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The expansion of forest farmers across tropical lowland South America
during the Late Holocene has long been connected to climate change. The
more humid conditions established during the Late Holocene are assumed
to have driven the expansion of forests, which would have facilitated the dis-
persal of cultures that practised agroforestry. The Tupi, a language family of
widespread distribution in South America, occupies a central place in the
debate. Not only are they one of the largest families in the continent, but
their expansion from an Amazonian homeland has long been hypothesized
to have followed forested environments wherever they settled. Here, we
assess that hypothesis using a simulation approach. We employ equation-
based and cellular automaton models, simulating demic-diffusion processes
under two different scenarios: a null model in which all land cells can be
equally settled, and an alternative model in which non-forested cells
cannot be settled or delay the expansion. We show that including land
cover as a constraint to movement results in a better approximation of the
Tupi expansion as reconstructed by archaeology and linguistics.
1. Introduction
The Late Holocene in South America was a period of significant ecological and
social transformation with the establishment of a modern climate and the
expansion of cultures and languages. Starting ca 4000–3000 BP, wetter con-
ditions drove the expansion of forests in regions influenced by the South
American summer monsoon, particularly the southern Amazon and southeast-
ern Brazil [1,2]. Parallel to climate change, the archaeological record and
historical linguistics show the dispersal of traditions and language families
associated with plant cultivation and forest management in the South American
tropical lowlands [3–6].

The territorial extent of archaeological cultures related to the spread of cer-
amics and farming mirrors the distribution of the largest language families in
South America, suggesting that culture and language spread was a conse-
quence of population growth and expansion from centres of domestication
[7–10]. The concurrence of precipitation increase, forest expansion and popu-
lation dispersal suggest that the establishment of modern climatic conditions
and the geographical extent of current biomes favoured the expansion of
forest agriculturists and their languages across the tropical lowlands of South
America [3,11].

Here, we employ computer simulations to assess the role of climate change
in the expansion of one of those cultures, the Tupi, whose languages and
material culture cover a vast territory (figure 1). The chronology and causes
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Figure 1. Distribution of Tupi sites and languages. (a) Archaeological sites with 14C dates [4] and tropical forest biome [12]. 1 = earliest dated site (Urupá, 5070 ±
60 BP) [13]. (b) Historical distribution of Tupi speakers [14–16]. 2 = probable homeland of the Tupi family; 3 = Guarani languages; 4 = Tupinambá languages.
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of the Tupi expansion have been one of the most debated
questions of South American archaeology [8], and the coinci-
dence between the distribution of Tupi sites and forests
outside of the Amazon suggests that Late Holocene shifts
in forest-savannah borders may have influenced the Tupi dis-
persal, making them the ideal case for testing the role of
climate change in human migrations [11,17].
1.1. The Tupi expansion
The Tupi (or Tupían) language family comprises over 40
languages, divided into 10 subgroups [18–20]. The highest gen-
etic diversity within the family is found in the southwestern
Amazon, with half of the subgroups restricted to the Brazilian
state of Rondônia, the most probable Tupi homeland [21].

Among the subgroups of the Tupi family, Tupi–Guarani is
the most widespread. Speakers of Tupi–Guarani languages
occupied most of the Brazilian coast and hinterland of the
Paraná Basin (figure 1) [22–25]. The first archaeological
models for the Tupi–Guarani dispersal assumed an initial
split in the central Amazon, with parallel expansion routes
along the Atlantic coast and the Paraná Basin, corresponding
to the two branches that effectively left the Amazon: the Tupi-
nambá and Guarani, respectively [7,8]. Later archaeological
models shifted the hypothetical Tupi–Guarani homeland to
the southwestern Amazon, based on the linguistic evidence
for the Tupi family as a whole [16]. The Tupi–Guarani
languages, however, have their highest diversity in the east-
ern Amazon [19,23,24,26]. Archaeological models that
incorporate this information suggest a southward migration
of the Guarani along the Paraná basin headwaters, near cen-
tral Brazil, or a return of that branch to the southwestern
Amazon before its southward displacement [15,27].
According to glottochronological estimates, the Tupi
started to diverge ca 5000 BP [18,28,29]. The Tupi–Guarani
subgroup is much shallower, with estimates of its initial
split varying between ca 2500 and 1000 BP [22,28–30]. The
earlier boundary (ca 2500 BP) agrees with the archaeological
chronology, but the percentage of shared cognates between
Tupi–Guarani languages appears to support a more recent
separation [25,30]. Whatever the case, it is clear that there
was a period of stasis in the Amazon, during which the several
Tupi subgroups were established, followed by the continental
expansion of one of those subgroups, the Tupi–Guarani—an
event that has been described as an ‘explosion’ [30].
1.2. Archaeological correlates
The Tupi expansion has its material correlate in the appear-
ance of polychrome and corrugated pottery outside of the
Amazon. This material culture package was conventionally
called ‘Tupiguarani Tradition’, in reference to the Tupi–
Guarani languages [31]. Originally, two ceramic styles were
recognized, corresponding to the Tupinambá (Atlantic
coast) and Guarani (Paraná Basin) branches. More recently,
however, other regional styles have been identified [15,32].
Because of the uncertainties in the regional subdivisions,
and to avoid association with particular groups, we will
refer to the whole archaeological complex as Tupi.

