 10+285:1, respectively.

To test whether the advantage of the UPM over the MC is a

characteristic of the majority of gene families rather than an

artifact of selecting the “perfect” six-species trees, we per-

formed the analysis on a much wider set of genes (11,005 vs.

6,989) using the previously described approach (Snir et al.

2012). If paralogs were present, the orthologs with the high-

est similarity to other family members were selected to repre-

sent each of the six species. For GTs reconstructed without

Table 1

Comparison of the MC and UPM Models for “Perfect” GTs of

Drosophila and Yeast

Variable Drosophila Yeast

UPM MC UPM MC

Number of trees 6,989 1,005

Number of species 6 9

Number of edges 62,901 15,075

Variance per edge 0.22 0.23 0.24 0.28

RMSD, ln units 0.47 0.48 0.49 0.53

RMSD factor 1.61 1.61 1.64 1.70

Number of constraints 0 5 0 8

Delta AIC 0 1,359.0 0 2,005.4

Delta BIC 0 1,313.7 0 1,944.4

Sampling variance per edge 0.10 — 0.14 —
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constraints, the MAST was by comparing the GT with the ST;

the MASTs with four or more species were analyzed with and

without the ultrametricity constraints. Both AIC and BIC indi-

cate an overwhelming preference for the UPM model (table 2)

despite the substantial increase in the residual variance (2.8�).

UPM and MC in Saccharomycetales Yeast

The Génolevures database contains 1,689 gene families with

exactly one gene from each of the nine species of

Saccharomycetales (Candida glabrata, Debaryomyces hanse-

nii, Eremothecium [Ashbya] gossypii, Kluyveromyces lactis, K.

thermotolerans, S. cerevisiae, S. kluyveri, Yarrowia lipolytica,

and Zygosaccharomyces rouxii). We reconstructed multiple

alignments and phylogenetic trees for all these families.

There seems to be a broad consensus on the species phylog-

eny among these nine yeast species although two distinct

placements of E. gossypii have been proposed, namely as a

sister group to K. thermotolerans (Scannell et al. 2007) or as an

outgroup to the branch that encompasses Saccharomyces,

Candida, Zygosaccharomyces, and Kluyveromyces (Dujon

2010). We found that our reconstructed trees better agreed

with the former topology and used it throughout this work.

There are 1,005 Saccharomycetales gene families that sat-

isfy the following criteria: 1) exactly one gene from each of the

nine species; 2) sequence alignment is compatible with the

species tree topology (i.e., the species tree topology is not

rejected by the Shimodaira–Hasegawa test compared with

the maximum-likelihood topology at 0.05 significance level);

and 3) all tree edge lengths are between 0.0005 and 3 sub-

stitutions per site. This set containing 15,075 tree edges (15

per tree) was used for the subsequent analysis.

For these trees, the RMSD of observed edge lengths from

their expectations under the UPM model was 0.49 natural log

units (RMSD factor of 1.64�), nearly the same as in Drosophila
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FIG. 2.—Distribution of expected versus observed tree edge lengths in Drosophila and Saccharomycetales GTs under the UPM and MC models.

Probability density is shown by color. (A) Drosophila, UPM; (B) Drosophila, MC; (C) Saccharomycetales, UPM; and (D) Saccharomycetales, MC.
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species (table 1 and fig. 2C). Analysis under the MC con-

straints resulted in the per-edge variance increase by 14%

(0.28 vs. 0.24, table 1 and fig. 2D), indicating an overwhelm-

ing support for the UPM model (AIC and BIC relative likelihood

weights of 10+435:1 and 10+422:1, respectively).

As with Drosophila, analysis of the wider set of genes

(3,865 genes with no requirement for single orthologs and

no constraints on reconstructed topology) reveals that the

support for the UPM over the MC is robust and is not an

artifact of the tree selection (table 2).

Sources of Evolutionary Rate Variation

There seem to be two major causes of the deviation of the

observed tree edge lengths from the expected values. One

cause is purely technical: Distances are estimated using a

finite number of amino acid replacements that is inferred

for a particular edge under a particular evolutionary model

using an imperfect algorithm. The other source of variation

is rooted in biology: Changes in the selection pressure and

mutational context cause changes in the evolution rates of

particular genes on particular edges relative to the genome-

average rate in the course of evolution, resulting in changing

positions of the respective genes in the distributions of evolu-

tionary rates.

