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Objective: Many primary tumors have insufficient supply of molecular oxygen, called
hypoxia. Hypoxia is one of the leading characteristics of solid tumors resulting in a higher
risk of local failure and distant metastasis. It is quite necessary to investigate the hypoxia
associated molecular hallmarks in breast cancer.

Materials and Methods: According to the published studies, we selected 13 hypoxia
related gene expression signature to define the hypoxia status of breast cancer using
ConsensusClusterPlus package based on the data from The Cancer Genome Atlas
(TCGA). Subsequently, we characterized the infiltration of 24 immune cell types under
different hypoxic conditions. Furthermore, the differentially expressed hypoxia associated
microRNAs, mRNAs and related signaling pathways were analyzed and depicted. On this
basis, a series of prognostic markers related to hypoxia were identified and ceRNA co-
expression networks were constructed.

Results: Two subgroups (cluster1 and cluster2) were identified and the 13 hypoxia
related gene signature were all up-regulated in cluster1. Thus, we defined the cluster1 as
“hypoxic subgroup” compared with cluster2. The infiltration of CD8+ T cell and CD4+ T
cell were lower in cluster1 while the nTreg cell and iTreg cell were higher, indicating that
there was immunosuppressive status in cluster1. We observed widespread hypoxia-
associated dysregulation of microRNAs and mRNAs. Next, a risk signature for predicting
prognosis of breast cancer patients was established based on 12 dysregulated hypoxia
associated prognostic genes. TwomicroRNAs, hsa-miR-210-3p and hsa-miR-190b, with
the most significant absolute logFC value were related to unfavorable and better
prognosis, respectively. Several long non-coding RNAs were predicted to be microRNA
targets and positively correlated with two selected mRNAs, CPEB2 and BCL11A.
Predictions based on the LINC00899/PSMG3-AS1/PAXIP1-AS1- hsa-miR-210-3p-
CPEB2 and SNHG16- hsa-miR-190b-BCL11A ceRNA regulation networks indicated
that the two genes might act as tumor suppressor and oncogene, respectively.
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Conclusion: Hypoxia plays an important role in the initiation and progression of breast
cancer. Our research provides potential mechanisms into molecular-level understanding
of tumor hypoxia.
Keywords: hypoxia, breast cancer, The Cancer Genome Atlas, ceRNA, prognosis
INTRODUCTION

Statistics from the International Cancer Research Center show
that breast cancer morbidity and mortality rank first and second
among female tumors. Worldwide, the incidence of breast cancer
is increasing year by year, and the age of onset is getting younger
(1). Although China belongs to a region with relatively low
incidence of breast cancer, the number of new cases of breast
cancer has been increasing in recent years. In some large and
medium-sized cities, it has risen to the top of the incidence of
female malignant tumors, which seriously threatens the health
and lives of women and brings a huge economic and health
burden to society. With the advancement of treatment, the
prognosis of breast cancer continues to improve, but breast
cancer is still a dominant cause of death for women at
present (2).

During the growth of malignant tumors, tumor cells grow
faster than their blood vessels grow. The effective oxygen
diffusion range of the capillaries around the tumor cells cannot
meet the needs of rapid tumor growth, resulting in uneven
supply of oxygen and nutrients in tumor tissue, thereby
forming the hypoxic microenvironment (3, 4). Hypoxia is one
of the leading characteristics of solid tumors including
breast cancer, and plays an important role in the occurrence
and development of cancers (5). Hypoxia in the local
microenvironment can promote the formation of new blood
vessels by inducing Hypoxia-inducible factor 1-alpha (HIF-1a)
(6), Vascular endothelial growth factor (VEGF) (7), C-C Motif
Chemokine Ligand 28 (CCL28) (8) and other cytokines, and
regulate the expression of the signal cascade and downstream
related genes, thereby promoting the proliferation and invasion
of tumor cells (9). For example, it has been demonstrated that the
expression level of HIF-1a in breast cancer and other tumor
tissues is significantly higher than that in adjacent tissues, and its
increase is positively correlated with the incidence of breast
cancer metastasis and mortality (10). Therefore, exploring the
exact or related mechanism of hypoxia in tumorigenesis and
development is expected to provide new targets and indicators
for the treatment and prognostic detection of breast cancer.
However, due to variations of oxygen levels in different tissues, it
is still difficult to determine the hypoxia status in tumors.
ome Atlas; BRCA, Breast invasive
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cellular components; MF, molecular
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Current research shows that under hypoxic conditions, tumor
cells can adapt to the microenvironment on which they grow by
changing the expression of enriched endogenous genes, and
these gene expression signatures can reflect hypoxia status
(11–13).

The discovery of a series of non-coding RNAs in recent years,
including long non-coding RNA (lncRNA), microRNA
(miRNA), Circular RNA (circRNA), etc., has uncovered new
ways of regulating gene expression in eukaryotes. Non-coding
RNAs are involved in a variety of pathological processes,
especially in the occurrence and development of tumors (14).
A miRNA is a small non-coding RNAmolecule containing about
22 nucleotides, and can inhibit the expression of target genes by
completely or incompletely binding the 3’UTR region of the
target genes’mRNA. A lncRNA is a type of non-coding over 200
nucleotides in length with no protein coding potential, and can
positively or negatively regulate gene expression through various
mechanisms. The competitive endogenous RNAs (ceRNAs)
hypothesis is one theory that explains the mechanism of
lncRNA and miRNA. The theory proposes that lncRNA
competes with miRNA for binding and covers the miRNA
response element, thereby mitigating the inhibitory effect of
miRNA on target mRNAs (15). Besides, lncRNA acts as a
molecular sponge of miRNA to inhibit the expression of
miRNA (16). The “lncRNA-miRNA-mRNA” network has been
confirmed in many human cancers (17).

In this study, we used 13 hypoxia-related gene expression
signature to characterize the different hypoxia states of breast
cancer samples in The Cancer Genome Atlas (TCGA), and
depicted the infiltration of 24 immune cell types in breast
cancer tissues under different hypoxic conditions. Furthermore,
the differentially expressed hypoxia associated miRNAs, mRNAs
and related signaling pathways were analyzed and investigated.
On this basis, a series of prognostic markers related to hypoxia
were screened and a ceRNA co-expression network in breast
cancer was constructed. These results have the potential to
further improve the regulatory mechanisms under hypoxia in
breast cancer.
MATERIALS AND METHODS

Study Cohort
The Cancer Genome Atlas (TCGA) breast invasive carcinoma
(BRCA) gene expression profile and miRNA mature strand
expression RNAseq illuminaHiseq data were retrieved from
UCSC Xena (18, 19), as in log2(X+1) transformed RSEM
normalize count. The gene expression data included 1,104
tumor samples and 114 normal samples as control. Exchanging
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the Accession number to the ID of miRNA was performed by
miRbase database (20) and miRBaseVersions.db R package.
Besides, the phenotype of BRCA samples was also gained from
UCSC Xena. Among them, 703 samples have complete clinical
and pathological data. This study complied with the publication
guidelines of TCGA, and ethics approval and informed consent
were not required. For tested cohort, mRNA expression Z scores
data and clinical data of 1,356 breast cancer tumor samples were
obtained from the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) dataset (21) on
cBioPortal online database (22, 23).