The southern part of the Tupi territory has the highest
number of dates, attesting an arrival in the Paraná river at
least 2010 ± 75 BP (2090–1740 cal BP; all dates calibrated
with the ShCal20 curve [33] and reported using the 2σ inter-
val; electronic supplementary material, figure S1) [34]. The
Atlantic coast has yielded some unexpectedly early dates,
as early as 2920 ± 70 BP (3220–2790 cal BP) [35]. A chronology
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after 1740 ± 90 BP (1825–1380 cal BP), however, is better sup-
ported for this region [35]. In the eastern Amazon, dates
reaching 2430 ± 20 (2680–2340 cal BP) have been reported,
confirming the deep chronology predicted by linguistics in
this region. Such early dates are still seen with caution, how-
ever, and the majority of the sites in the eastern Amazon are
later than 1670 ± 80 BP (1590–1350 cal BP) [36]. The earliest
dates published so far reach back to 5070 ± 60 BP (5910–
5600 cal BP) and come from the Brazilian state of Rondônia,
the purported homeland of the Tupi family [13,37,38].
These dates have not been included in recent models of the
Tupi chronology, which focused on the expansion of the
Tupi–Guarani branch [4,39]. Nevertheless, they agree with
the early chronology for other cultural developments in the
southwestern Amazon, including plant cultivation [40], and
are currently the only archaeological correlate for the initial
divergence of the Tupi family.

The small number of dates for some regions confounds
our understanding of the Tupi dispersal. Recently, space–
time regressions employing different methods (bootstrapping
and Monte Carlo simulations) were used to detect cultural
dispersal while incorporating the uncertainty in the radiocar-
bon record; however, such applications did not find any
significant correlation between distance from the origin (the
earliest site(s) in the eastern Amazon) and arrival time
[4,39]. Similarly, agent-based models failed to replicate the
Tupi–Guarani chronology, at least when assuming an expan-
sion starting in the eastern Amazon ca 2400 BP [4]. That does
not mean that demic diffusion did not happen—only that the
resolution of the available radiocarbon record is currently
insufficient to detect its speed and direction [39]. Incorrect
dates may also be skewing our understanding [4].
1.3. Relationship with climate change
The hypothesis that the Tupi expansion was caused by cli-
mate change is not new. Meggers [17] drew on the (now
disproven) refuge theory to suggest that the expansion of
the Tupi and other language families coincided with periods
of aridity that forced the population to disperse across forest
refuges. More recently, Iriarte et al. [11] relied on a summary
of palaeoecological evidence to posit that forest expansion,
not contraction, was the driver of the Tupi expansion. The
increase in forested areas that could be exploited by the
Tupi, it is argued, facilitated their dispersal from the south-
western Amazon to similar niches elsewhere [11]. Given the
short distances separating the Amazon and the Atlantic
forest, it is plausible that the advance (or retreat) of forests
in the southern Amazon and southeastern Brazil would
have created corridors (or barriers) that facilitated (or
delayed) the Tupi dispersal.

The Tupi phenomenon needs to be understood as part of
other cultural expansions in tropical lowland South America
[4]. The expansions in question diffused the cultivation of
domesticated plants and management of semi-domesticated
species with different degrees of human impact on the
forests—a package conventionally called polyculture agrofor-
estry. The spread of this economic and material culture
package has been related to increased precipitation and
forest expansion at the Mid- to Late-Holocene transition [3].
The southwestern Amazon, where the Tupi homeland is
located, was also the centre of origin of other language
families of widespread distribution in tropical lowland
South America, such as Arawak [41]. Furthermore, this
region yielded some of the earliest evidence of forest manage-
ment, plant domestication and adoption of exotic cultivars in
the Amazon, reinforcing the association between language
expansion and domestication centres [9,40,42–45].

Reliance on forest management by modern and histori-
cally recorded Tupi groups also speaks in favour of an
environmental cause for their expansion [46]. Historically,
the presence of an arboreal canopy was vital for the Guarani
and Tupinambá in establishing their territories, as their econ-
omy was devised to function within the forest [47–49]. The
ethnography of modern Tupi-speaking groups shows that
settlement in a new area is preceded by the management of
forests and the introduction of cultivated plant species [50].
There are abundant records of similar agroforestry practices
among all Tupi populations [51–55]. Reconstructions of the
proto-Tupi cultural vocabulary attest to the persistence of
gardening and a range of cultivated plants from the origins
of the language family to the present [6]. In summary, the
hypothesis that Mid- to Late-Holocene forest expansion in
South America was determinant in the dispersal of the
Tupi deserves serious consideration.