We sought to disentangle these sources of evolutionary

rate variation by creating artificial gene sets that are devoid

of biological variation. To this end, we employed the following

procedure separately with the Drosophila and

Saccharomycetales sets of 6,989 and 1,005 genes, respec-

tively: First, all genes were ranked by the lengths of their se-

quence alignments. We selected 400 genes around the 75th

length percentile, ranked them by their inferred relative evo-

lution rates (r), and selected 100 genes around the median

rate. The alignment columns in the alignments of each of

these 100 genes were sampled with replacement to create

a set of artificial alignments with the same lengths as the

original alignments. Thus, we obtained 100 sets of 6,989

“genes” and 100 sets of 1,005 “genes” that mimicked, re-

spectively, the real Drosophila and Saccharomycetales gene

families in terms of the number and lengths of genes but

with each set populated by alignment columns derived from

one gene only. Each of these artificial sets remains subject to

sampling variation and to errors of edge length computation,

but any potential biological source of variation between the

genes is eliminated. For all “genes” in each of these sets, edge

lengths were estimated for the tree with the respective species

tree topology; trees with short (<0.0005) or long (>3) edges

were discarded; the remaining trees were used to estimate the

edge length variance. Average per-edge variance was com-

puted for both groups.

Resampling of both Drosophila-derived and

Saccharomycetales-derived genes produced similar results

(table 1). The mean per-edge variance in these artificial gene

sets was 0.10 and 0.14 which represents, respectively, 44%

and 55% of the variance observed in the real data. Thus,

approximately half of the apparent variation of evolutionary

rates of individual genes in each lineage can be accounted for

by sampling variation and errors in edge length estimates

whereas the other half is likely to arise from biological sources.

In other words, this observation suggests that the UPM is

overdispersed by a factor of approximately 2 relative to

what one would expect from technical reasons alone.

Genome-Wide Universality of the Pacemakers

We have shown previously that despite substantial variation,

genes in prokaryotes generally evolve at relative rates that are

characteristic for the respective gene families; in other words,

a particular gene retains approximately the same position in

the distribution of evolution rates in many evolving lineages

(Wolf et al. 2013). Here, we show that genes in two distant

groups of eukaryotes display similar magnitudes of relative

rate variation, so the concept of family-specific relative evolu-

tion rates appears to hold across the entire spectrum of cellular

life. The existence of stable, family-specific relative evolution

rates is the simplest explanation of the striking conservation of

Table 2

Comparison of the MC and UPM Models for the MASTs from

Drosophila and Yeast

Variable Drosophila Yeast

UPM MC UPM MC

Number of trees 11,005 3,865

Number of species 4–6 4–9

Number of edges 87,321 37,148

Variance per edge 0.62 0.63 0.40 0.43

RMSD, ln units 0.79 0.79 0.63 0.66

RMSD factor 2.20 2.21 1.89 1.93

Number of constraints 0 5 0 8

Delta AIC 0 687.9 0 2,661.5

Delta BIC 0 641.0 0 2,593.4

drosophila

yeast

0.01 0.1 1 10 100
rela�ve evolu�on rate

FIG. 3.—Distribution of relative evolution rates of Drosophila and

Saccharomycetales gene families.
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the distributions of evolution rates in widely different lineages

(Grishin et al. 2000; Wolf et al. 2009). As expected, the evo-

lution rates of Drosophila and Saccharomycetales families

form approximately symmetrical bell-shaped distributions in

the log scale (fig. 3), similar to the rate distributions in other

lineages (Grishin et al. 2000; Wolf et al. 2009).

Similar to the MC, the UPM is overdispersed (Snir et al.

2012), and in the preceding section, we quantify this over-

dispersion to show that it exceeds the dispersion predicted

from sampling error approximately by a factor of 2.