Classification of Hypoxia Status
According to the studies published, we selected 13 hypoxia
related gene expression signature for our analysis: ADM,
TUBB6, MRPS17, CDKN3, TPI1, ALDOA, MIF, PGAM1,
LDHA, P4HA1, SLC2A1, NDRG1, and VEGFA, which have
been shown to perform the hypoxia status (12, 24). Cellular
pathways of 13 hypoxia related gene signature were shown in
Table S1 for details. Spearman’s rank correlation was performed
to assess the correlation among these gene by corrplot package,
and the PPI network was built using the STRING database (25).
Furthermore, two different hypoxia status groups (cluster1 and
cluster2) among 1104 TCGA BRCA tumor samples were selected
by using ConsensusClusterPlus package with 50 iterations,
resample rate of 0.8. Principal component analysis (PCA) was
analyzed and visualized by limma package and ggplot2 package.
The differential expression of these genes between tumor samples
and normal samples, between cluster1 and cluster2 were
analyzed by limma package with a cut-0ff P <0.05, then
visualized by pheatmap and vioplot.

Immune Cells Infiltration Analysis
The data of infiltration score and 24 immune cell types including
18 T-cell subtypes and 6 other immune cells: B cell, NK cell,
Monocyte cell, Macrophage cell, Neutrophil cell and DC cell in
TCGA BRCA was estimated and acquired from the ImmuCellAI
database (26). Then, the relationship of these cells and hypoxia
status was analyzed by limma package with a cut-0ff P <0.05. The
prognostic values of CD4+ T cell, CD8+ T cell, iTreg cell and
nTreg cell were calculated via the Kaplan-Meier analysis and
Logrank-P test by Graphpad 8.0, and X-tile software (27) was
used to determine the optimal cut-off point for the prognostic
value of these four types of cells.

Differentially Expressed Genes (DEGs)
Analysis
Limma package was utilized to identify differentially expressed
genes between cluster1 and cluster2 and adjusted P value < 0.05
and |logFC|≥1 were considered to have a significant difference.
Then, the PPI network of DEGs was constructed via STRING
database (25), and the crucial sub-network was selected by the
MCODE APP on Cytoscape 3.7.2 (28) according to the rules as
follow: degree cut-off = 10, node score cut-off = 0.2, Max depth =
100, and k-Score = 2. Further, the pathway enrichment of the sub-
network was analyzed by the ClueGo APP on Cytoscape 3.7.2, and
the Gene Ontology (GO) enrichment analysis, including: biological
Frontiers in Oncology | www.frontiersin.org 3
processes (BP), cellular components (CC) and molecular functions
(MF), was performed via STRING analysis category.

Identification of Hypoxia Associated
Prognostic Markers Among DEGs
The prognostic related genes were identified by univariate Cox
regression analysis. After that, LASSO Cox regression was
employed to select the powerful independent prognostic
markers with P<0.05 for OS in BRCA. The risk score (RS) was
calculated by the following formula:

RS =o
n

i=1
Coef (i)X(i)

Where n represents the gene number in the module, Coef (i) is
the coefficient of each gene; X(i) means the mRNA expression
level of each gene. When Coef (i) is less than 0, it means that the
corresponding gene plays a protective effect on the patient. When
Coef (i) is greater than 0, the gene represents the opposite trend
for survival. The TCGA BRCA tumor samples were divided into
high rick and low risk groups by the cut-off of the median RS.
Then, the prognostic value of RS in two groups was analyzed by
Kaplan Meier method, and sensitivity and specificity assessments
were estimated using the receiver operating characteristic (ROC)
curves. Additionally, the relationship of RS and clinical
parameters were also evaluated. This risk signature was
validated by using Gene expression data and clinical data of
1356 breast cancer patients from METABRIC (21). Importantly,
patients in Metabric dataset were divided into high risk and low
risk groups by the optimal cut-off point of risk score which was
obtained by X-tile software (27).

Differentially Expressed MicroRNAs
Analysis
The differentially expressed microRNAs between cluster1 and
cluster2 were analyzed by limma package with adjusted P value <
0.05 and |logFC|≥1. The prognostic values of differentially
expressed microRNAs in breast cancer were assessed by the
online tools and database, Kaplan-Meier Plotter (29), and patient
samples were divided into two groups by the best cut-off value by
the tool automatically and calculated via the Kaplan-Meier
analysis and Logrank-P test for the 120 months’ OS. We
selected one microRNA with the highest |logFC| value in each
of the up-regulated and down-regulated microRNAs for the next
analysis. The targets genes of candidate microRNAs, hsa-miR-
210-3p and hsa-miR-190b, were identified via the mirDIP
database (30, 31), an integrative Database of Human
microRNA Target Predictions, with the predict score as “very
high”. Further, the GO enrichment analysis of the target genes
was performed by STRING database, and the pathway
enrichment was analyzed by the ClueGo APP on Cytoscape 3.7.2.

Identify Genes Regulated by Candidate
MicroRNAs Under Hypoxia
Venn diagrams were used to select the intersection of hsa-miR-
210-3p targets and down-regulated genes, as well as hsa-miR-
190b targets and up-regulated genes. The correlations between
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the selected genes and microRNAs were calculated via the
Starbase database (32) based on the date from TCGA BRCA,
and the prognostic values of selected candidate genes were
analyzed by Kaplan-Meier Plotter database (29).

Identify Target Long Non-Coding RNAs
(lncRNAs) of Candidate MicroRNAs
StarBase database was employed to predict the target lncRNAs of
candidate microRNAs, hsa-miR-210-3p and hsa-miR-190b, and
the microRNAs-lncRNAs network were constructed via
Cytoscape 3.7.2. Further, in order to acquire the confidence
target lncRNAs in BRCA, lncRNAs were selected based on a
negative relationship with candidate microRNAs (P value < 0.05,
correlation coefficient <−0.1) and a positive relationship with
target genes (P value < 0.05, correlation coefficient > 0.1) in the
data collected from TCGA BRCA using StarBase database (32),
and also chosen based on the prognostic values performed by the
Kaplan-Meier Plotter (29).

Construction of the Competitive
Endogenous RNA (ceRNA) Network
and Related PPI Network
STRING database was used to predict protein-protein
interactions of candidate genes, and PPI network has been
extended until the proteins in our analysis were connected to
each other (25). Candidate microRNAs and lncRNAs were then
added to the network.

