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We developed amethod to distinguish bursts and suppressions for EEG burst suppression from the treatments of status epilepticus,
employing the joint time-frequency domain. We obtained the feature used in the proposed method from the joint use of the time
and frequency domains, and we estimated the decision as to whether the measured EEG was a burst segment or suppression
segment by the maximum likelihood estimation. We evaluated the performance of the proposed method in terms of its accordance
with the visual scores and estimation of the burst suppression ratio. The accuracy was higher than the sole use of the time or
frequency domains, as well as conventional methods conducted in the time domain. In addition, probabilistic modeling provided a
more simplified optimization than conventional methods. Burst suppression quantification necessitated precise burst suppression
segmentation with an easy optimization; therefore, the excellent discrimination and the easy optimization of burst suppression by
the proposed method appear to be beneficial.

1. Introduction

Electroencephalogram (EEG) burst suppression represents
an inactivated EEG pattern, in which the aperiodic alter-
nation of an isoelectric pattern (suppression) and a high
voltage pattern (bursts) appears. The pattern found from an
anesthetized cat’s brain for the first time [1] would accom-
pany the occurrence of a serious reduction in the brain’s
activity and metabolic rate [2], frequently seen from patients
with postanoxic encephalopathy or status epilepticus under
parenteral benzodiazepine treatments such asmidazolam [3],
those under general anesthesia [4], those with hypothermia
[5], or those in a coma [6] or from neonates [7]. In the case
of a burst suppression caused by anesthesia, the duration of
the burst or suppression varies depending on the level of
anesthetic concentration, with high levels identifying their
relevance to a long duration of suppression [6, 8, 9]. In
addition, a long duration of suppression has also identified

its relevance with a worsening prognosis in certain cases (e.g.,
brain injuries caused by asphyxia), and, further, the progres-
sion of burst suppression has provided important prognostic
information in previously conducted studies [10–12]. Accord-
ingly, researchers have developed methods for quantification
of burst suppression through calculations of the occupancy
ratio of suppression in burst suppression (BSR) [13], analyses
using the duration of suppression (interbursts interval, IBI)
[14], and quantitation of a burst suppression probability [15].

The first step in quantifying the depth of burst suppres-
sion involves detecting the burst and suppression to distin-
guish them, thereby called burst suppression segmentation
[16]. The current practice employed for this purpose involves
amethod based on visual detection, being a rough assessment
and time-consuming task subjective to the viewers’ interpre-
tation. Thus, researchers initiated an algorithmic approach
to burst suppression segmentation from the method used to
manually set the threshold in an EEG pattern [13, 17, 18],
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Table 1: Clinical manifestations of the patients.

Patient
number Age Gender Etiology Diagnosis EEG findings Antiepileptic

medications

1 39 M Viral
meningoencephalitis Status epilepticus Burst suppression Midazolam IV∗

2 72 M Cardiac arrest Postanoxic
encephalopathy Burst suppression None

3 82 F Prolonged hypoxemia
due to pneumonia

Postanoxic
encephalopathy Burst suppression Midazolam IV∗

4 53 M Viral encephalitis Status epilepticus Burst suppression Midazolam IV∗

M: male; F: female; IV∗: intravenous continuous infusion.

evolving into the current methods in use. The methods of
burst suppression segmentation developed thus far mainly
involve detecting burst events by using certain features, such
as Shannon entropy [19, 20], a nonlinear energy operator
[21], line length [14], a voltage envelope [22], and variance
using recursive-variance estimation [16]. These all represent
features employed in the time domain, as well as occasionally
the basic features of the frequency domain, like 3 or 10Hz
power or mean power spectral density (PSD) [19, 20, 23].
Previous studies also compared the performances by the basic
features and segmentation methods [19, 20, 24].

In this study, we applied the joint use of features extracted
from the time and frequency domains to burst suppression
segmentation, to enhance the accuracy of segmentation con-
ventionally conducted solely in the time domain. We thus set
the EEG data and PSD thereof as the time-frequency vector
to extract features to be used in the time-frequency domain.
We then applied the Shannon entropy, the Tsallis entropy, and
the regularity taken as features in broadly used conventional
quantitative EEG (qEEG) analysis [25–28] to the time-
frequency vector. After modeling of the distributions of burst
and suppression of each feature into a Gaussian distribution,
we employed the method of maximum likelihood estimation
(MLE) to conduct the burst suppression segmentation. We
assessed the accuracy of the proposed method by comparing
the accordance to visually scored burst suppressions. In
addition, we employed the BSR, as an indicator most widely
used for quantification of burst suppression, and evaluated
the closeness of estimatedBSR to the true BSRs obtained from
visual scores. In this study, the method presented revealed
improved accuracy and precise BSR estimation. Besides, we
solved the problems that reside in the optimization process
of conventionalmethods through the application of Gaussian
modeling and the MLE.

