
*For correspondence:

maude.bouchard.1@umontreal.ca

(MB);

julie.carrier.1@umontreal.ca (JC)

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 13

Received: 26 October 2020

Preprinted: 03 February 2021

Accepted: 26 August 2021

Published: 27 August 2021

Reviewing editor: Bryce A

Mander, University of California,

Irvine, United States

Copyright Bouchard et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Sleeping at the switch
Maude Bouchard1,2*, Jean-Marc Lina1,3,4, Pierre-Olivier Gaudreault1,
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Abstract Sleep slow waves are studied for their role in brain plasticity, homeostatic regulation,

and their changes during aging. Here, we address the possibility that two types of slow waves co-

exist in humans. Thirty young and 29 older adults underwent a night of polysomnographic

recordings. Using the transition frequency, slow waves with a slow transition (slow switchers) and

those with a fast transition (fast switchers) were discovered. Slow switchers had a high

electroencephalography (EEG) connectivity along their depolarization transition while fast switchers

had a lower connectivity dynamics and dissipated faster during the night. Aging was associated

with lower temporal dissipation of sleep pressure in slow and fast switchers and lower EEG

connectivity at the microscale of the oscillations, suggesting a decreased flexibility in the

connectivity network of older individuals. Our findings show that two different types of slow waves

with possible distinct underlying functions coexist in the slow wave spectrum.

Introduction
Sleep slow waves are non-rapid eye movement (NREM) sleep oscillations in the delta range (<4 Hz)

reflecting a high neuronal synchronization (Diekelmann and Born, 2010). They generate sustained

interest in neuroscience research for their role in sleep-dependent memory consolidation, synaptic

plasticity, and as markers of homeostatic sleep pressure (Gais et al., 2002; Inostroza and Born,

2013; Steriade, 2006; Borbély, 2001; Diekelmann and Born, 2010). In human sleep studies, there

is, however, a fundamental question as to whether EEG waves showing oscillations <4 Hz are a

unique entity or rather hide two types of slow waves with specific functional roles. In humans, slow

EEG frequencies are often divided into two components, slow waves (typically 1–4 Hz) vs slow oscil-

lations (<1 Hz) (Achermann and Borbély, 1997; Mölle et al., 2002; Muehlroth et al., 2019). It has

been hypothesized that these two components have different functional molecular regulation mech-

anisms (Lee et al., 2004) and responses to homeostatic pressure (Achermann and Borbély, 1997;

Campbell et al., 2006). More recent studies in mice and humans showed that faster delta frequen-

cies (2.5–4.5 Hz) react differently to sleep deprivation than lower delta frequencies (0.75–2 Hz), sug-

gesting distinct neurophysiological substrates. Precisely, compared to lower delta frequencies, faster

delta frequencies showed an increased incidence and power after a sleep deprivation protocol

(Hubbard et al., 2020). In recent years, Siclari et al., 2014 showed that delta oscillations (1–4.5 Hz)

with distinct cortical origins and distributions are sustained by different synchronization processes.

Their team further identified two types of slow waves, widespread, steep (type I) and smaller, more

circumscribed (type II) slow waves with only the second type showing homeostatic regulation

(Bernardi et al., 2018). More recently, animal and human studies brought to light new evidence of

two types of slow waves based on the positive and negative state duration of slow waves: one show-

ing a positive correlation and another showing a negative correlation between the two

(Nghiem et al., 2020). Here, we propose to describe the dichotomy in the delta frequency range
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based on a new parameter characterizing the time delay from the maximum negative point of the

EEG slow wave to the maximum positive point: the transition frequency. Using this parameter, we

show two types of slow waves driven by different pressures of homeostatic dissipation and endowed

by specific EEG functional connectivity dynamics.

Sleep slow waves are characterized by a hyperpolarizing state (a negative phase in surface EEG/

a down-state in animal literature) during which cortical neurons are synchronously silent, followed by

a depolarizing state (a positive phase in surface EEG/an up-state in animal literature) during which

cortical neurons fire intensively (Csercsa et al., 2010; Steriade, 2006; Chauvette et al., 2011). The

transition from the negative to the positive phase is critical, as it is a strong marker of the ability of

brain networks to efficiently switch from a state of hyperpolarization to a state of massive depolariza-

tion. The slope of the slow wave (the rate of amplitude change from the negative to the positive

peak) is associated with the recruitment/decruitment of the neuronal population, with a steeper

slope showing a quicker recruitment (Vyazovskiy et al., 2011). It is generally described as the best

measure to assess the synaptic strength and sleep homeostasis compared to other classic parame-

ters (Bersagliere and Achermann, 2010; Riedner et al., 2007). However, using the slope as a mea-

sure of transition speed also presents important limitations, as it is affected by slow wave amplitude:

with similar positive and negative durations, higher slow waves will necessarily have steeper slopes

(Bersagliere and Achermann, 2010). A novel metric that captures the transition speed and that is

more independent of amplitude needs to be developed.