Potentially, the overdispersion of the UPM could be caused

by the action of multiple pacemakers that would differentially

affect the acceleration or deceleration of evolution of different

groups during the evolution of a given lineage. If such groups

exist, the corresponding GTs would be expected to have the

same topology but distinct shapes, that is, different patterns of

relatively long and short branches. Hence, a simple test for the

existence of multiple distinct pacemakers. If the edge lengths

of a particular GT are divided by the relative evolution rate of

the given gene, the normalized relative edge lengths form a

vector that identifies a point in a multidimensional space that

describes the tree shape. Trees of similar shapes would form

clusters in this space. Edge lengths within a tree are not com-

pletely independent of each other because real GTs, although

not ultrametric, still retain some correlation between the edge

length and time intervals separating the speciation events.

Thus, it is appropriate first to transform the original space of

relative edge lengths into a tree shape space with uncorrelated

dimensions. We performed such a transformation using the

unscaled principal component analysis. In the principal com-

ponent space of Drosophila GTs, the first seven principal di-

mensions account for more than 90% of the original variance

of the nine-dimensional edge length space. With

Saccharomycetales GTs, the first nine principal dimensions ac-

count more than 90% of the original variance of the 15-di-

mensional edge length space.

Drosophila and Saccharomycetales GTs were placed in the

seven- and nine-dimensional tree shape spaces, respectively,

and probed for the existence of clusters using the Gap

Function statistics (Tibshirani et al. 2001). Neither set of

trees showed any indication of statistically significant cluster-

ing when grouping into 2–20 clusters were tested for both

sets. The lack of significant clustering and the pattern of dis-

tribution of GTs in the tree shape space suggests random

isotropic scatter around a single centroid, that is, random

uncorrelated deviations from a single, universal, genome-

wide pacemaker (fig. 4).

Correlates of Evolutionary Rate Variation

There exists a considerable diversity in the magnitude of devi-

ation of individual GTs from the UPM ST, that is, in how strictly

the evolution of the given gene follows the UPM. Thus,

among the analyzed 6,989 Drosophila genes, the 5th and

95th percentiles correspond to RMSD factors of 1.23� and

2.20�, respectively, with the median of 1.48�. As shown

above, sampling variation accounts for approximately half of

the variance, so one would expect the deviations in individual

genes to correlate with gene features that affect the sampling

statistics. Given that the other half of the variance apparently

arises from biological sources, it was of interest to explore the

properties of genes that might affect how closely they follow

the universal genomic pacemaker.

To this end, we calculated the Spearman rank correlation

between the deviation of GT edge lengths from UPM-derived

expectations and gene length, relative evolution rate, protein

abundance, mRNA abundance, and gene “evolutionary age”

(table 3; and see Materials and Methods for details). As
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FIG. 4.—The GTs for Drosophila and Saccharomycetales in the plane

of the first two principal components of the tree shape space. (A) 6,989

Drosophila trees; (B) 1,005 Saccharomycetales trees.
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expected, the magnitude of the deviation from the UPM

shows significant negative correlation with both gene length

and the relative evolution rate (see supplementary file S1,

Supplementary Material online). Indeed, having more actual

mutations, either because of a greater gene length or a

greater evolution rate or both, increases the accuracy of the

distance estimates. Somewhat unexpectedly, a positive corre-

lation was detected between the magnitude of the deviation

and gene product abundance, measured either at the protein

level or at the mRNA level, that is, genes for abundant proteins

tend to deviate from the UPM to a greater extent than genes

for low-abundance proteins. A potentially plausible explana-

tion could be that this positive correlation was an indirect

effect of the slow evolution that is typical of genes encoding

abundant proteins (Duret and Mouchiroud 2000; Pal et al.

2001; Wolf et al. 2006; Drummond and Wilke 2008, 2009).

However, multivariate linear regression revealed independent

significant contributions of four factors (gene length, relative

evolutionary rate, protein abundance, and mRNA abundance)

(see supplementary file S1, Supplementary Material online). In

particular, perhaps counterintuitively, protein and mRNA

abundance make opposite contributions to the deviation of

a given GT from the UPM. The “evolutionary age” of a pro-

tein, that is, the depth of the last common ancestor for which

homologs were detectable (Wolf et al. 2009), did not show

any correlation with the evolution rate variability.