2. Methods

2.1. Data Acquisition. In this study, we used the 11 multi-
channel EEG data sets recorded from the Mokdong Hospital
of Ewha Womans University. The patients were recruited
based on the discharge database of the patients who had
been hospitalized as status epilepticus and EEG monitoring
was performed at the intensive care unit in Ewha Womans
University Mokdong Hospital from July 2012 to June 2015.
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Figure 1: The different burst suppression characteristics in eight
EEGs from patient number 1 (Table 1).

A total of 122 patients who met the criteria were enrolled
so far, and their medical records for the age at onset,
etiology, comorbidity, consciousness level before treatment,
overall duration of status epilepticus, brain imaging, and
visual interpretation of EEG were reviewed. Among them,
four patients whose EEG clearly showed a burst suppression
pattern were selected for the qEEG analysis in this study,
using artifact-free EEG segments for at least 20 minutes
chosen by an expert neurologist (H. W. Lee). Among those
four patients with a burst suppression EEG pattern, three
patients were male while one was female (male : female =
75% : 25%), and age ranged between 39 and 82 (mean: 61.5 ±19.2) years (Table 1). Specifically, eight EEGs were recorded
from patient number 1 (Table 1) on different days, while
we obtained the rest of the three EEGs from three different
patients. Figure 1 shows the initial 3 minutes of the eight
EEGs from patient number 1. We can observe the different
burst suppression characteristics in the EEG evolution. The
11 EEGs were recorded from 21 electrode locations, based
on the international 10–20 system with 200Hz of sampling
frequency. The 21 channels corresponding to each electrode
were Fp1, Fp2, Fz, F3, F4, F7, F8, T3, T4, T5, T6, Cz, C3, C4,
Pz, P3, P4, O1, O2, A1, and A2.
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Figure 2: (a) Example of 120 s EEG burst suppression (median over all the channels) and (b) its PSD by spectrogram plot.

2.2. Time-Frequency Representation of Burst Suppression. Let{𝑥𝑛(𝑖) : 𝑖 = 1, 2, . . . , 𝐿} denote the raw sampled EEG signal
of the 𝑛th channel. To remove artifacts in the EEG signals,
we selected {𝑥(𝑖) : 𝑖 = 1, 2, . . . , 𝐿} with the median value
over all channels.Themedian filtering over channelsmay lose
time/frequency characteristics of the original EEG, but burst
suppression patterns generally have synchrony over channels.
Thus, the median value does not affect the burst suppression
characteristics seriously as shown in Figure 2(a). Then, we
obtained the power spectral density (PSD) of the EEG signal𝑥(𝑖). To accomplish this task, we defined the𝑚th block of 𝑥(𝑖)
as follows:

x𝑚 = {𝑥 (𝑖) : 𝑖 = 1 + 𝑚Δ, 2 + 𝑚Δ, . . . , 𝑁 + 𝑚Δ} , (1)

where 𝑁 indicates the block width and Δ means the sliding
step. We calculated PSD P𝑚 by the short-time Fourier
transform (STFT) as follows:

X𝑚 = STFT {x𝑚} ,
P𝑚 = X𝑚2 . (2)

Figure 2 shows an example of EEG burst suppression
patterns in both the time and the frequency domains. Note
that we observed clear peaks corresponding to burst patterns
in the frequency domain. This observation implied that we
could detect the burst suppression patterns in the frequency
domain, as well as in the time domain. Thus, we can expect
that a joint analysis in both the time and the frequency
domain may improve the accuracy of the burst suppression
segmentation.

However, researchers executemost conventional segmen-
tation or burst detection instances in the time domain. To
do burst suppression segmentation in the time-frequency
domain, we newly defined a joint time-frequency vector f𝑚
as follows:

f𝑚 = [x𝑚P𝑚] . (3)

Then, we extracted entropy [19, 20, 25–27] and regularity [28]
features (widely used in the time domain detection of qEEG)
from f𝑚.