Statistical Analysis
Most of the statistical analysis were performed by online
bioinformatic databases and tools as mentioned. Wilcox Test
was employed to compare mRNA expression, infiltration score
of immune cells and risk sore when comparing two sets of data.
Chi-square test is used to compare clinical and pathological
parameters and other categorical variables. Differentially
expressed microRNAs and mRNAs were calculated by limma
R package. The Kaplan-Meier curve and Log-rank P test,
Univariable COX and LASSO Cox regression were used to
analyze the survival outcomes. ROC curve was utilized to
assess diagnostic effect. P-values < 0.05 were considered
statistically significant. The visualization of the data was done
by R 3.6.3, Excel 2019, Graphpad 8.0 and Cytoscape 3.7.2.
RESULTS

Consensus Clustering Identified
Two Clusters of BRCA With
Different Hypoxia Status
We selected 13 hypoxia related gene expression signature for our
analysis: ADM, TUBB6, MRPS17, CDKN3, TPI1, ALDOA, MIF,
PGAM1, LDHA, P4HA1, SLC2A1, NDRG1, and VEGFA. These
genes were defined based on hypoxia-related gene function and
were highly enriched for hypoxia-regulated pathways (11, 12),
and their cellular pathways and functions were shown in Table
Frontiers in Oncology | www.frontiersin.org 4
S1 for details. In order to understand their roles in oncogenesis in
breast cancer, we firstly explored expression levels of these
signature in tumor samples (n=1,104) and normal samples
(n=114). The results are displayed as heatmap and vioplot,
suggesting that all of them are abnormally expressed in BRCA
samples. More specific, ADM, NDRG1, and TUBB6 were down-
regulated, while other 10 genes were up-regulated in tumor
samples compared with normal control (Figures 1A, B). Next,
we analyzed the interrelationships and correlations between the
13 genes. Almost all of them were significantly associated with
each other (Figure 1C). Except NDRG1, RPMS17 and TUBB6,
other 10 genes can be incorporated into one PPI network
(Figure 1D).

In order to define hypoxia status of 1104 TCGA BRCA tumor
samples, based on the expression similarity of the 13 hypoxia
related gene signature, Consensus Clustering Method was use to
to cluster the samples. In the CDF curve of consensus matrix,
there is a flattest middle segment of CDF curve when K=2
(Figures 1E, F and SUPPLEMENTARY METHODS). Besides,
we noticed that the interference between subgroups could be
reduced to minimal when K=2 was selected for consensus
clustering analysis (Figures 1G–I). Thus, two subgroups
named cluster1 (n=310) and cluster2 (n=794) were identified.
Then, PCA was used to compare the transcriptional profile
between cluster1 and cluster2, suggesting that there was a
significant distinction between the two subgroups (Figure 1J).
To better understand the hypoxia status of the two subgroups, we
explore the expression of the 13 hypoxia related genes between
cluster1 and cluster2. The result demonstrated that all of these 13
genes were up-regulated in cluster1. So, we could define the
cluster1 as “hypoxic subgroup” compared with cluster2 (Figures
1K, L). After excluding cases with incomplete clinical data of
TCGA BRCA from UCSC Xena, 703 cases were included to
analyzed the association between hypoxia status and
clinicopathological characteristics through chi-square test. The
results showed that the hypoxia status was significantly
associated with ER status, PR status, Her2 status and PAM50
subtype. In more detail, there were more ER-, PR-, Her2+ and
triple negative breast cancer patients in cluster1 than cluster2
(Table 1).

Immune Cells Infiltration of Different
Hypoxia Status in BRCA
According to published articles, hypoxia is an important feature
of tumors, which can regulate the immune response in tumors.
Hypoxia induces tumor cells to produce multiple mechanisms
by activating downstream signaling pathways to escape
recognition and attack by the immune system (33). We
analyzed 24 immune cell types including 18 T-cell subtypes
and 6 other immune cells: B cell, NK cell, Monocyte cell,
Macrophage cell, Neutrophil cell and DC cell in BRCA based
on the ImmuCellAI database. The differences of these cells
between cluster1 and cluster2 are shown in Figure 2A and
Figure S1. Importantly, the CD8+ T cell and CD4+ T cell,
immune cells that mainly recognize and kill tumor cells, were
lower in cluster1 compared with cluster2, while the nTreg cell
December 2020 | Volume 10 | Article 579868
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and iTreg cell were higher in cluster1 (Figure 2B). This result
indicated that there was immunosuppressive state in cluster1.
Further, the Kaplan-Meier analysis demonstrated that low CD8+
T cell and CD4+ T cell infiltration in TCGA BRCA tumor samples
could predict a poor prognosis (P<0.05). Besides, there was a
certain trend between poor survival prognosis and high iTreg cell
and nTreg cell infiltration (P<0.05) (Figure 2C).
Frontiers in Oncology | www.frontiersin.org 5
Identification of Differentially Expressed
Genes (DEGs) and Enrichment Analysis
We performed analysis by the gene expression profiles of BRCA
to identify hypoxia associated differentially expressed genes. A
total of 1,225 differentially expressed genes were selected; 566
were up-regulated and 659 were down-regulated in cluster1
relative to cluster2 (Figure 3A). Considering that the number
A

B D

E F G

IH J

K
L

C

FIGURE 1 | Consensus Clustering identified two clusters of BRCA with different hypoxia status. (A) The heatmap of the 13 hypoxia related gene expression
signature in TCGA BRCA tumor and normal samples (Wilcox Test). (B) The expression of the 13 hypoxia related gene expression signature in TCGA BRCA tumor
and normal samples (Wilcox Test). (C) Spearman correlation analysis of the 13 hypoxia related gene expression signature. (D) The PPI network of the 13 hypoxia
related gene expression signature. (E) The CDF value of consensus index. (F) Relative change in area under CDF curve for k = 2–9. (G) The tracking plot for k = 2 to
k = 9. (H, I) Consensus matrix for k=2 and k=3. (J) Principal component analysis of the total RNA expression profile. (K) The heatmap of the 13 hypoxia related
gene expression signature in cluster1 and cluster2 (Wilcox Test). (L) The expression of the 13 hypoxia related gene expression signature in cluster1 and cluster2
(Wilcox Test). ***P < 0.001.
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A B

C

FIGURE 2 | Immune cells infiltration of different hypoxia status in BRCA. (A) The heatmap of infiltration score and 24 immune cell types in cluster1 and cluster2
(Wilcox Test). (B) The infiltration of CD8+ T cell, CD4+ T cell, nTreg cell, and iTreg cell in cluster1 and cluster2 (Wilcox Test). (C) The overall survival curves of CD8+
T cell, CD4+ T cell, nTreg cell, and iTreg cell in TCGA BRCA. Log-rank p < 0.05 was considered statistical significance. HR > 1, cells infiltration was negatively
associated with OS, while HR < 1, cells infiltration was positively associated with OS. **P < 0.01, and ***P < 0.001.
TABLE 1 | Association between hypoxia status and clinicopathological characteristics in breast cancer patients.

characteristic Total Cluster1 (199) Cluster2 (504) P Value*

No. of patients % No. of patients %

ER Status
Negative 161 104 52.26 57 11.31 <0.001
Positive 542 95 47.74 447 88.69
PR Status
Negative 227 122 61.31 105 20.83 <0.001
Positive 476 77 38.69 399 79.17
HER2 Status
Negative 597 159 79.90 438 86.90 0.019
Positive 106 40 20.10 66 13.10
PAM50 Subtype
Her2 53 33 16.58 20 3.97 <0.001
Luminal A 336 29 14.57 307 60.91
Luminal B 160 40 20.10 120 23.81
Basal/Normal 137 92 46.23 45 8.93
T Stage
T1-T2 602 171 85.93 431 85.52 0.888
T3-T4 101 28 14.07 73 14.48
N Stage
N0-N1 579 162 81.41 417 82.74 0.677
N2-N3 124 37 18.59 87 17.26
M Stage
M0 648 179 89.95 469 93.06 0.440
M1 13 5 2.51 8 1.59
MX 42 15 7.54 27 5.36
Stage
Stage I-II 532 150 75.38 382 75.79 0.107
Stage III-IV 171 49 24.62 122 24.21
Frontiers in Oncology | www.f
rontiersin.org
 6
 December 2020 | Volume 10 | Artic
*Chi-square Test.
le 579868