Discussion

In the previous work, we formulated the UPM model and

showed that it was a better fit for the evolution of conserved

prokaryotic genes than the traditional MC model (Snir et al.

2012). The comparison of the two models of evolution for

prokaryotes involved trimming the GTs to the MASTs to fit

the edge lengths to those in the ST. The ST itself, in this case, is

not a bona fide species tree but rather a consensus of GT

topologies that appears to represent a central trend of vertical

evolution in the “phylogenetic forest” (Puigbo et al. 2009).

Furthermore, the phylogenetic trees for many of the con-

served prokaryotic genes involved sequences separated by bil-

lions of years of evolution. Taken together, all these

confounding factors increase the uncertainty that is associated

with the GT to ST fit estimations. In particular, the magnitude

of the advantage of the UPM (albeit statistically highly signif-

icant) over the MC could have been affected by these

uncertainties.

In this study, we chose as the primary data much simpler

and “cleaner” sets of eukaryotic genes from two groups of

well-characterized model organisms with an unambiguously

resolved species trees. From these data sets, it was possible to

select large sets of GTs that were topologically identical to the

species tree, thus substantially reducing the uncertainty in the

comparison of evolutionary models. For both data sets, we

obtained results that were readily compatible with those of

the previous study, namely that the UPM model gave a better

fit to the data than the MC model, with an overwhelming

statistical significance. However, this straightforward analysis

of relatively recent evolutionary processes again showed that

the difference between the two models of evolution ac-

counted for a small part of the variance in the evolutionary

rates. We compared the results of this analysis of “perfect”

with much larger sets of MASTs for both groups of organisms

(following the lines of the previous study [Snir et al. 2012]) and

observed full consistency between the two series of analyses,

with the advantage of the UPM over the MC being highly

significant in all cases but more pronounced for the “perfect”

data sets.

Thus, the results of this work, together with the previous

findings, indicate that the UPM model most likely describes

the course of evolution throughout the entire history of life.

Across a broad range of life forms, the UPM model approxi-

mates gene evolution better than the MC model albeit by a

relatively small margin. Within the framework of the theory

developed here, these findings imply that the lineage-specific

contribution to the variation of evolutionary rates is consis-

tently and significantly greater than the gene-specific

contribution.

MC models spanning the range from strict (equivalent to

Var(E)¼0 in eq. 5), through various flavors of correlated

clock, to totally relaxed (Var(E)¼1) are widely used in mo-

lecular phylogenetics (Thorne et al. 1998; Drummond et al.

2006; Drummond and Rambaut 2007; Drummond and

Suchard 2010). The key difference between these and the

UPM is the level at which the organismal phylogeny affects

individual genes and sites. In the context of a single gene, it is

practically impossible to distinguish between the UPM and

relaxed MC. The major distinction is in the way sets of multiple

genes are treated. Under the relaxed MC models, the hypoth-

esis about the ST is applied to individual alignment sites. The

likelihood of each site is calculated given the particular ST and

combined across the alignment or collection of alignments; in

the latter case, all sites across all alignments are assumed to

have evolved along precisely the same tree. Under the UPM

model, individual gene phylogenies are taken as given and

represent the maximum-likelihood hypotheses about the evo-

lution of those genes. Unlike the traditional phylogenetic

Table 3

Spearman Rank Correlation of the Deviation from the UPM

Expectation with Other Gene Characteristics

Drosophila Yeast

Alignment length �0.40* �0.47*

Relative evolution rate �0.28* �0.17*

Protein abundance 0.16* 0.16*

mRNA abundance 0.12* 0.20*

Evolutionary age 0.02 0.06

*Significant at the 0.001 level in a permutation test.
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approach in which the deviations from the global model at

individual sites are simply accounted for as a decrease in the

total likelihood, within the UPM framework, site histories are

assumed to be coherent within genes but not between genes,

that is, all GTs are constructed independently. The existence of

between-gene correlations is explored a posteriori whereby

the ST represents the hypothesis of the common evolutionary

history and E2 (eq. 1; see Materials and Methods) represents

the sum of deviations of GTs from the predictions of this hy-

pothesis. This approach provides for explicit comparison of

different global hypotheses in terms of goodness of fit versus

free parameters. If, for example, all deviations from the strict

MC were uncorrelated between the genes, the UPM model

would incur the penalty for extra parameters without decreas-

ing the deviation and would have been rejected.