2.3. Entropy and Regularity Features in the Time-Frequency
Domain. Entropy serves as a method to quantify the
order/disorder in signals, typically used for measuring the
variety existing in burst suppression patterns. Most entropy-
based EEG analyses use Shannon entropy [19, 20] or Tsallis
entropy [25–27]. To calculate Shannon and Tsallis entropy,
we first estimated the probability mass function (PMF), 𝑝𝑡
and 𝑝𝑓 of x𝑚 and P𝑚, respectively, in (3). To estimate PMF,
we introduced disjoint amplitude intervals 𝐼𝑡(𝑘) and 𝐼𝑓(𝑘),
such that x𝑚 = ⋃𝑘=𝑀𝑡

𝑘=1
𝐼𝑡(𝑘) and P𝑚 = ⋃𝑘=𝑀𝑓

𝑘=1
𝐼𝑓(𝑘). Then,

the probability that the signal belonged to the 𝑘th interval is
the ratio between the number of the samples in the intervals
and the total number of samples; that is,

[𝑝𝑡 (𝑘)𝑝𝑓 (𝑘)] = 1𝑁 [The number of samples in 𝐼𝑡 (𝑘)
The number of samples in 𝐼𝑓 (𝑘)] . (4)

Then, we calculated Shannon entropy 𝑆(𝑚) and Tsallis
entropy 𝑇(𝑚) as

𝑆 (𝑚) = [[[[[[[

−𝑀𝑡∑
𝑙=1

𝑝𝑡 (𝑙) ln𝑝𝑡 (𝑙)
−𝑀𝑓∑
𝑙=1

𝑝𝑓 (𝑙) ln𝑝𝑓 (𝑙)
]]]]]]]
,

𝑇 (𝑚) = 1𝑞 − 1
[[[[[[[

1 − 𝑀𝑡∑
𝑙=1

𝑝𝑡 (𝑙)𝑞
1 − 𝑀𝑓∑
𝑙=1

𝑝𝑓 (𝑙)𝑞
]]]]]]]
,

(5)

where 𝑞 is a positive real value.
In addition, regularity could measure how smoothly or

consistently the signals change. For the descending-ordered
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Figure 3: The example features of burst suppression in joint time-frequency domain. The features used are (a) Shannon entropy, (b) Tsallis
entropy, and (c) regularity. Dotted line: a decision boundary of the sole use of time domain. Dashed line: a decision boundary of the sole use
of frequency domain. The examined burst and suppression segments are identified by the experts.

data 𝑑𝑡(𝑖) and 𝑑𝑓(𝑖) of x𝑚2 and P𝑚, respectively, we obtained
the regularity of f𝑚 in (3) as

𝑅 (𝑚) =
[[[[[[[[[

√ ∑𝑁𝑖=1 𝑖2𝑑𝑡 (𝑖)(𝑁2/3)∑𝑁𝑖=1 𝑑𝑡 (𝑖)
√ ∑𝑁𝑖=1 𝑖2𝑑𝑓 (𝑖)(𝑁2/3)∑𝑁𝑖=1 𝑑𝑓 (𝑖)

]]]]]]]]]
. (6)

The feature distributions of 𝑆(𝑚), 𝑇(𝑚), and 𝑅(𝑚) for
the burst suppression pattern in the time-frequency domain
are represented in Figures 3(a)–3(c), respectively, in which
the patterns of burst and suppression corresponding to all

three features are distinguished clearly. However, since some
bursts and suppressions deviated from each pattern, the
performance of the segmentation appeared to potentially
be degraded thereby. By the single-domain approach, that
is, the sole use of the time or frequency domain, the
decision boundary would be a straight line. The vertical lines
represented in Figures 3(a)–3(c) correspond to the decision
boundary in the time domain, and, in this case, the errors
of either a falsely alarmed burst or a missing burst could
occur. The horizontal lines represented in Figures 3(a)–3(c)
imply the decision boundary in the frequency domain and,
in this case, could also be accompanied by misses and false
alarms.Therefore, we took into account the use of a nonlinear
decision boundary in the joint time-frequency domain, to
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improve the accuracy of the burst suppression segmentation.
There exist many nonlinear classifiers, for example, artificial
neural networks or support vector machines [19, 20]. Among
these nonlinear classifiers, we employed the MLE, being the
probabilistically optimal classifier.