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gong et al. Hypoxia-Associated Prognostic Markers in Breast Cancer
of differential genes was too large, it was difficult to accurately
make GO and pathway enrichment analysis directly. First off, the
PPI network of DEGs was constructed on STRING database, and
then a crucial sub-network with 58 nodes and 160 edges was
selected by the MCODE APP on Cytoscape 3.7.2 (Figure 3B).
The top 10 items of each GO analysis: biological processes,
molecular functions and cellular components, were shown as
Bar graphs in Figures 3D–F (more details were depicted in Table
S2). The pathway enrichment analysis showed that the DEGs in
the sub-network linked to hypoxia and tumor related pathways:
HIF-1 signaling pathway, Transcriptional misregulation in
cancer, Bladder cancer, Central carbon metabolism in cancer,
Glycolysis/Gluconeogenesis, AMPK signaling pathway, etc.
(Figure 3C, Table S2). These results mean that these DEGs
may play a role in promoting tumor progression through
their function.
Frontiers in Oncology | www.frontiersin.org 7
Hypoxia Associated Prognostic
Markers Among DEGs and a Risk
Signature Established
In order to find hypoxia associated prognostic makers among
DEGs, univariate Cox regression analysis was performed based
on the RNAseq illuminaHiseq data and overall survival (OS) data
of 703 TCGA BRCA tumor samples. As a result, 15 up-regulated
genes and 52 down-regulated genes were found significantly
associated with OS (P<0.05) (Table 2). To identify the most
powerful prognostic mRNA markers, the LASSO Cox regression
analysis results (Figures 4A, B) demonstrated that 3 up-
regulated and 9 down-regulated genes could be the powerful
prognostic markers, and the coefficient of each gene were shown
in Figure 4C. The related pathways and functions of these 12
genes were revealed in Table S3. Based on the 12 powerful
prognostic markers, a risk signature was constructed, Then, the
A B

D

E

F

C

FIGURE 3 | Identification of differentially expressed genes (DEGs) and Enrichment analysis. (A) Volcano plot for DEGs in cluster1 and cluster2. Red and blue dots
represent up-regulated and down-regulated DEGs in cluster1 relative to cluster2, respectively (P < 0.05, |logFC| >1). (B) PPI network of a crucial sub-network with
58 nodes and 160 edges among DEGs. (C) Pathway enrichment analysis of the DEGs in the sub-network. (D–F) The top 10 items of GO analysis: biological
processes, molecular functions and cellular components of the DEGs in the sub-network.
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TABLE 2 | Prognosis-related DEGs in breast cancer.

Gene HR[exp(coef)] coef 95% CI lower 95% CI upper P value* log2FC FDR** Regulated

AKR1E2 1.129 0.121 0.002 0.241 0.047 1.433 8.57E-33 Up-Regulated
CASP14 1.066 0.064 0.003 0.125 0.040 3.483 2.45E-72 Up-Regulated
CWH43 1.088 0.084 0.004 0.165 0.040 1.321 3.58E-16 Up-Regulated
DPYSL5 1.083 0.079 0.001 0.157 0.046 1.244 1.08E-14 Up-Regulated
IVL 1.121 0.114 0.027 0.201 0.010 1.892 2.09E-37 Up-Regulated
L1CAM 1.139 0.130 0.042 0.219 0.004 1.748 3.97E-28 Up-Regulated
MMP1 1.086 0.083 0.005 0.161 0.038 2.805 1.13E-48 Up-Regulated
PSCA 1.081 0.078 0.001 0.155 0.048 1.195 1.18E-10 Up-Regulated
SHCBP1 1.234 0.211 0.018 0.404 0.032 1.031 8.02E-40 Up-Regulated
SPDYC 1.079 0.076 0.002 0.149 0.043 1.116 6.83E-09 Up-Regulated
TMEM105 1.146 0.136 0.015 0.258 0.028 1.159 3.2E-21 Up-Regulated
TMEM45A 1.194 0.177 0.021 0.333 0.026 1.422 6.42E-56 Up-Regulated
TPRXL 1.169 0.156 0.056 0.257 0.002 1.281 3.01E-22 Up-Regulated
WIT1 1.115 0.109 0.005 0.213 0.041 1.346 1.12E-22 Up-Regulated
WT1 1.099 0.095 0.009 0.180 0.030 1.568 1.58E-19 Up-Regulated
ABCA10 0.863 -0.147 -0.280 -0.013 0.031 -1.274 4.3E-28 Down-Regulated
AGBL2 0.809 -0.212 -0.369 -0.055 0.008 -1.273 4.25E-44 Down-Regulated
BTG2 0.791 -0.234 -0.411 -0.058 0.009 -1.391 8.31E-59 Down-Regulated
C1orf168 0.894 -0.113 -0.205 -0.020 0.017 -1.944 4.77E-36 Down-Regulated
C1orf226 0.782 -0.246 -0.394 -0.098 0.001 -1.147 1.62E-31 Down-Regulated
CCDC160 0.899 -0.107 -0.212 -0.002 0.046 -1.148 2.45E-19 Down-Regulated
CCDC74A 0.892 -0.114 -0.223 -0.005 0.040 -1.581 1.34E-34 Down-Regulated
CCDC74B 0.892 -0.115 -0.214 -0.015 0.024 -1.585 5.54E-35 Down-Regulated
CCL19 0.902 -0.103 -0.173 -0.032 0.004 -1.083 4.68E-08 Down-Regulated
CD22 0.866 -0.143 -0.274 -0.013 0.031 -1.241 5.65E-31 Down-Regulated
CLDN19 0.846 -0.167 -0.282 -0.053 0.004 -1.125 5.27E-16 Down-Regulated
CLGN 0.923 -0.080 -0.160 0.000 0.049 -1.601 7.15E-22 Down-Regulated
CLIC6 0.902 -0.103 -0.175 -0.032 0.005 -1.131 1.19E-07 Down-Regulated
COL17A1 0.874 -0.134 -0.205 -0.064 0.000 -1.061 1.62E-07 Down-Regulated
CRIP1 0.881 -0.126 -0.240 -0.013 0.029 -1.222 1.34E-23 Down-Regulated
CYP4F11 0.904 -0.101 -0.180 -0.022 0.012 -1.267 2.76E-13 Down-Regulated
DARC 0.920 -0.083 -0.160 -0.006 0.034 -2.072 1.05E-31 Down-Regulated
EGOT 0.816 -0.204 -0.329 -0.078 0.001 -1.156 5.41E-22 Down-Regulated
ELOVL2 0.911 -0.094 -0.167 -0.020 0.013 -2.433 1.27E-37 Down-Regulated
EVL 0.778 -0.251 -0.430 -0.072 0.006 -1.278 1.83E-53 Down-Regulated
F2RL2 0.893 -0.113 -0.213 -0.013 0.027 -1.621 8.61E-34 Down-Regulated
FGD3 0.865 -0.145 -0.276 -0.015 0.029 -1.308 2.92E-32 Down-Regulated
FLT3 0.910 -0.094 -0.182 -0.007 0.035 -1.766 3.66E-27 Down-Regulated
FREM1 0.840 -0.174 -0.281 -0.067 0.001 -1.070 4.51E-16 Down-Regulated
IL33 0.883 -0.125 -0.217 -0.032 0.008 -1.272 2.79E-18 Down-Regulated
LAMA3 0.878 -0.130 -0.228 -0.032 0.010 -1.040 2.32E-15 Down-Regulated
LOC100128977 0.889 -0.118 -0.217 -0.018 0.020 -1.837 6.35E-34 Down-Regulated
LOC100130148 0.891 -0.116 -0.218 -0.013 0.027 -2.011 1.06E-42 Down-Regulated
LRP1B 0.898 -0.108 -0.200 -0.015 0.022 -1.043 3.52E-07 Down-Regulated
LRRC48 0.830 -0.187 -0.320 -0.054 0.006 -1.670 2.31E-55 Down-Regulated
MEOX1 0.864 -0.146 -0.244 -0.048 0.003 -1.182 2.01E-17 Down-Regulated
MMEL1 0.874 -0.134 -0.259 -0.009 0.036 -1.071 6.68E-21 Down-Regulated
MYO18B 0.885 -0.122 -0.242 -0.002 0.046 -1.427 1.25E-28 Down-Regulated
NKAIN1 0.926 -0.076 -0.152 -0.001 0.047 -1.974 2.92E-25 Down-Regulated
NOS1AP 0.846 -0.167 -0.302 -0.032 0.015 -1.299 5.63E-31 Down-Regulated
NPY1R 0.927 -0.076 -0.139 -0.013 0.018 -2.257 4.91E-22 Down-Regulated
PLD4 0.876 -0.133 -0.259 -0.006 0.040 -1.541 2.63E-40 Down-Regulated
PRICKLE4 0.844 -0.170 -0.336 -0.003 0.045 -1.152 3.02E-34 Down-Regulated
RGL3 0.870 -0.139 -0.234 -0.044 0.004 -1.363 3.68E-24 Down-Regulated
SCUBE2 0.932 -0.070 -0.139 -0.001 0.047 -3.188 8.02E-61 Down-Regulated
SEC14L2 0.875 -0.134 -0.259 -0.009 0.035 -1.125 5.29E-21 Down-Regulated
SEMA3B 0.883 -0.124 -0.228 -0.020 0.019 -1.309 1.57E-22 Down-Regulated
SEMA3G 0.819 -0.199 -0.364 -0.035 0.017 -1.267 3.12E-48 Down-Regulated
SLC27A2 0.906 -0.099 -0.189 -0.008 0.032 -1.423 1.06E-19 Down-Regulated
SLC6A4 0.912 -0.092 -0.171 -0.014 0.021 -1.812 8.02E-17 Down-Regulated
SLC7A3 0.852 -0.160 -0.285 -0.035 0.012 -1.033 7.09E-16 Down-Regulated
SLC7A4 0.917 -0.086 -0.164 -0.009 0.029 -1.598 1.01E-15 Down-Regulated
SNTN 0.878 -0.130 -0.260 0.000 0.049 -1.172 4.76E-23 Down-Regulated
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TABLE 2 | Continued