The study of slow waves necessarily involves the notion of age, as slow waves drastically change

during adulthood. Compared to young adults, older individuals show lower slow wave density as

well as reduced amplitude, smoother slope, and longer positive and negative phase durations of

slow waves, possibly indicating that cortical neurons enter less synchronously into the hyperpolariza-

tion and depolarization phases (Carrier et al., 2011). Therefore, our ability to disentangle the influ-

ence of the slow wave amplitude over the slope is compromised in aging. A novel metric that

captures the transition speed without being affected by amplitude needs to be developed, espe-

cially when studying older populations. Age-related EEG connectivity modification has also been

recently described in the literature (Ujma et al., 2019; Bouchard et al., 2019) with major age-

related differences in deeper NREM sleep, when slow waves are prominent. At the scale of sleep

stages and cycles, our team reported that older individuals showed higher between-region EEG con-

nectivity at the whole-brain scale in deep NREM sleep (stage N3) as compared to younger adults

(Bouchard et al., 2019). These results support the notion that the brain of younger individuals dur-

ing deeper NREM sleep stages operates with reduced long-range cortico-cortical connectivity

(Spoormaker et al., 2011; Massimini et al., 2007). However, EEG connectivity at the scale of slow

waves has yet to be studied in humans and during aging. Such information would allow a better

understanding of the dynamic and distinct networks recruited during those oscillations in addition to

providing functional clues to support the complementary phenomena happening in the delta fre-

quency range as described in other studies. The goals of our study were thus to clearly identify the

dichotomy in the slow wave’s spectrum and describe the EEG connectivity patterns and homeostatic

decline of these two types of slow waves in young and older individuals.

Materials and methods

Participants and protocol
Fifty-nine participants, 30 young (14 women, 16 men; 20–30 years; mean = 23.49 ± 2.79 yo) and 29

older (18 women, 11 men; 50–70 years; mean = 59.6 ± 5.61 yo) adults in good physical and mental

health, have completed the study protocol (demographic data for each group is presented in

Supplementary file 1). Exclusion criteria were first investigated during a phone screening using a

semi-structured interview. Smoking, a body mass index (BMI) over 27, the use of drugs and/or medi-

cation that could affect the sleep-wake cycle and/or the nervous system, complaints about the

sleep-wake cycle and/or cognition, transmeridian travel within 3 months prior to the study, and

night-shift work or night-shift work in the last 3 months all resulted in the exclusion of the partici-

pant. Participants included in the study were asked to maintain between 7 and 9 hr of sleep per

night prior to the study. Participants with a score higher than 13 at the Beck Depression Inventory

(Beck et al., 1988a) or a score higher than 7 at the Beck Anxiety Inventory (Beck et al., 1988b) were
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excluded from the study. Potential cognitive impairment and dementia were screened using a neuro-

psychological assessment in which intelligence quotient (IQ), memory, attention, processing speed,

and executive functions were performed and ruled out for all participants. Premenopausal women

had regular menstrual cycles (25–32 days), and menopausal women showed amenorrhea, for at least

a year before the testing. They reported no night sweats or hot flashes. Perimenopausal women

were excluded from the research. The protocol was approved by the ethics committee of the Hôpital

du Sacré-Coeur de Montréal and was performed in accordance with the relevant guidelines and reg-

ulations (CMER-RNQ 08-08-002). Participants provided informed consent and received financial

compensation for their participation.

Procedures
All participants underwent one screening and one experimental night of polysomnographic (PSG)

recording at the Center for Advanced Research in Sleep Medicine at the Hôpital du Sacré-Coeur de

Montréal. For the screening night only, PSG also included leg electromyogram (EMG), thoracoabdo-

minal plethysmograph, oral/nasal canula as well as frontal, central, and parietal electrodes referred

to linked earlobes (Iber et al., 2007). Participants with periodic leg movements or sleep apneas/

hypopneas (index >10 per hr of sleep associated with a microarousal) were excluded from the study.

Polysomnographic recording for the experimental night
All participants filled out a sleep diary and followed a regular sleep-wake cycle for 7 days before the

experimental night based on their individual habitual bedtimes and wake times (± 30 min). Bedtimes

and wake times in the laboratory were also based on their own sleep schedules. On the experimen-

tal PSG night, 20 EEG derivations (Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, Pz, P3, P4, Oz, O1, O2,

T3, T4, T5, T6) referred to linked earlobes were recorded (10–20 international system; EEG: gain

10,000; band-pass 0.3–100 Hz; �6 dB), in addition to chin EMG, electrooculogram (EOG), and elec-

trocardiogram (ECG). Signals were recorded using an amplifier system (grass model 15A54; Natus

Neurology, Warwick, Rhode Island, USA) and digitized at a sampling rate of 256 Hz using

a commercial software (Harmonie, Stellate Systems, Montreal, Quebec, Canada). Sleep stages (N1,

N2, N3, and REM) were visually scored by an electrophysiology technician in 30 s epochs and

according to the standard criteria of the American Academy of Sleep Medicine (AASM) (Iber et al.,

2007), and sleep cycles were identified. Artifacts were first automatically detected (Brunner et al.,

1996) and then visually inspected by a trained technician. PSG variables for each group for the

experimental night are presented in Supplementary file 1.