2.4. Burst Suppression Segmentation. To conduct the MLE,
we needed the corresponding probability distributionmodel.
Thus, for this purpose, we modeled the distributions of fea-
tures corresponding to the respective burst and suppression
into the Gaussian distribution. Let the mean and covariance
of a certain feature (i.e., one of the Shannon entropy, Tsallis
entropy, and regularity) corresponding to burst patterns be
𝜇𝐵 and C𝐵, respectively. Similarly, let 𝜇𝑆 and C𝑆 be the mean
and covariance of the features corresponding to suppression
patterns. Then, we could express the Gaussian distribution
model for bursts and suppressions as

𝑝𝐵 (z) = (2𝜋)−1 C𝐵−1/2 exp(−12 (z − 𝜇𝐵)𝑡 C−1𝐵 (z − 𝜇𝐵)) , (7)

𝑝𝑆 (z) = (2𝜋)−1 C𝑆−1/2 exp(−12 (z − 𝜇𝑆)𝑡 C−1𝑆 (z − 𝜇𝑆)) , (8)

respectively, where | ⋅ | is the determinant of a matrix and (⋅)𝑡
is the transpose of a vector.

Equations (7) and (8) denote the likelihood of the burst
and suppression of feature z, and, in this study, we supposed
the decision to maximize the likelihood. Let 𝜃 ∈ {𝐵, 𝑆}; then,
we expressed the decision rule as

�̂� = argmax
𝜃

{𝑝𝜃 (z) : 𝜃 ∈ {𝐵, 𝑆}} . (9)

Figure 4(a) represents Gaussian distributions of the Shan-
non entropy generated by (7) and (8) as the two concentric
circles labeled as burst and suppression, respectively. For
the Gaussian modeling, we used the data in Figure 3.
Then, we represented the Shannon entropies of the burst
and suppression obtained from the burst suppression in
Figure 4(a) as upward-pointing triangles and downward-
pointing triangles, respectively, all identified and distin-
guished clearly by the solid nonlinear line, the decision
boundary determined by (9). In this case, we generated the
false alarms and misses marked with filled triangle by the
vertical and horizontal lines fixed at the optimal threshold.
Specifically, the two filled downward-pointing triangles on
the right side of Figure 4(a) represent errors generated by
the misclassification of a suppression into a burst with the
sole application of the frequency domain, while the filled
downward-pointing triangle in the center represents an error
of the misclassification of a suppression into a burst with
the sole use of the time domain. The filled upward-pointing
triangle on the left side of Figure 4(a) also represents an error
owing to the misclassification of a burst into a suppression
with the sole application of the frequency domain. Figures
4(b) and 4(c) represent the plots of cases using the Tsallis
entropy and regularity, respectively. For these cases, (9) also
rendered a clearly distinguished classification; however, we

generated the miss or false alarm in cases of the sole use of
either the time or the frequency domains.

2.5. Performance Evaluation. We derived the results of the
burst suppression segmentation from the 11 consecutive EEGs
recorded from 4 patients suffering from status epilepticus.
We set the values of block width 𝑁 and sliding step Δ as
140 and 40, respectively, implying the number of samples
corresponding to 0.7 s and 0.2 s, respectively. The value 𝑁 is
chosen to include at most one burst segment, and the value Δ
is chosen to be smaller than 𝑁/2. The frequency resolution
involved in STFT calculation is chosen to be 𝑁, and this
resolution was enough to identify the PSD distribution over
the frequency axis. We set the values of 𝑀𝑡 and 𝑀𝑓 (the
parameters used for the calculation of entropies) as 20 and 40,
respectively, with 𝑞 = 0.5 for Tsallis entropy. The parameters
related to the features (i.e., 𝑀𝑡, 𝑀𝑓, and 𝑞) were chosen to
have enough divisibility of burst clusters and suppression
clusters. From the EEGs of the total of at least 20min each
(mean 21.55 ± 0.61min), we used 10min duration to model
the Gaussian distributions (7) and (8). Depending on the
data, the number of bursts in 10min duration varies. For
sparse and dense bursting, about 80 and 220 burstings were
observed in 10min, respectively. Then, we used the latter half
after the initial duration of ∼10min for the identification of
the performance of the burst suppression segmentation.