Gene HR[exp(coef)] coef 95% CI lower 95% CI upper P value* log2FC FDR** Regulated

SUSD3 0.865 -0.145 -0.241 -0.048 0.003 -1.985 9.43E-41 Down-Regulated
THSD7B 0.870 -0.140 -0.264 -0.015 0.028 -1.175 9.41E-24 Down-Regulated
TNN 0.863 -0.147 -0.244 -0.050 0.003 -1.317 4.63E-20 Down-Regulated
TPRG1 0.907 -0.097 -0.177 -0.018 0.017 -2.598 1.69E-46 Down-Regulated
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FIGURE 4 | Hypoxia associated prognostic mRNA markers among DEGs and a risk signature. Established. (A, B) LASSO Cox regression was conducted to
construct the most powerful prognostic markers. (C) The coefficients estimated by multivariate Cox regression via LASSO. (D) The expression of the 12 powerful
prognostic markers in high-risk group and low-risk group (Wilcox Test). (E) Kaplan-Meier overall survival (OS) curves for patients in high- and low-risk group (F) ROC
analysis and AUC value of the ROC curve for risk score. (G) The heatmap shows the expression of the 12 powerful prognostic markers in high-risk group and low-
risk group (Chi-square Test). The distribution of clinicopathological characteristics was compared between the high-risk and low-risk groups. (H–L) The relationship
between Rick score and ER, PR, HER2, TNBC (Wilcox Test). (M) Univariate Cox regression analysis of the associated between clinicopathological features (including
risk score) and overall survival of patients. (N) Multivariate Cox regression analysis of the associated between clinicopathological features (including risk score) and
overall survival of patients. **P < 0.01 and ***P < 0.001.
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risk score was calculated based on the coefficient of each mark
obtained from the LASSO analysis as follows: risk score =
(0.049925* expression level of TPRXL) + (0.057757*
expression level of L1CAM) + (0.006312* expression level of
CWH43) + (−0.06108* expression level of COL17A1) +
(−0.06687* expression level of C1orf226) + (−0.01196*
expression level of FREM1) + (−0.04445 * expression level of
EGOT) + (−0.00326* expression level of MEOX1) + (−0.00591*
expression level of RGL3) + (−0.03899* expression level of
CCL19) + (−0.01146* expression level of CLIC6) + (−0.00182*
expression level of LAMA3). The TCGA BRCA tumor samples
were divided into high-risk and low-risk groups according to the
median risk score. The results of Kaplan-Meier analysis showed
that the high-risk group had significantly worse prognosis
compared with low-risk group (Figure 4E). In order to assess
the sensitivity and specificity of the prediction, the AUC value
was 0.712 obtained from Time-dependent ROC curve,
suggesting well-prediction ability (Figure 4F).

The expression levels of the 13 powerful risk markers in high-
risk and low-risk group were visualized in the vioplot and heatmap
(Figures 4D, G). The results showed that there were significant
differences associated with risk score in terms of cluster (P<0.001),
PR (P<0.001), ER(P<0.001), HER2(P<0.01) and fustat (P<0.001).
The risk score was much higher in cluster1, ER-, PR-, HER2+ and
TNBC patients (Figures 4H–L). Then, univariate and multivariate
Cox regression analysis were performed to test whether the risk
signature could be set as independent prognostic factor. As a
result, the T stage, N stage, M stage, Stage and risk score were
associated with OS by univariate analysis, and only M stage and
risk score were still significantly related to OS in multivariate Cox
regression analysis (Figures 4M, N).

According to our selected risk signature and LASSO Cox
regression formula, we calculated risk score and validated our
model among 1,356 breast tumor samples in METABRIC
dataset. These patients were divided into high risk (n=985) and
low risk (n=371) groups by the optimal cut-off point which was
obtained by X-tile software. Significantly, Consistent with results
of TCGA BRCA tumor samples, the high-risk group also had
significantly worse prognosis compared with low-risk group in
METABRIC data (Figure S2A). AND the AUC value of 0.719
also demonstrated a well-prediction ability (Figure S2B). The
risk score was much higher in ER-, PR-, HER2+ and advanced
pathological grade patients (Figure S2C–H). Then, the results of
univariate and multivariate Cox regression analysis showed that
risk score still could act as an independent prognostic factor
among METABRIC patients (Figures S2I, J).