Slow wave detection
Slow waves were detected automatically on artifact-free NREM (N2 and N3) epochs on all electro-

des using previously published criteria (Dang-Vu et al., 2008; Dubé et al., 2015). Specifically, data

was initially filtered between 0.3 and 4.0 Hz using a band-pass filter (- 3 dB at 0.3 and 4.0 Hz; �23

dB at 0.1 and 4.2 Hz), and slow waves were defined according to the following parameters: a nega-

tive peak below �40 mV, a peak-to-peak amplitude above 75 uV, the duration of negative deflection

between 1500 and 125 ms, and the duration of positive deflection not exceeding 1000 ms.

Sleep spindle detection
Spindles were automatically detected on artifact-free NREM (N2 and N3) epochs on all electrodes

using a previously published algorithm (Gaudreault et al., 2018; Lafortune et al., 2014;

Martin et al., 2013). Specifically, the EEG signal was band-pass filtered between 10 and 16 Hz using

a linear-phase finite impulse response filter (–3 dB at 10 and 16 Hz). The envelope amplitude of the

Hilbert transform of this band-limited signal was smoothed and a threshold was set at the 75th per-

centile. All events of duration between 0.5 and 3 s were then selected as a spindle. The overlap of a

spindle oscillation with a slow wave, characterized by the onset of the spindle between -p and p/2

on the slow wave phase, was defined as a co-occurrence (see Figure 1A).

Slow wave characteristics
For each slow wave, we derived the map between the time and the phase obtained from the Hilbert

transform of the filtered slow wave in the delta band (0:16� 4Hz). All slow waves were equally time
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referenced by choosing the zero phase at the maximum of the depolarization. Then, the temporal

evolution during each slow wave was uniquely described with a phase ranging from �3p=2 to p=2 as

illustrated in Figure 1A. In addition to general parameters like slow wave density (number per min)

and frequency (inverse of the total duration T ), we calculated the transition frequency extracted

from the filtered slow wave in the delta band. For each slow wave, the transition frequency charac-

terizes the half-wave associated with the depolarization transition. If t denotes the delay of the tran-

sition from the maximum negative point to the maximum positive point of the slow wave (see

Figure 1A), then the transition frequency is defined as ft ¼ 1=2t . Figure 1B displays the scatter plot

of the overall joint distribution of slow wave frequencies and transition frequencies for all slow waves

detected on Fz in young and older individuals. The marginal distributions of the two frequencies

clearly show an age difference in the distribution of the transition frequency ft that is not observed

for the frequency. We observed a critical value for the transition frequency around 1.2 Hz (dashed

line) where the two distributions cross with aging. This change in the distribution suggests a model

of mixture to reveal distinct modes that could be associated with different types of sleep slow waves

that may evolve distinctively with aging.

Slow and fast switchers
As introduced in the previous section, we considered a mixture of Gaussians to modelize the distri-

bution of the transition frequency of the slow wave. As seen in Figure 2A and B, distributions show

two modes and any slow wave can then be labeled as slow switchers or fast switchers (cyan and dark

blue distribution for young and older participants, respectively). More specifically, the probability

distribution can be expanded as a sum of weighted Gaussians p ft jSwð Þ,

p ftð Þ ¼ p SlowSwð Þp ft jSlowSwð Þþ p FastSwð Þp ft jFastSwð Þ

where

Figure 1. Frequency and transition frequency of slow waves in young and older individuals. Panel (A) represents the phase of a slow wave with the

transition between the maximum negative phase (hyperpolarization (H)) and the maximum positive phase (depolarization (D)) in pink. Panel (B)

represents a scatter plot of the exhaustive Fz inventory of the frequency (1
T
) and transition frequency ( 1

2t
) of each slow wave detected in N2 and N3 in

young (light red) and older groups (dark red). The marginal distributions of the two frequencies show a similar distribution for the mean frequency,

whereas the transition frequency shows distinct distributions with aging.
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p SlowSwð Þþ p FastSwð Þ ¼ 1

In this sum, p ft jSlowSwð Þ and p ft jFastSwð Þ are Gaussian distributions that describe, depending on

the class ‘slow switchers’ or ‘fast switchers’, the probability to transit with the frequency ft .

p SlowSwð Þ (resp.p FastSwð Þ) is the probability for the sleep slow wave to be a slow switcher (resp. a

fast switcher). The reliability of the mixture model was further tested with the Akaike Information Cri-

terion (Figure 2C) that assessed that a mixture with two Gaussian distributions is necessary and suffi-

cient to fit the entire distribution of the transition frequency. This parametric model of p ftð Þ can be

estimated using the EM (Expectation-Maximization) algorithm to fit the distribution for each individ-

ual. From this mixture of Gaussians, we can define the frequency f � where the two Gaussians inter-

sect: a slow wave will be labeled as a ‘slow switcher’ if ft<f
�, i.e. if p ft jSlowSwð Þ � p ft jFastSwð Þ and a

fast switcher otherwise.