To evaluate the overall accuracy of the burst suppression
segmentation for the 11 EEG data sets, we employed the
sensitivity, specificity, and accuracy based on the accordance
to the visual scores [14, 21]. Sensitivity means the ratio of
samples detected as true bursts among burst samples by the
algorithm, and the specificity denotes the ratio of samples
detected as true suppressions among suppression samples
by the algorithm. The accuracy means the ratio of properly
detected samples among whole samples, determined by
taking the sensitivity and specificity into account. Therefore,
the values for sensitivity, specificity, and accuracy increased
along with the improved accuracy of the burst suppression
segmentation.

As a result of the burst suppression segmentation, we
could obtain the binarized burst suppression (BBS) pattern
comprising sample units denoted as either 1 (burst sample)
or 0 (suppression sample); and by using the BBS pattern, we
could calculate the BSR, known most widely as the measure
of burst suppression [15, 16, 19]. BSR is calculated as a ratio
of the number of zeros in BBS in a certain interval to the
number of samples in the interval, that is, a suppression
ratio. Known also to be correlated with cerebral metabolism
[9], the BSR can be used for various patient monitoring
applications, including treatment of status epilepticus [29]
and monitoring the depth of anesthesia [30]. We computed
BSR at every 15-second interval with one sample sliding
window. Then, we exploited the difference with visually
scored BSR (true BSR) to identify the performance of burst
suppression segmentation.

To evaluate the similarity between the true BSR and
estimated BSR and to statistically analyze the results for all the
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Figure 4: The example Gaussian models in the joint time-frequency domain. The features used are (a) Shannon entropy, (b) Tsallis entropy,
and (c) regularity. The feature segments (triangles) are different segments from Figure 3. Solid line: the optimal decision boundary by MLE.
Dotted line: the optimal decision boundary in the time domain solely. Dashed line: the optimal decision boundary in the frequency domain
solely. Upward-pointing and downward-pointing empty triangles: detected true bursts and suppressions by all the boundaries. Upward-
pointing filled triangle: a burst missed in time or frequency domain solely. Downward-pointing filled triangles: falsely alarmed suppressions
in time or frequency domain solely.

EEG sets and all the features, we calculated the root-mean-
square error (RMSE) between the true BSR and estimated
BSR, as in the following:

RMSE = √ 1𝐿
𝐿∑
𝑖=1

(true BSR (𝑖) − estimated BSR (𝑖))2, (10)

where 𝐿 is the number of BSR samples, being ∼10min
duration for performance evaluation. A low RMSE for a
featuremeans a good BSR estimation of the feature; therefore,
statistically analyzed RMSE values can provide the usefulness
of the segmentation methods.

By one visual score, the results can be meaningless. This
is because there is no gold standard for burst suppression
segmentation, and the results from a certain visual score

are subjective. Therefore, to evaluate the performance of
the proposed method, independent visual scores from more
than one expert are needed. The visual scores in the results
were from two clinical experts, and we exhibited agreement
(i.e., sensitivity, specificity, and accuracy) and BSR estimation
results for the two visual scores, rater #1 and rater #2 in Tables
2 and 4. In addition, we evaluated and exhibited interrater
agreements in Table 3.

3. Results

3.1. Comparison with Time Domain Detection. We represent
the results of the burst suppression segmentation obtained
from the sole use of the time domain for various features
in Figure 5(a). We depicted the burst suppression pattern
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Table 2: Mean (standard deviation) of sensitivity, specificity, and accuracy by different features and two raters, over the 11 EEGs.

Features Sensitivity (%) Specificity (%) Accuracy (%)
Rater #1 Rater #2 Avg. Rater #1 Rater #2 Avg. Rater #1 Rater #2 Avg.