Identification of Hypoxia Associated
Differentially Expressed Candidate
MicroRNAs
Analysis of the miRNA mature strand expression data of TCGA
BRCA yielded 15 up-regulated and 2 down-regulated miRNAs in
cluster1 compared to cluster2 (Figure 5A, Table 3). We
examined the prognostic value of these 17 differentially
expressed miRNAs via the Kaplan-Meier Plotter database.
There were 7 up-regulated and only 1 down-regulated
Frontiers in Oncology | www.frontiersin.org 10
miRNAs associated with 120 months’ OS (Table 3). We
selected one up-regulated and one down-regulated miRNA
with the most significant logFC value as the candidate
miRNAs. Hsa-miR-210-3p was up-regulated in cluster1, while
hsa-miR-190b was down-regulated in cluster1 relative to cluster2
(Figures 5B, C). Besides, high expression of hsa-miR-210-3p in
BRCA was associated with worse OS (HR=1.54, logrank
P=0.036), while high expressed of hsa-miR-190b was related to
better OS (HR=0.64, logrank P=0.014) (Figures 5D, E).

Pathway Enrichment Analysis Revealed
the Role of hsa-miR-210-3p and hsa-miR-
190b in Cancer
In order to understand the possible function of hsa-miR-210-3p
and hsa-miR-190b in the development of BRCA, KEGG pathway
enrichment was utilized to analyze their target genes. Firstly, the
target genes of the 2 miRNAs were obtained from the the mirDIP
database, an integrative Database of Human microRNA Target
Predictions, with the predict score as “very high” (Table S4 and
Figure 5F). Then, the pathway enrichment was performed based
on these genes, and the results linked these genes to several
cancer related pathways: MicroRNAs in cancer, Signaling
pathways regulating pluripotency of stem cells, Transcriptional
misregulation in cancer, MAPK signaling pathway, Ras signaling
pathway, PI3K-Akt signaling pathway, Hepatocellular
carcinoma, Pathways in cancer, etc. (Figure 5G and Table S3).
We also performed GO analysis of these target genes including
biological processes, molecular functions and cellular
components, and the results were shown as Bar graphs in
Figures 5H–J (more details were shown in Table S5).

Identification of Candidate DEGs
Regulated by Candidate MicroRNAs
Under Hypoxia Status
Venn diagrams were used to identify the intersection between
top100 hsa-miR-210-3p targets and down-regulated genes, as
well as between top100 hsa-miR-190b targets and up-regulated
genes in cluster1 relative to cluster2 (Figure 6A). Among these
genes, two candidate DEGs, CPEB2 and BCL11A, were selected.
Expression levels were low and high for CPEB2 and BCL11A in
cluster1, respectively, and might act as a tumor suppressor gene
and a putative oncogene (Figures 6B, C, F).

Besides, there were negative correlations between hsa-miR-
210-3p and CPEB2 (r=−0.278, P<0.05), and between hsa-miR-
190b and BCL11A (r=−0.562, P<0.05) (Figures 6D, E). The
expression of the two candidate DEGs was associated with the
survival of BRCA patients. High expression of CPEB2 was
related to better OS (HR=0.49, logrank P<0.05), whereas high
expression of BCL11A was associated with worse OS (HR=1.53,
logrank P<0.05) (Figures 6G, H).

A Hypoxia Related Competitive
Endogenous RNA (ceRNA)
Regulation Network
To determine whether any lncRNAs might be involved in
dysregulated expression of candidate DEGs and miRNAs, we
December 2020 | Volume 10 | Article 579868
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firstly used the Starbase database to predict the target lncRNAs of
hsa-miR-210-3p and hsa-miR-190b (Table S4 and Figure 6I).
Then we chose the lncRNAs which are not only negatively
related to candidate miRNAs but also positively related to
CPEB2 and BCL11A based on ceRNA theory (Table 4).
Among the selected lncRNAs, 4 of them, SNHG16,
LINC00899, PSMG3-AS1 and PAXIP-AS1, were significantly
Frontiers in Oncology | www.frontiersin.org 11
associated with survival (Figure 7). High expression of SNHG16
could predict a poor prognosis, while high expression of
LINC00899, PSMG3-AS1 and PAXIP-AS1 could predict a
better prognosis. We constructed a local protein network
between the proteins CPEB2 and BCL11A, we then added
candidate miRNAs and the 4 lncRNAs to this network. In this
network, loss of LINC00899, PSMG3-AS1 and PAXIP1-AS1
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FIGURE 5 | Identification of hypoxia associated differentially expressed candidate microRNAs. (A) Volcano plot for differentially expressed microRNAs in cluster1 and
cluster2. Red and blue dots represent up-regulated and down-regulated in cluster1 relative to cluster2, respectively (P < 0.05, |logFC| >1). (B, C) The expression of
hsa-miR-210-3p and hsa-miR-190b in cluster1 and cluster2. (D, E) The overall survival curves of hsa-miR-210-3p and hsa-miR-190b in TCGA BRCA estimated by
the Kaplan Meier plotter. (F) The miRNA-mRNA networks for the top50 targets of hsa-miR-210-3p and hsa-miR-190b. (G) KEGG pathway enrichment analysis of
the target genes of hsa-miR-210-3p and hsa-miR-190b. (H–J) The top 10 items of GO analysis: biological processes, molecular functions and cellular components
of the target genes of hsa-miR-210-3p and hsa-miR-190b.
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leads to increased hsamiR-210-3p. When overexpressed, hsa-
miR-210-3p impedes translation of CPEB2, a tumor suppressor
gene in breast cancer under hypoxia status. High expressed
SNHG16 can suppress hsa-miR-190b, which leads to increased
expression of BCL11A, an oncogene in breast cancer (Figure 8).
Thus, this dysregulated ceRNA network can result in progression
of breast cancer under hypoxia situation.
DISCUSSION

The complete tumor tissue includes not only cancer cells, but
also the surrounding vessels, lymphatic vessels, fibroblasts,
inflammatory cells, and extracellular matrix. It also includes a
variety of interstitial cells andbiomolecules infiltrating them.These
are collectively referred to as the tumormicroenvironment (34, 35).
The abnormal vascular network in solid tumors and the excessive
oxygen demand of rapidly growing cancer cells lead to hypoxia in
tumor tissues. Hypoxic and acidic microenvironment is one of
the most important components of tumor microenvironment.
Cancer cells adapt to and rely on thesemicroenvironments, leading
to thediversity and instabilityofgenemutations, activatingmultiple
signaling pathways and survival factors, which contribute to
angiogenesis, metabolic reprogramming, epithelial–mesenchymal
transition, invasion, metastasis, cancer stem cell maintenance,
immune evasion, and resistance to chemotherapy and radiation
therapy (5, 36). Therefore, understanding the effect of hypoxia on
molecular mechanism is essential to improve the outcome of
cancer treatment.