We developed an approach to disambiguate the

overdispersion of the UPM caused by sampling error from

the biologically relevant overdispersion. The results indicate

that, compared with the expectation from purely technical

reasons, the UPM is approximately 2-fold overdispersed. This

observation implies that individual genes are subject to se-

lective pressures that cause significant deviations from the

UPM. However, these selective factors appear to be highly

gene-specific resulting in the observed random distribution

of genes in the tree space (fig. 4).

Apparently, even in the optimal situation with respect to

the degree of sequence divergence, the tree edge length mea-

surements for a single gene are subject to variation of approx-

imately 0.45 natural log units (table 1; Wolf et al. 2013). This

variation imposes an inherent limitation on the precision and

accuracy of any quantitative statement based on measure-

ments of evolutionary distances. If the deviations from the

“true” edge length are independent, as they appear to be,

these limitations can be overcome by employing multiple in-

dependent estimates. Because the RMSD of the estimated

mean decreases with the square root of the number of mea-

surements, to achieve, for example, a 10% accuracy (RMSD

factor of 1.1), (0.45/ln(1.1))2& 22 independent estimates are

required. In other words, to obtain an estimate of a relative

evolution rate of a gene within a 10% error, it is necessary to

analyze distance data from 20 to 25 optimally spaced pairs of

genomes or from edges of a tree containing 12–14 leaves.

Conversely, pooling data from 20 to 25 genes provides for a

10% accurate estimate of the relative evolution rate of a par-

ticular lineage.

We further explored the intriguing possibility of multiple

pacemakers specific to different groups of genes but found

no evidence of gene clustering in the tree space. These find-

ings suggest that the UPM is a genome-wide phenomenon

that affects all the genes in evolving genomes approximately

to the same extent or at least that the deviations of the evo-

lution of individual genes from the UPM are largely random

(fig. 4). Such a conclusion is compatible with the notion that

the UPM is driven by changes in the long-term effective

population size of the evolving organisms, whereas the devi-

ations of individual genes from the UPM are, at first approx-

imation, random and uncorrelated. The changes in the

population dynamics themselves can be caused by various

environmental factors.

The apparent universality of the pacemaker might reflect

the limitations of the available data and the approach rather

than true lack of groups of genes that might evolve coherently

within themselves but discordantly relative to the rest of the

genome. Overall, approximately half of the observed variance

in the evolution rates seems to result from purely technical

factors (sampling deviation and distance calculation errors),

limiting our ability to detect deviating groups of genes even

when the nontechnical component of the deviation is caused

by the same biological factors.

Evolutionary rates of genes show multiple, significant

connections to various molecular phenomic characteristics,

in particular protein and mRNA abundance (Wolf 2006;

Wolf et al. 2006; Drummond and Wilke 2008, 2009). We

tested for similar correlations with respect to how closely indi-

vidual genes follow the UPM and, in addition to the expected

dependencies on gene size and relative rate of evolution, iden-

tified counterintuitive but significant positive correlation

between the magnitude of a gene’s deviation from the

UPM and the abundance of its product measured at the

level of protein or mRNA. Conceivably, gene-specific selective

factors that cause such deviations affect highly expressed

genes to a greater extent than lowly expressed genes.

To summarize the results of the present and previous anal-

yses, the pacemaker of genome evolution appears to be uni-

versal in two complementary senses. First, the UPM model

appears to apply to all evolving lineages although the pace

of evolution certainly is lineage specific, and second, the UPM

is a genome-wide phenomenon, with the individual gene evo-

lutionary rates apparently deviating randomly from the mean

value of acceleration or deceleration set by the pacemaker.

Identification of the specific factors that set the pacemaker in

various evolutionary lineages seems to be an important task

for future investigation.

Supplementary Material

Supplementary file S1 is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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