Proposed
time-frequency
domain

Shannon
entropy

68.55
(17.40)

78.22
(11.93) 73.39 88.66

(21.89)
82.78
(12.29) 85.72 84.51

(17.77)
82.44
(8.84) 83.48

Tsallis
entropy

69.81
(16.30)

74.03
(15.52) 71.92 88.31

(17.91)
81.20
(13.30) 84.76 83.29

(14.76)
80.73
(9.64) 82.01

Regularity 74.42
(13.27)

91.81
(8.07) 83.12 88.60

(23.04)
82.50
(14.10) 85.55 84.82

(19.32)
85.20
(10.14) 85.01

Time domain

Shannon
entropy

51.90
(15.10)

77.43
(11.29) 64.67 87.91

(7.03)
74.07
(14.94) 80.99 83.72

(9.01)
76.97
(9.14) 80.35

Tsallis
entropy

50.99
(14.35)

75.36
(13.05) 63.18 83.92

(6.02)
67.18
(13.28) 75.55 80.97

(8.31)
70.96
(8.09) 75.97

Regularity 62.76
(11.46)

87.02
(7.42) 74.89 88.20

(7.97)
78.38
(16.71) 83.29 77.71

(8.08)
82.20
(10.41) 79.96

Conventional
methods

Line length
[14]

68.12
(31.30)

86.03
(5.66) 77.08 92.58

(12.89)
80.96
(12.72) 86.77 84.67

(13.42)
81.51
(9.45) 83.09

Envelope
[22]

57.13
(20.87)

75.62
(14.28) 66.38 82.83

(23.33)
77.22
(23.28) 80.03 77.32

(19.16)
76.48
(18.38) 76.90

NLEO [21] 56.40
(21.90)

72.89
(14.75) 64.65 83.60

(22.17)
77.75
(24.70) 80.68 77.83

(18.70)
76.41
(18.87) 77.12

Note. Avg.: average between two raters; boldface: the two highest means in Avg. columns.

Table 3: Interrater sensitivity, specificity, and accuracy (mean ±
standard deviation over the 11 EEGs).

Sensitivity (%) Specificity (%) Accuracy (%)
Rater 1 versus
Rater 2 (true) 81.26 ± 7.67 99.30 ± 0.80

95.34 ± 3.26
Rater 2 versus
Rater 1 (true) 97.74 ± 1.20 94.56 ± 4.29

with a duration of 33 s on the top, and the plots placed
thereunder and labeled as 𝑆, 𝑇, and 𝑅 represent intervals of
burst detected as blocks, by using Shannon entropy, Tsallis
entropy, and regularity, respectively. The intervals expressed
as boxes in each plot represent all intervals identified as false
alarms. Therein, we show one false alarm, two false alarms,
and one false alarm corresponding tomethods employing the
Shannon entropy, Tsallis entropy, and regularity, respectively.
Figure 5(b) shows the results of the burst suppression seg-
mentation obtained by the sole use of the frequency domain
in the same burst suppression interval as that represented
in Figure 5(a). The plot placed on the top represents the
PSD portrayed as a spectrogram plot, and the plots placed
thereunder represent the intervals of detected bursts, as in the
case in Figure 5(a). In these plots, we expressed all the false
alarms andmisses as boxes and there evoked the onemiss and
two false alarms, the two false alarms, and the one false alarm,
respectively, from the methods using the features of Shannon
entropy, Tsallis entropy, and regularity. In Figure 5(c), we
represent the results of the burst suppression segmentation
obtained by the use of the proposed time-frequency domain
in the same burst suppression interval.Themethods using the
Shannon entropy and regularity did not generate errors in the
same interval; however, the method using the Tsallis entropy

rendered one false alarm. Thus, as expected beforehand, the
method using the proposed time-frequency domain resulted
in reduced numbers of false alarms and misses generated.

In Figure 6, we presented the interval of the bursts
detected by conventional methods on the same burst sup-
pression pattern presented in Figure 5. The conventional
methods compared are those based on the line length (LL)
[14], envelope (EV) [22], and nonlinear energy operator
(NLEO) [21], all employed in detecting bursts.Theplot placed
on the top of Figure 6 represents the burst suppression, and
the other three plots present bursts detected by conventional
methods. In cases using the EV andNLEOmethods, the false
alarms evoked more than the case of the method using LL. In
comparison to the proposedmethod in Figure 5, we identified
that the burst suppression segmentation by the proposed
method using the time-frequency domain could provide an
improved accuracy.