In our current study, we selected 13 hypoxia related gene
signature which can well demonstrate the hypoxia status based
on published studies. These 13 genes make up a common
hypoxia signature which will be up-regulated and are
consistently co-expressed with previously validated hypoxia-
regulated genes under hypoxic conditions in various cancers.
They are a small number of top-ranked genes with the highest
Frontiers in Oncology | www.frontiersin.org 12
connectivity and the most prognostic in hypoxia co-expression
cancer networks, including head and neck, breast and lung
cancers (12). And according to their expression, we defined the
hypoxia status of breast cancer tissues to divide these breast
cancer samples into two groups, namely cluster1 and cluster2.
Considering that the expression of the 13 genes in cluster1 is
higher than that of cluster2, we defined cluster1 as the “hypoxic
subgroup”. For the association between hypoxia status and
clinicopathological characteristics, there were more ER-, PR-,
Her2+ and triple negative breast cancer patients in cluster1 than
cluster2. This result indicates that the hypoxic state is closely
related to the malignant phenotype of breast cancer.

An increasing number of studies indicate that the hypoxia status
of tumor tissue is an important reason for promoting tumor
immunosuppression and resistance to immunotherapy. Tumor
hypoxic regions can recruit immunosuppressive cells such as
myeloid derived suppressor cells (MDSC), tumor-associated
macrophage (TAM) and Tregs, and can inhibit the activation of
CD8+T cells and CD4+T cells (33, 37). Hypoxia can increase the
expression and secretion of CCL28 in ovarian cancer cells. CCL28 is
an inducer of Tregs and has an immunosuppressive function on
CD8+ T cells (38). In the presence of hypoxia and TGF-b, CD4+ T
cells upregulated Foxp3 through the binding of HIF-1 to the
promoter region of Foxp3, which induced the differentiation of
Tregs and enhances immunosuppression (39). Therefore, we
compared the infiltration of 24 immune cell types including 18
T-cell subtypes and 6 other immune cells in cluster1 and cluster2.
The results showed that, comparedwith cluster 2, the infiltration of
CD8 + T cells and CD4 + T cells in cluster 1 was lower, while the
infiltration of nTreg cells and iTreg cells in cluster 1 was higher.
This result indicates that there is an immunosuppressive state in
cluster1. In addition, this result in turn confirmed that we initially
defined cluster1 as the “hypoxic subgroup”was correct. The recent
research results of Shaoquan Zheng et al. are in strong agreement
with ours. They constructed a combined hypoxia and immune
index based on 3 hypoxia-related genes and 7 immune-related
TABLE 3 | Hypoxia associated dysregulated microRNAs in breast cancer.

MicroRNA logFC FDR* regulated HR 95%CI lower 95%CI upper logrank P**

hsa-miR-210-3p 2.357 1.51E-43 Up-Regulated 1.54 1.02 2.30 3.60E-02
hsa-miR-224-5p 1.729 2.52E-24 Up-Regulated 1.46 0.98 2.17 6.40E-02
hsa-miR-934 1.614 1.44E-15 Up-Regulated 1.56 1.08 2.26 1.70E-02
hsa-miR-105-5p 1.613 5.53E-10 Up-Regulated 2.26 1.55 3.28 1.20E-05
hsa-miR-135b-5p 1.607 4.47E-21 Up-Regulated 1.29 0.92 1.81 1.50E-01
hsa-miR-1825 1.483 6.51E-03 Up-Regulated 2.08 1.47 2.93 2.50E-05
hsa-miR-767-5p 1.460 1.50E-08 Up-Regulated 1.99 1.37 2.89 2.20E-04
hsa-miR-9-5p 1.436 1.79E-14 Up-Regulated 1.90 1.34 2.69 2.50E-04
hsa-miR-577 1.389 3.37E-13 Up-Regulated 1.30 0.93 1.83 1.30E-01
hsa-miR-452-5p 1.257 1.18E-18 Up-Regulated 1.49 0.97 2.28 6.70E-02
hsa-miR-187-3p 1.214 9.63E-10 Up-Regulated 1.22 0.83 1.78 3.10E-01
hsa-miR-18a-5p 1.169 5.03E-28 Up-Regulated 1.27 0.90 1.79 1.70E-01
hsa-miR-519a-5p 1.115 3.94E-10 Up-Regulated 1.71 1.21 2.43 2.30E-03
hsa-miR-452-3p 1.090 1.19E-21 Up-Regulated 1.49 0.97 2.28 6.70E-02
hsa-miR-455-3p 1.081 2.87E-14 Up-Regulated 1.35 0.96 1.91 8.70E-02
hsa-miR-375 -1.364 4.45E-13 Down-Regulated 1.23 0.88 1.72 2.30E-01
hsa-miR-190b -1.426 1.29E-24 Down-Regulated 0.64 0.45 0.92 1.40E-02
Decembe
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genes for triple-negative breast cancer samples in Gene Expression
Omnibus (GEO), TCGA and METABRIC by silico analyses, and
patients were divided into hypoxiahigh/immunelow and hypoxialow/
immunehigh groups. The key markers of hypoxia (ALDOA,
ENO1, LDHA, etc.) are highly expressed in the hypoxiahigh/
immunelow group, while a higher percentage of CD8+ T cells was
observed in the hypoxialow/immunehigh group (40). In this case,
both their and our results confirmed that there is a strong
Frontiers in Oncology | www.frontiersin.org 13
positive correlation between the hypoxia status of tumor
and immunosuppression.

The response to hypoxia includes a series of adaptation
mechanisms that promote tumor cells survival (41). Basel Abu-
Jamous et al. jointly analyzed 16 heterogeneous breast cancer cell
lines transcriptome datasets under hypoxia-related conditions
and identified a series of genes that were up-regulated under
hypoxia, such as BRAF, EGLN1, EGLN3, GAB1, MAP2K1,
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FIGURE 6 | Identification of candidate genes and construction of a ceRNA network. (A) Venn diagrams showing the intersection between predicted target genes of
hsa-miR-210-3p/hsa-miR-190b and DEGs. (B, C) The expression of candidate genes, CPEB2 and BCL11A, in cluster1 and cluster2. (D, E) The negative
correlations between hsa-miR-210-3p and CPEB2, and between hsa-miR-190b and BCL11A. (F) The heatmap of hsa-miR-210-3p, hsa-miR-190b, CPEB2 and
BCL11A in cluster1 and cluster2. (G, H) The overall survival curves of CPEB2 and BCL11A in breast cancer patients estimated by the Kaplan Meier plotter. (I) The
miRNA-lncRNA networks of the target lncRNAs of hsa-miR-210-3p and hsa-miR-190b.
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MET, SLC2A1, VEGFA, and VEGFC. They are well described as
part of the hypoxic transcriptome and are HIF targets involved in
the response to hypoxia, positive regulation of the I-kappaB
kinase/NF-kappaB cascade, carbohydrate metabolism, glycolysis
and other pathways and GO functions (42). Further, we analyzed
the differentially expressed genes of cluster1 and cluster2 to
explore the molecular mechanism of breast cancer tissue
changes under hypoxia. Among them, some important DEGs
clustered significantly into pathways related to hypoxia and
tumor invasion and metastasis, such as HIF-1 signaling
pathway, Transcriptional misregulation in cancer, Bladder
cancer, Central carbon metabolism in cancer, Glycolysis/
Gluconeogenesis, AMPK signaling pathway, etc. Similarly,
these results in turn confirmed that our hypoxic classification
of tumor samples was correct. The HIF-1 signaling and
Glycolysis/Gluconeogenesis pathways play a vital role in
promoting the occurrence and development of tumors under
hypoxic conditions. As is reported, cancer cells can use both
conventional oxidative metabolism and glycolytic anaerobic
metabolism. However, even in the presence of oxygen, their
proliferation is also characterized by increased glycolytic
metabolism which is called Warburg effect. HIF 1 as a major
hypoxia-inducible transcription factor can promote the
dissociation between glycolysis and tricarboxylic acid cycle.
This process limits the effective production of ATP and citric
acid which would otherwise prevent glycolysis. The Warburg
effect is also conducive to alkaline pH in tumor cells, which
drives cancer cell proliferation (enhancing cell cycle progression
and glycolysis) and cancer aggressiveness (resistance to immune
response, cytotoxic drugs and apoptosis). This effect even leads
to epigenetic and genetic changes which cause cells to appear a
variety of new phenotypes, thereby enhancing the growth and
aggressiveness of cancer cells (43). Therefore, our results mean
that these DEGs between cluster1 and cluster2 may play a role in
promoting tumor progression through their functions according
to existing research results.