Slow and fast switcher modulation analysis
To evaluate the decline of slow and fast switchers throughout the night, we calculated the percent-

age of slow or fast switchers in each sleep cycle related to the respective total number of slow or

fast switchers across the night. To statistically test the changes between the slow and fast switchers’

decline across sleep cycles, a three-way analysis of variance (ANOVA) with one factor [2 (Group:

younger vs older)] and two repeated measures [2 (Switcher: slow vs fast)] � [3 (Cycle: cycle 1, 2, and

3)] was performed. p-values <0.05 were considered significant and simple effects were analyzed to

follow up significant interactions.

Phase-locked connectivity analyses
The functional connectivity across the EEG derivations was assessed using a time-resolved phase lag

index (PLI) calculated at six successive phases of the slow wave. Five phases were evenly spaced dur-

ing the transition, whereas a sixth phase was defined after the depolarization maxima. Given a slow
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Figure 2. Transition frequency and the slow and fast switcher definition. Panels (A) and (B) are normalized histograms of the transition frequencies (in

pink) for young (A) and older subjects (B), for slow waves detected in N2 and N3 frontal derivations (average of F3, F4, and Fz). The fit of the

distributions can be decomposed as a mixture of Gaussians: one Gaussian (cyan) accounts for slow switchers, and the other (dark blue) accounts for the

fast switchers. The separation line at f* = 1,2 Hz stands for the intersection between the two Gaussian distributions. Panel (C) shows the Akaike

Information Criterion for the increasing number of Gaussians in the mixture. The lower the criterion with a sparse decomposition, the better the mixture

fit (parietal and central derivations are presented in Figure 2—figure supplement 2).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The transition frequency and its relationship with the slope and amplitude of slow waves.

Figure supplement 2. Distribution of the transition frequency in central and parietal derivations.
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wave (further labeled by k) was detected on the derivation denoted by n�, we considered the internal

phase of the detected oscillation and the simultaneous phase of the other EEG derivations, ’
kð Þ
n� and

’ kð Þ
m , respectively (the * indicates the derivation on which the slow wave was detected). The slow

wave PLI between n� and any other derivation m is then defined by

pli n�;mð Þ ¼
1

N�

X

kk

sign sin ’
kð Þ
n� �’ kð Þ

m

� �� �

where the summation runs over the N� slow waves detected on n�. This quantity is calculated for six

regularly spaced phases of the detected slow wave. Since this pairwise pli emphasizes the slow wave

detected on n�, we further symmetrize the definition to account for all the slow waves detected over

any pair (n, m):

PLI n;mð Þ ¼
1

2
pli n�;mð Þþ pli n;m�ð Þð Þ

It is worth noting that slow waves that would truly propagate from n to m with a non-vanishing

delay would contribute with pli n�;mð Þ ’ pli n;m�ð Þ since the non-vanishing delay will be of an opposite

sign. The definition of this PLI thus emphasizes the connectivity due to cortico-cortical propagation

of the slow waves, independently from the shape of the oscillation. For each of the six phases cho-

sen along the slow waves, the statistical significance of the connections was assessed through a ran-

dom resampling of the phase with a max-statistics over the full set of electrode pairs. This null-

hypothesis modeling was used to define the threshold at each of the six-phase points, for a given

p-value (0.01). Finally, to quantify the global strength of the connectivity, a global connectivity index

(Bouchard et al., 2019) was then defined at each of the six slow wave phases as the sum of the PLI

over the significant pairs of electrodes. An increasing value of this index qualitatively assesses a

more interconnected network or a more significant phase-locked synchronization (with constant non-

vanishing delay) among the EEG electrodes.

Results

Slow and fast switchers in the sleep slow wave inventory for young and
older individuals
Figure 3 illustrates the slow wave density, distributions of transition frequencies, and the slow

switcher probability for frontal (average of F3, F4, and Fz), central (average of C3, C4, and Cz), and

parietal (average of P3, P4, and Pz) derivations. As expected, the slow wave density was significantly

lower in older individuals as compared to younger participants for the three derivation clusters

(Figure 3A). Our analyses demonstrated the existence of the ‘slow switchers’ and the ‘fast switchers’

represented by a bimodal distribution of the transition frequency, in each cluster and for both young

and older individuals (Figure 3B and C). The cut-off frequency between the two Gaussian curves

was statistically determined for each subject and then averaged over both groups (see ‘Slow and

fast switchers’ in the ‘Materials and methods’ section). In young individuals, a cut-off frequency of

1.3 Hz was found for all derivations, whereas older individuals showed a frequency of 1.2 Hz in fron-

tal and 1.1 Hz in central and parietal derivations. Since further analyses showed that a slow and fast

switcher dichotomy exists with or without the concomitant occurrence of a spindle (see Figure 3—

figure supplement 1), we present the analyses for all slow waves in Figure 3A,B,C and D. We also

showed that older individuals had a higher probability of producing slow switchers than fast switch-

ers when generating a slow wave compared to younger individuals (Figure 3D; p<0.0001 for all deri-

vations). Figure 3—figure supplement 1 also shows the probabilities to make a slow switcher or

a fast switcher slow wave depending on the presence of a co-occurring sleep spindle.