Table 2 represents the mean and standard deviation (std)
of the assessment indicators (i.e., sensitivity, specificity, and
accuracy) for the whole 11 data sets, in correspondence
with each feature. We represented the two features corre-
sponding to the two respective highest assessment indicators
in boldface. In general, the values for sensitivity tended
to become higher with the method employing the time-
frequency domain, in contrast to the values for specificity that
appeared to remain relatively even. For rater #1, the highest
accuracy appeared in the method employing the regularity
with the time-frequency domain, andwe obtained the second
highest accuracy from the method based on LL. For rater
#2, the two highest accuracies appeared in the proposed
methods. For all three assessment indicators, the method
using the time-frequency domain tended to show superior
performance to that of the methods employing only the time
domain.
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Table 4: RMSE between true BSR and estimated BSR by burst suppression segmentation methods and two raters.

Features
RMSE between true BSR and estimated BSR (mean ±

standard deviation over the 11 EEGs)
Rater #1 Rater #2

Proposed time-frequency
domain

Shannon entropy 0.111 ± 0.074 0.121 ± 0.070
Tsallis entropy 0.121 ± 0.068 0.125 ± 0.068
Regularity 0.094 ± 0.051 0.104 ± 0.063

Time domain
Shannon entropy 0.118 ± 0.067 0.134 ± 0.064
Tsallis entropy 0.131 ± 0.058 0.142 ± 0.054
Regularity 0.098 ± 0.049 0.113 ± 0.049

Conventional methods
Line length [14] 0.175 ± 0.053 0.152 ± 0.095
Envelope [22] 0.210 ± 0.136 0.198 ± 0.148
NLEO [21] 0.214 ± 0.130 0.196 ± 0.161

Note. Boldface: the lowest means in column.
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Figure 5: Example of segmentation results by various features: (a) a 33 s burst suppression (median value over all the channels) and detected
bursts in the time domain using Shannon entropy (𝑆), Tsallis entropy (𝑇), and regularity (𝑅); (b) PSD of (a) using a spectrogram plot (top)
and detected bursts in the frequency domain, using Shannon entropy (𝑆), Tsallis entropy (𝑇), and regularity (𝑅); (c) detected bursts in the
joint time-frequency domain, using Shannon entropy (𝑆), Tsallis entropy (𝑇), and regularity (𝑅). Blocks: detected bursts; boxes: false alarms
and misses.

Table 3 shows mean and std of sensitivity, specificity,
and accuracy between two visual scores (rater #1 and #2).
The sensitivity and specificity labeled by rater #1 versus rater
#2 (true) were from the assumption that the visual score
from rater #2 is truly segmented, and vice versa. The raters

focused on picking out burst segments in burst suppression
pattern, so the sensitivities between rater #1 and rater #2 can
be significantly different. In Table 3, the sensitivity labeled
as rater #1 versus rater #2 (true) is much smaller than the
other sensitivity, and this means rater #2 was more sensitive
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Figure 6: Example of 33 s EEG (median value over all the channels)
and segmentation results of conventional methods; line-length-
(LL-) based method, envelope- (EV-) based method, and nonlinear
energy operator- (NLEO-) based method. Boxes: detected false
alarms.

to choose burst durations. Consequently, this difference be-
tween two visual scores implies that the performance evalua-
tion by multiple raters is strongly recommended.

3.2. Burst Suppression Ratio (BSR). The first and the second
plots in Figure 7(a) show the burst suppression pattern and
the true BSRs from the visual scores of rater #1 and rater
#2, respectively. The third plot therein represents the BBSs
obtained, respectively, by the methods using the regularity
in the time-frequency domain (Proposed𝑅), employing the
regularity in the time domain (Time𝑅), and based on LL.The
three features selected represent the ones evaluated as being
excellent in terms of the accuracy. We represented the BBS
plot with a marker on the points of 1 of the value of BBS
generally corresponding to the points of the appearance of
the burst.

To exhibit the exactitude of the estimated BSRs for each
feature, we employed the absolute difference ΔBSR between
the true BSR and estimated BSR (i.e., ΔBSR = |(true BSR) −(estimated BSR)|). The subfigures labeled as ΔBSR (rater #1)
andΔBSR (rater #2) of Figure 7(a) exhibitedΔBSRs regarding
their true BSRs as of rater #1 and rater #2, respectively.
With the distribution of low values for ΔBSR of Proposed𝑅
in Figure 7(a), we can conclude that it represents the close
estimation of the true BSRs. Figures 7(b)-7(c) represent the
results of BSRs corresponding to different burst suppression
patterns.The trend of the smaller value of true BSR from rater
#2 than from rater #1 reflects the notion that rater #2wasmore
sensitive to choose burst durations. Through the three burst
suppression patterns represented, the method employing the
regularity with the proposed time-frequency domain shows
the small ΔBSR.