Enriched studies indicate that hypoxia-related gene signatures
generated in vitro and in vivo have prognostic power in breast
cancer and other cancers. Inna Y. Gong et al. explored several
datasets from GEO database based on four published hypoxia
Frontiers in Oncology | www.frontiersin.org 14
signatures [Buffa (12), Winter (44), Hu (45), and Sorensen (46)],
and confirmed to a certain extent that hypoxia-related gene
signatures had potential to be used as biomarkers to predict
survival of early breast cancer (47). By contrast, Maud H W
Starmans et al. identified 295 up-regulated and 164 down-
regulated genes under hypoxia in breast (MCF7), colon
(HT29) and prostate (DU145) carcinoma cells in vitro, but
they found that none of these in vitro derived signatures
consisting of hypoxia-induced genes are prognostic when in a
much larger cohort of breast cancer patients in vivo (48). In an
effort to bolster clinical tools for hypoxic understanding of breast
cancer, we also developed a prognostic signature associated with
hypoxia. By univariate Cox and LASSO Cox regression analysis,
we constructed a new risk signature which was not reported
before based on 3 up-regulated and 9 down-regulated genes in
cluster1. Besides, our 12-gene signature showed a well-prediction
ability to provide new perspectives for the identification of breast
cancer with a high risk of death. And the risk score is much
higher in cluster1, ER-, PR-, HER2+, TNBC, and advanced
Grade patients, which indicates that the increased risk score
also predicts a malignant breast cancer molecular phenotype.
Some studies have confirmed the role and function of genes in
this risk signature. For example, CCL19 inhibited cell
proliferation, migration, and invasion in gastric cancer by
activating the CCR7/AIM2 signaling pathway, which could be
a potential therapeutic approach (49). EGOT reduced the vitality
and migration of breast cancer cells by inactivating the Hedgehog
pathway (50). COL17A1 as a target of p53 can also inhibit the
migration and invasion of breast cancer cells (51).

MiRNAs and lncRNAs are identified as key regulators of gene
expression in various biological and pathological processes,
including cancer (52). Further we use data contained in
databases such as StarBase, mirDIP, Kaplan-Meier Plotter and
TCGA, based on ceRNA theory, we identified potential ncRNA
regulatory pathways involving a tumor suppressor and an
oncogene, LINC00899/PSMG3-AS1/PAXIP1-AS1- hsa-miR-
210-3p-CPEB2 and SNHG16- hsa-miR-190b-BCL11A ceRNA
regulation networks, and built a local PPI network which might
promote the development of breast cancer under hypoxia.
Experimental results are consistent with some of our predictions.
TABLE 4 | The correlation coefficient of lncRNA-microRNA and lncRNA-mRNA in TCGA BRCA.

LncRNA MicroRNA Correlation coefficient mRNA Correlation coefficient

AC093010.3 hsa-miR-210-3p −0.382 CPEB2 0.050
LINC01011 hsa-miR-210-3p −0.176 CPEB2 0.140
AC142472.1 hsa-miR-210-3p −0.203 CPEB2 −0.036
PSMG3-AS1 hsa-miR-210-3p −0.309 CPEB2 0.259
AC007681.1 hsa-miR-210-3p −0.113 CPEB2 0.103
LINC00899 hsa-miR-210-3p −0.149 CPEB2 0.177
PAXIP1-AS1 hsa-miR-210-3p −0.225 CPEB2 0.109
SNHG16 hsa-miR-190b −0.215 BCL11A 0.143
AC021092.1 hsa-miR-190b −0.185 BCL11A 0.143
LINC00662 hsa-miR-190b −0.135 BCL11A 0.181
LINC00943 hsa-miR-190b −0.313 BCL11A 0.442
AC012360.3 hsa-miR-190b −0.110 BCL11A 0.135
AL512363.1 hsa-miR-190b −0.263 BCL11A 0.289
AL022069.1 hsa-miR-190b −0.116 BCL11A 0.185
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It is reported that miR-210 was upregulated by HIF-1a in the
stromal cells of giant cell tumors of bone (53). Downregulation
of miR-210 inhibited growth of tumors, such as glioblastoma
and osteosarcoma (54, 55). In addition, CPEB2 has been shown
to act as a tumor suppressor gene in breast cancer. In MCF7
cells, CPEB2 gene knockdown mediated by siRNA promotes
carcinogenic properties in vitro, promotes EMT, migration,
invasion, proliferation and stem cell-like phenotype of cells (56).
Breast cancer-derived exosomes induced CD73 + gd1 Treg cells
by transmitting lncRNA SNHG16, while CD73 + gd1 Treg cells
Frontiers in Oncology | www.frontiersin.org 15
exert an immunosuppressive effect through adenosine production
(57). Besides, by directly interacting with the 3’UTR of Bcl2, miR-
190b induces osteosarcoma cell apoptosis and confers radio-
sensitivity to gastric cancer cells (58, 59). According to reports,
BCL11A acts as a carcinogenic gene for a variety of human
cancers, such as breast cancer (60), laryngeal squamous cell
carcinoma (61), high-risk neuroblastoma (62), non-small cell
lung cancer (63) etc. In addition, the expression of PSMG3-AS1
in breast cancer tumor tissues and cell lines was increased,
and PSMG3-AS1 as a sponge of miR-143-3p enhanced the
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FIGURE 7 | LncRNAs selected for the hypoxia related competitive endogenous RNA (ceRNA) regulation network. (A–D) The positive correlations between
candidate genes and selected lncRNAs (P<0.05, r>0.1). (E–H) The negative correlations between candidate miRNAs and selected lncRNAs (P<0.05, r<−0.1).
(I–L) The overall survival curves of selected lncRNAs in breast cancer patients estimated by the Kaplan Meier plotter.
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proliferation and migration ability in the pathogenesis of breast
cancer (64).

In conclusion, our research has provided an understanding of
potential carcinogenesis mechanism and molecular prognostic
markers of breast cancer under hypoxic conditions from multiple
levels by in silico analyses. We hope that our research can provide a
new theoretical basis for exploring the carcinogenic and progression
mechanisms of breast cancer. However, it is undeniable that our
research still has some limitations. The data from the TCGA
database does not directly provide values for hypoxia status, for
example, O2 levels. At the same time, we have only analyzed and
constructed relevant ceRNA regulatory networks for hsa-miR-190b
and hsa-miR-210-3p, but not other miRNAs. The next important
step is to use functional experiments to verify our predictions.
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