Fast switchers show a steeper decline than slow switchers at the
beginning of night
Considering slow and fast switchers separately, Figure 4 displays the percentage of switchers in

each cycle related to the total number of the same switchers across the whole night. Remarkably,

the first three sleep cycles, which are present in almost all participants (cycles 4 and 5 mostly missing
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for the older individuals), showed an exponential decay that is significantly different for the two

types of slow waves. In the younger group, the exponential ~ e�rt drives the fast and slow switchers’

decay with r ¼ 1:6 R2 ¼ 1ð Þ and r ¼ 1:3 R2 ¼ 1ð Þ, respectively. For older subjects, a much slower expo-

nential decay also drives the fast switchers with r ¼ 0:6 R2 ¼ 1ð Þ whereas the slow switchers are rather

evolving with an exponential reduction ~ � ert with r ¼ 0:4 R2 ¼ 1ð Þ.

The three-way ANOVA with repeated measures showed significant Group � Cycle [F(2,1) = 6.9, p

= 0.001] and Cycle � Switcher [F(2,1) = 69.2, p<0.001] interactions as well as a specific Cycle effect

[F(1.4, 80.1) = 69.7, p<0.001]. Simple effects analysis for the Group � Cycle interaction showed that

younger individuals had, in general, more slow waves (averaged number of both types) in Cycle 1 (t

(57) = 2.6, p<0.05) but less in Cycle 2 (t(57) = �2.2, p<0.05) when compared to older individuals,

whereas no group differences were found for Cycle 3. These results highlight a stronger decrease of

slow waves in young individuals as compared to the older individuals between Cycle 1 and Cycle 2,

suggesting a steeper decline of homeostatic pressure. As for the Cycle � Switcher interaction, sim-

ple effects analysis showed a higher proportion of fast switchers than slow switchers for Cycle 1 (t

(58) = �9.6, p<0.001), whereas an opposite effect was found for Cycle 2 (t(58) = 7.0, p<0.001) and

Cycle 3 (t(57) = 6.0, p<0.001). When put together, these results suggest a steeper decline of fast

switchers between Cycle 1 and Cycle 2 when compared to slow switchers, as demonstrated by the

inversion of the slopes at the second time point.
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Figure 3. Slow and fast switcher slow waves. (A) Slow wave densities in clusters of frontal (F3, Fz, F4), central (C3, Cz, C4), and parietal (P3, Pz, P4)

derivations in young and older individuals. Slow waves were detected in N2 and N3. (B and C) The distribution of probabilities of slow waves being

slow (cyan) or fast switchers (dark blue) in younger and older individuals, respectively, with each curve representing one participant. We can observe the

two distinct modes of sleep slow waves based on their transition frequency in each derivation. (D) Age-related differences in the probability of

producing a slow switcher when generating a slow wave. Significant age differences in (A) and (D) were calculated using t-tests (***p<0.0001).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Slow and fast switcher slow waves with and without sleep spindles.
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EEG connectivity dynamics evolve differently within slow and fast
switchers
PLI was used to investigate intrinsic slow wave EEG connectivity networks across different phases of

the depolarization transition (Figure 5A). Since sleep spindles can involve dynamic changes in con-

nectivity (Zerouali et al., 2014), analyses were performed separately for spindle-free slow waves and

slow waves coupled to a spindle. Figure 5B and C show the connectivity graphs across consecutive

phases in slow and fast switchers for younger individuals (Figure 5B) and older individuals

(Figure 5C) for slow waves without sleep spindles. A similar analysis for slow waves with sleep spin-

dles of young and older individuals is shown in Figure 6. Analysis of the global connectivity index,

which quantifies the overall significance of the global connectivity of a graph, showed a distinct EEG

connectivity strength for slow and fast switchers in both young (Figure 5D) and older (Figure 5E)

adults. Our results also showed a higher overall EEG connectivity during slow switchers as compared

to fast switchers and a higher connectivity in young individuals rather than in older individuals. More

specifically, in younger individuals, we observed a global increase in EEG connectivity during slow

switchers, which reached its highest connectivity strength at the maximum of depolarization.

Whereas this scenario recruited connectivity patterns along the full slow wave depolarization in the

absence of a spindle (Figure 5D), the connectivity involved in the slow wave with a spindle was con-

centrated later, around the maximum depolarization phase (Figure 6D). In older individuals, slow

switchers showed a higher EEG connectivity along the depolarization transition while no significant

link was found for the fast switchers. With aging, the fast switchers or the presence of a spindle dras-

tically obliterated the EEG connectivity (Figures 5E and 6E).