To assess the relationship between climate change and the
Tupi expansion, we employed computational modelling.
Recent simulations of demographic expansions demonstrated
that better approximations of reality are achieved when
the environment is included as a constraint to movement
[56–58]. However, the only agent-based simulations of demo-
graphic expansions in South America, including the Tupi,
did not consider the influence of environmental change [4].
Recent attempts to correlate the Tupi chronology with
changes in vegetation yielded promising results, but were
restricted to the Paraná Basin and relied on visual inspection
of the data [11].

We model demic-diffusion processes using commonly
employed algorithms. Specifically, we applied an equation-
based model (EBM) of front propagation with an underlying
cost surface [56,57] and a cellular automaton (CA) simulating
population growth and dispersal in a dynamic environment
[4,59,60]. To test whether climate change had a role in the
movement of the Tupi, we executed models in which all
the tropical lowlands can be settled equally (which we refer
to as the null hypothesis) and models in which settlement
advances at a faster rate or is restricted to tropical moist
forest environments (our alternative hypothesis). In the CA,
forest extent is dynamically updated using climate-based
vegetation models [61]. If forest advance and retraction influ-
enced the Tupi expansion, it is expected that the inclusion of
vegetation as a constraint for settlement should result in a
better approximation of the observed chronology.
2. Material and methods
2.1. Chronology
For comparison with the simulated chronology, we used the Tupi
subset (n = 392) of our previously published database of tropical
lowland South American radiocarbon dates [4]. Dates were col-
lected from published databases, articles, academic theses and
reports [15,34,62] (see the electronic supplementary material,
table S1 for the references). We excluded dates with questionable
Tupi affiliation, dates with an unclear association between the
date and the archaeological context, and dates that are not
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supported by the regional chronology or by other dates from the
same site [4]. Because most dates in a region tend to be later than
first arrival times, to avoid the bias that could be created towards
models with later simulated arrival times, we selected the earliest
dates in 100 km spatial bins [57]. The final dataset contains 74
dates (electronic supplementary material, table S1).

2.2. Environment
We used the modern extent of South American biomes [12] as a
cost surface in the EBM, attributing different weights to the
biomes. For the environmental background in CA, there was
the need to ideally use a reconstruction of land cover for South
America over the last 6000 years. Biome reconstructions for
South America based on fossil pollen records have focused on
specific time slices (the Mid-Holocene, the last glacial maximum)
and/or do not consist of continuous interpolated surfaces that
can be directly incorporated in our model [2,63]. In Europe,
good results have been obtained using landscape reconstruction
algorithm (REVEALS and LOVE) [64–66], but those are of diffi-
cult application in lowland South America owing to the
paucity of data for pollen productivity and rate of deposition.
In addition, landscape reconstruction algorithms are based on
assumptions that may be violated in the Neotropics [2].

For those reasons, palaeovegetation reconstructions based on
general circulation models are currently the best alternative for
our purpose [61,67,68]. We used the biome reconstructions of
Costa et al. [61], which, among the available models, are the
ones with the highest spatial and temporal resolution. They are
based on a random forest classification algorithm trained on
current vegetation and climate and fitted to palaeoclimate simu-
lations from the Hadley Centre Coupled Model (HadCM3) at
1000-year intervals [61]. The model classifies South America
into seven biomes based on plant functional groups and climate,
broadly coinciding with accepted classifications [12].

2.3. Simulation
2.3.1. Equation-based model
To provide a first estimate of arrival times, we followed Silva &
Steele [56] and Russel et al. [57], including anisotropy in the EBM
of the dispersal. By including a cost surface, the speed of the
expansion is accelerated or slowed down. We estimated the
speed of the propagation wave from two parameters: growth
rate and mean displacement. The time-delayed adjustment of
Fisher’s reaction–diffusion equation [69], which considers the
effect of generation lag in migration [70], was used to calculate
the front speed as

2
ffiffiffiffiffiffi
aD

p

1þ aðt=2Þ , ð2:1Þ

where a is the initial growth rate, D is the diffusion coefficient
and τ is the generation time. The diffusion coefficient is given
by hD2i=4T [71], where hDi is the mean individual displacement
per generation.