Table 4 represents the mean RMSE and std over 11 EEG
sets by each method of burst suppression segmentation. The
lowest mean RMSE appeared from the regularity feature
using the time-frequency analysis, and the next lowest one
appeared from the regularity feature solely using the time
domain, from both raters. Thus, the proposed burst sup-
pression segmentation methods using the time-frequency
analysis also rendered excellent results in terms of BSR
estimation.

4. Conclusion

In this study, we exhibited the usefulness of exploiting
time-frequency domain for burst suppression segmentation.
Existing qEEG features are usually conducted in the time
domain, but we newly redefined the features (i.e., Shannon
entropy, Tsallis entropy, and regularity) in the time-frequency
domain. These redefined two-dimensional features formed
clusters of bursts and suppressions as in Figure 3. Because of
the distribution of the clusters, the optimal classificationmust
not be a sole use of the time or frequency domain.Thismeans
that the joint use of the time and frequency domain was
expected to improve segmentation performance. To conduct
the segmentation considering the distributions, we assumed
that the clusters are modeled as Gaussians. Finally, using
the Gaussian distributions, burst suppression segmentation
is conducted by exploiting MLE, which is probabilistically
optimal.

We compared the method developed in the time-fre-
quency domain with the method employing the time domain
only and with those of existing ones defined in the time
domain, to derive and analyze the results of the burst
suppression segmentation. Seeking precision, we used three
assessment indicators comprising sensitivity, specificity, and
accuracy for the comparison, and we improved the accuracy
of the method proposed more than the sole use of the time
domain. In addition, we also identified the accuracy of the
proposed method similar to or better than that of existing
methods defined in the time domain. To verify the usefulness
of the proposed method, we employed BSR, which is broadly
used as ameasure of burst suppression and directly calculated
by burst suppression segmentation, and evaluated the BSR for
all compared methods. We evaluated the RMSEs of the true
and estimated BSRs as indicators, and the regularity using the
time-frequency domain revealed the best performance with
the lowest mean RMSE among all methods compared with
each other.

The method proposed in this study not only appears
better than existing methods with respect to burst suppres-
sion segmentation, but also resolves the problems residing
in the process of optimization of the conventional methods.
The burst suppression pattern may vary according to the
patients’ condition or the environment of the measurement,
so some conventional approaches with a fixed threshold can
generate severe errors. However, in our study, we employed
sufficient instances of burst and suppression segments in
the burst suppression pattern for the Gaussian probabilistic
modeling to solve such issues. In contrast to cases of existing
algorithms using user-defined parameters optimized using
ROC curves [14, 21, 22], for which the optimization process
can be time-consuming as a result of redundant calculations
of the sensitivity/specificity for slightly changing user param-
eters, the probabilistic modeling simplified and replaced
this process. In conclusion, the improved accuracy and BSR
estimation realized by the method proposed in this study
demonstrated that burst suppression segmentation using
the time-frequency domain appears to be more accurate
and useful than that of conventional methods. However, in
terms of data used, this study possesses a few shortages,
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Figure 7: Continued.
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Figure 7:Three examples of burst suppression, segmentation results, and BSR estimates. Each subfigure shows burst suppression pattern, true
BSR by visual segmentation of two raters, BBS which indicates detected bursts as bar plots, andΔBSR progress for each true BSR.The features
used are the proposed method using regularity (Proposed𝑅), the time domain method using regularity (Time𝑅), and LL-based method.

which are the similar application (i.e., the treatment of status
epilepticus) and the limited number of patients. The burst
suppression pattern’s occurrence has been reported in many
applications, and compared methods actually have different
applications (premature neonatal EEGs) from this study
(treatments of status epilepticus). In fact, our data included
multiple recordings in different days from one patient since
the patient’s medical condition had been changed every
day during early hospital days, which could be a possible
limitation of this study. By usingmore various applications of
burst suppression and increased number of patients, we will
be a little more confident about the improved performance of
the proposedmethod. Besides, an application or introduction
of new or different features to the method proposed in this
study appears to be capable of bringing about even more
promising performance.
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