Discussion
In the present work, we have identified two types of slow waves: the slow switchers and the fast

switchers. Slow and fast switchers showed distinct distributions of their transition frequency (the

transition between the maximum negative point and the maximum positive point of the slow wave)

and were detected in both age groups with the older participants showing a higher proportion of

slow switchers. We demonstrated that slow and fast switchers are characterized by a specific EEG

connectivity signature along the depolarization transition, with slow switchers presenting an overall

higher EEG connectivity than fast switchers. Connectivity across slow waves was lower in older
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individuals as compared to younger ones. Most importantly, when looking at homeostatic regula-

tion, fast switchers showed a steeper decline between the sleep cycles across the night as compared

to slow switchers. Using a data-driven approach, the results of this study thus distinguish two types

of slow waves present in younger and older individuals, with specific characteristics that could

embody complementary functional roles.
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Figure 5. EEG connectivity signature of slow and fast switchers without sleep spindles in young and older individuals. (A) Illustration of the six different

phases along the depolarization transition (a, b, c, d, and e) and the hyperpolarization transition of the slow wave (f). (B and C) EEG connectivity graphs

using phase-locked connectivity (phase lag index, PLI) metrics and statistically assessed by non-parametric statistics for the slow (upper level) and fast

(lower level) switchers without sleep spindles, in young (B) and older (C) individuals. (D and E) Global connectivity index (GCI) values at each phase of

the slow wave, obtained by the summation of the PLI values across the significant electrode pairs. The GCI thus shows the weight of significant links

obtained through non-parametric analyses. Slow switchers are represented in cyan, whereas the fast switchers are represented in dark blue. Graphs

have a common scale and can therefore be compared.
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Sleep slow waves are either slow or fast switchers
The frequencies related to half-wave components of filtered EEG were introduced decades ago in

order to provide an alternative to the time-resolved spectral analysis of sleep (Geering et al., 1993).

Such studies were mostly concerned with the half-waves defined by the zero-crossings of the entire

high-pass-filtered EEG signals, although no consensus was reached. The present work introduces a

new parameter in which half-waves and the associated frequency are defined from the depolariza-

tion transition of detected sleep slow waves. This intrinsic parameter, the transition frequency, objec-

tively classifies sleep slow waves in humans into two categories: the slow and fast switchers. At the
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Figure 6. EEG connectivity signature of slow and fast switchers with sleep spindles in young and older individuals. (A) Illustration of the six different

phases along the depolarization transition (a, b, c, d, and e) and the hyperpolarization transition of the slow wave (f). (B and C) EEG connectivity graphs,

using phase-locked connectivity (phase lag index, PLI) metrics and statistically assessed by non-parametric statistics for the slow (upper level) and fast

(lower level) switchers with sleep spindles, in young (B) and older (C) individuals. (D and E) Global connectivity index (GCI) values at each phase of the

slow wave, obtained by the summation of the PLI values across the significant electrode pairs. Slow switchers are represented in cyan, whereas the fast

switchers are represented in dark blue. Graphs have a common scale and can therefore be compared.
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physiological level, this frequency is associated with the synchronized depolarization of neurons. In

the last year, Nghiem et al., 2020 found two types of slow waves by analyzing temporal patterns of

slow waves’ down-states and up-states. While this distinction is seen in sleep, it does not seem to be

present in anesthesia, which could point to a specific implication of one type of slow wave in sleep-

dependent memory consolidation mechanisms specifically during sleep . Our results add crucial

information to the recent published articles, showing that the two types of slow waves are under-

pinned by a different EEG connectivity network dynamics across the depolarization transition itself

and confirming the distinct homeostatic decline pattern. The use of a parameter more independent

of the amplitude characteristic of the slow wave and associated specifically with the depolarization

transition allows us to describe its intrinsic changes in aging. Taken altogether, these findings finally

expand our understanding of the dichotomy described in the delta frequency of humans for years

and how it is changing in the older population.

Slow and fast switchers show distinct EEG connectivity dynamics
Chauvette et al., 2010 described that in the cat’s cortex, active states begin with the firing of a sin-

gle neuron, leading to another neuron firing, then leading to a cascade of firing neurons. Here, we

observed at a much larger scale that the EEG connectivity also increases as the depolarization occurs

and could be linked to the higher communication and increased synaptic activity during the depolar-

ization phase (Chauvette et al., 2010). In particular, the slow switchers in young adults involved a

significant increase in EEG connectivity to reach a maximum at the depolarization state of the slow

waves. A study by Heib et al., 2013 showed that a longer duration of the depolarization phase of

the slow wave was associated with better memory consolidation. Their hypothesis is that a longer

depolarization phase could represent an increased possibility to effectuate an initial transfer of

recent memory from the hippocampus to the cortex (Heib et al., 2013). Since our identified slow

switchers show a slower transition frequency, their specific role in sleep-dependent cognitive pro-

cesses should be investigated.

The increase in EEG connectivity at the scale of the oscillation seems to be complementary to the

global disconnection we described in previous work in the delta band of N3 in the first sleep cycle of

younger individuals (Bouchard et al., 2019). With the results of both studies, we can conjecture that

this increase of connectivity during the depolarization transition of the slow switchers in young adults

requires a global disconnection at a larger scale to make possible such a transient variation. The fast

switchers, however, involved a lower connectivity index in young adults. Interestingly, if you look at

Figure 1B, it seems that there exists a threshold (around 2.5 Hz) in the transition frequency, above

which fast switchers are more difficult to produce. This critical frequency can be converted into a

characteristic duration that corresponds to a period around 200 ms. Interestingly, this specific 200-

ms duration was set up as the minimal time required for the establishment of connectivity networks,

as recently measured by functional magnetic resonance imaging (fMRI) during resting states

(Baker et al., 2014). We may hypothesize that if the connectivity of the slow wave is transiently asso-

ciated with the establishment of a dynamic network, the depolarization of the slow wave can’t be

faster than the temporal scale needed for the setting of the network. Additionally, slow waves with a

faster transition (the fast switchers with a frequency higher than 2.5 Hz) would not allow enough

time for the dynamic network to take place.

It is also worth noting the variability of the connectivity index involved at each phase of the slow

switchers’ depolarization transition in younger individuals. This variability may reflect the diversity of

networks recruited during such slow waves in those young adults. This idea of the transient reorgani-

zation of networks of a ‘flexible brain’ has been described in adults (Baker et al., 2014;

Spielberg et al., 2015) and more recently in young children (Yin et al., 2020). Our results show that

the flexibility of the slow switchers’ connectivity, with or without spindles, is reduced in aging. Aging

also significantly impacts the overall connectivity involved with the switchers. Although minimal con-

nectivity persists for slow switchers in older adults, it was completely abolished for the fast switchers.

This reduction in connectivity at the scale of the slow waves’ depolarization transition in older indi-

viduals may be related to the general observation that the sleeping brain in aging remains function-

ally more connected at the scale of the sleep stages, namely N3 (Bouchard et al., 2019). It remains

to be investigated if this change in connectivity dynamics could have precise functional consequen-

ces in aging, but the lack of EEG connectivity in older individuals suggests a decrease of flexibility in

the ability to connect/disconnect and to mobilize the underlying network involved in slow waves. To
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our knowledge, our study is the first to provide a functional connectivity analysis at different phases

along the depolarization transition of the slow wave in humans and it is the first to describe its

changes in the context of aging.

The presence of spindles over a slow wave modifies EEG connectivity in both slow and fast

switchers. For instance, our results show that the EEG connectivity seems delayed when there is a

concomitant spindle. For the younger adults, the EEG connectivity increase observed during the

depolarization transition of the slow wave happened to be concomitant with the beginning of the

spindle, whereas this connectivity had already risen in the absence of a spindle. This observation is

not without recalling recent findings regarding the relationship between neural oscillations and the

dynamics of functional connectivity (Tewarie et al., 2019): the spindling oscillation emerging on the

top of the slow wave requires a ‘static connectivity’ from the latter (Daffertshofer and van Wijk,

2011). This is especially true for the most represented slow waves produced by adults, that is, the

fast switchers of the young adults and the slow switchers of the older individuals. In aging, the pres-

ence of the spindle is associated with no changes in EEG connectivity as measured by the global

connectivity index. A more exhaustive investigation of the dynamics of EEG connectivity in the inter-

action between slow waves and spindles connectivity networks in aging could likely contribute to

better explaining the changes in sleep-dependent memory consolidation observed in the older

population.

Slow and fast switchers show distinct homeostatic responses
Our study shows that fast switchers undergo a steeper decline in the subsequent cycles, compared

to slow switchers. When looking at the usual frequency of slow waves, Hubbard et al., 2020 showed

that prolonged waking periods are followed by a higher prevalence of faster waves at the beginning

of the sleep period. They also showed that fast delta frequencies in mice and humans showed a

steeper decline than slow delta frequencies after sleep deprivation. Other studies describing slow

oscillations and delta waves using the usual frequency argued that low frequencies (<1 Hz) are less

modulated by homeostatic pressure (Achermann and Borbély, 1997; Campbell et al., 2006). A

recent study by Kim et al., 2019 using a closed-loop optogenetic technique in rats was able to asso-

ciate slow oscillations (<1 Hz) with consolidation of memory while slow waves (delta waves; <4 Hz)

were involved in the forgetting process, showing dissociable and competing roles of the two

rhythms in sleep-dependent memory consolidation. Kim et al., 2019 also argued that the brain

could accelerate the up-state transition of slow waves to better dissipate homeostatic pressure.

Although it is unknown whether slow or fast switchers respond differently to a homeostatic chal-

lenge, we can hypothesize that fast switchers would be more involved in the response to a sleep

challenge such as sleep deprivation.

Slow and fast switchers evolve differently with aging
Older individuals in our study produced 60% of slow switchers compared to 40% for younger adults,

which means that the prevalence of this type of oscillation significantly increases with advancing age.

Compared to older participants, younger participants seem to have more efficient initiation and ter-

mination of slow waves’ transition as they generate slow waves with a steeper slope (Carrier et al.,

2011; Ujma et al., 2019). This rationale could partially explain the higher prevalence of slow switch-

ers observed in our aging population, namely, that the latter might need an overall longer delay in

polarity reversal. Also, age-related changes in homeostatic response could be responsible for

the changes in slow wave production (Tononi, 2009). Indeed, older subjects show a significant

decrease in their ability to increase the characteristics of slow waves (density, amplitude, slope, and

duration) after a sleep deprivation, and these effects are more prominent in prefrontal and frontal

derivations (Lafortune et al., 2012). One could hypothesize that these specific effects of aging on

homeostasis response in frontal areas would reflect the underlying changes specifically in fast switch-

ers as compared to slow switchers.

We showed that there is an age-related reduction in homeostatic response for both slow and fast

switchers. However, the relative ratio of slow and fast switchers across all sleep cycles was main-

tained with age. While fast switchers were predominant in the first cycle, slow switchers predomi-

nated in all the other cycles for both young and old subjects. One could thus hypothesize that these

oscillations have a different functional role to play across the night, both for young and older
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subjects. Interestingly, the early night generally benefits verbal memory consolidation while subse-

quent sleep cycles could be more beneficial for procedural memory (Plihal and Born, 1997;

Gais and Born, 2004). Future studies need to investigate the relative contribution of both fast and

slow switchers to memory consolidation processes during sleep and overall sleep-dependent cogni-

tive processes.

The animal literature on NREM slow wave parameters shows differences with humans. For

instance, compared to humans, there is an age-related increase in frontal local field potentials (LFP)

delta power (Soltani et al., 2019) and in slow waves’ amplitude and slope in older mice, suggesting

higher neuronal synchronization (Panagiotou et al., 2017; McKillop et al., 2018). Sleep deprivation

protocols also showed higher sleep pressure (Panagiotou et al., 2017) and a similar sleep pressure

discharge between young and older mice (Wimmer et al., 2013). While sleep researchers are trying

to understand and explain the differences (McKillop and Vyazovskiy, 2020), the new parameter,

that is, the transition frequency, brings a new angle of analysis and could lead to interesting insights

into this problem, for example, by looking at the proportion of slow and fast switchers, their propor-

tion in sleep deprivation protocols, and their pattern of homeostatic decline and brain functional

connectivity. While more sleep deprivation studies are needed to understand the functional role of

slow and fast switchers and their value for the aging brain, looking into slow and fast switchers in ani-

mals would enhance our understanding of the sleeping brain.

Conclusion
This study is the first to use the transition frequency of slow waves to introduce and to study the

slow and fast switchers in the slow wave spectrum, which were identified in both young and older

adults. Slow and fast switchers present different connectivity dynamics along their depolarization

transition, with slow switchers having a higher connectivity than fast switchers. They are also differ-

ently modulated during the night, with fast switchers showing steeper decreases at the beginning of

the night. Aging was associated with a higher number of slow switchers than fast switchers,

an overall lower EEG connectivity across the depolarization transition of slow waves, and a flatter

homeostatic decline of both slow wave types across the night. Those results regarding slow waves

likely imply different functional mechanisms associated with slow and fast switchers that could be

modified in aging.
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ments will be studied by the owner of the database (Julie Carrier) who will then also submit to her

institution’s REB for authorization to share the data. Data requests should be addressed to: Julie

Carrier (PI): julie.carrier.1@umontreal.ca Sonia Frenette (in cc) : sonia.frenette@umontreal.ca.
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Bouchard M, Lina J-M, Gaudreault P-O, Dubé J, Gosselin N, Carrier J. 2019. EEG connectivity across sleep cycles
and age. Sleep 342:zsz236. DOI: https://doi.org/10.1093/sleep/zsz236

Brunner DP, Vasko RC, Detka CS, Monahan JP, Reynolds CF, Kupfer DJ. 1996. Muscle artifacts in the sleep EEG:
automated detection and effect on all-night EEG power spectra. Journal of Sleep Research 5:155–164.
DOI: https://doi.org/10.1046/j.1365-2869.1996.00009.x, PMID: 8956205

Campbell IG, Higgins LM, Darchia N, Feinberg I. 2006. Homeostatic behavior of fast Fourier transform power in
very low frequency non-rapid eye movement human electroencephalogram. Neuroscience 140:1395–1399.
DOI: https://doi.org/10.1016/j.neuroscience.2006.03.005, PMID: 16631313

Carrier J, Viens I, Poirier G, Robillard R, Lafortune M, Vandewalle G, Martin N, Barakat M, Paquet J, Filipini D.
2011. Sleep slow wave changes during the middle years of life. European Journal of Neuroscience 33:758–766.
DOI: https://doi.org/10.1111/j.1460-9568.2010.07543.x, PMID: 21226772

Chauvette S, Volgushev M, Timofeev I. 2010. Origin of active states in local neocortical networks during slow
sleep oscillation. Cerebral Cortex 20:2660–2674. DOI: https://doi.org/10.1093/cercor/bhq009, PMID: 2020010
8

Chauvette S, Crochet S, Volgushev M, Timofeev I. 2011. Properties of slow oscillation during slow-wave sleep
and anesthesia in cats. Journal of Neuroscience 31:14998–15008. DOI: https://doi.org/10.1523/JNEUROSCI.
2339-11.2011, PMID: 22016533
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