Given a propagation speed, we modelled arrival times based
on the distance of each cell from the centre of origin. We calcu-
lated the least-cost distances using Dijkstra’s algorithm [72] and
the knight’s move as implemented in R with the package gdis-
tance [73]. Distances were calculated under two conditions: a
null model in which movement occurs at the same rate in all
land cells and an alternative model in which non-forested cells
receive an extra cost, delaying the expansion in those biomes.
Because we aimed to ascertain whether forested environments
facilitated the Tupi dispersal, we only considered land cover
for the friction surface. Future experiments should explore
whether the inclusion of features such as rivers and terrain
improves the accuracy of the model [56,57].
2.3.2. Cellular automaton
To specifically test the role of a dynamic Late-Holocene environ-
ment in the Tupi expansion, we designed a simulation based on
the architecture of previously published models of demic expan-
sion in Eurasia and South America [4,59,60]. The model was
implemented in Python, and the code (together with the R
code for the EBM) is available in a public Zenodo repository
(https://doi.org/10.5281/zenodo.4964642).

The simulation runs in discrete time and space, the latter con-
sisting of a grid of 50 × 50 km cells covering South America in
Albers Equal Area Projection. The cells’ state consists of the cur-
rent population, land cover category and arrival time. Each time
step corresponds to a generation, during which the environment
may be updated and, for every cell that is inhabited, population
growth and dispersal methods are applied. The simulated date is
recorded in a cell when it is converted to an inhabited cell for the
first time.

Population growth and emigration are modelled as density-
dependent processes, regulated by a theoretical maximum popu-
lation density, which, for convenience, it is set to be equivalent to
the carrying capacity (K ) (see discussion in Read & LeBlanc [74]).
The speed of demic diffusion is determined by the maximum
growth rate, maximum emigration rate and generation time.
We ran simulations in which all tropical biomes in the model
of Costa et al. [61] could be settled, and others in which
settlement was restricted to cells with tropical moist forest.

Population growth: for population growth, the logistic model is
applied [75–77]. The population of a cell after growth at a time
step (Nt) is given by

Nt ¼ KN0

ðK �N0Þe�at þN0
, ð2:2Þ

where N0 is the previous population, τ is the generation time and
a is the intrinsic growth rate.

Population dispersal: models of density-dependent dispersal
commonly assume a population density threshold past which
the probability of emigration increases according to a function
[78]. The marginal value theorem has been used to justify the
pressure to emigrate owing to diminishing returns as the popu-
lation increases [78]. Here, the rate of emigration at a given
time step (εt) is given by the equation of Best et al. [79] and
Altwegg et al. [80]:

1t ¼ 1
Nt

K

� �g

, ð2:3Þ

where ε is the emigration rate when the population is at K, and γ
controls the shape of the dependence. We fix γ = 1, which results
in the emigration rate increasing linearly with density.

Migrants are equally redistributed to the nearest eight cells.
This resettlement distance (ca 50 km) is observed among Tupi
populations and other groups of Amazonian farmers [47,50,81].
Cells that are densely settled are avoided, as are environmentally
unsuitable cells. In those cases, the migrant population is redis-
tributed only among the available, suitable cells. When
emigration is not possible owing to the saturation of the neigh-
bourhood around a cell, the population will continue to grow,
converging to K.

In models where settlement is restricted to forested cells,
the inhabitable area becomes discontinuous. In those cases,
cells within a larger radius may be searched, and the popula-
tion is allowed to jump over unsuitable areas if habitable
cells are found. This procedure, known as leapfrogging, is com-
monly adopted in models where settlement is driven by
maximizing environmental suitability [4,60]. Such long-distance
moves are attested among the Tupi and other Amazonian
societies. We limited the distance of leapfrogging to 150 km
based on the ethnohistorical literature of long-range migra-
tions, logistic expeditions and war incursions among Tupi

https://doi.org/10.5281/zenodo.4964642
https://doi.org/10.5281/zenodo.4964642


Table 1. Simulation parameters and values.

parameter description default value sweep values unit

K carrying capacity 1 constant individuals km−2

r annual growth rate 2.5 {2, 2.5, 3, 3.5, 4} %

Dh i average displacement 50 {40, 45, 50, 55, 60} km generation−1

ε emigration rate at K 30 {20, 25, 30, 35, 40} %

τ generation time 30 constant years
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populations [82,83]. Leapfrogging is restricted to cells at the
borders of forested environments and only occurs when disper-
sal to the nearest cells is impossible. This is in line with the
hypothesis of Tupi migration in ‘regional nuclei’ directed towards
forested environments, separated by low-density or uninhabited
areas in open landscapes [15,34]. Leapfrogging is suggested
to have been a rare event, as the preparation of forested envi-
ronments and plant transportation would encourage slower
movement towards adjacent territories [16].

Finally, if a settled cell becomes unsuitable after the environ-
mental update, its population attempts to disperse to available,
suitable cells in the neighbourhood, following the same rules
stated above. If that is not possible, the population of the cell
becomes extinct. We adopt this procedure because we are expli-
citly testing for the dependence of Tupi occupation on land
cover—therefore, it is consistent that the population advances
and retracts accompanying the forest dynamics.
2.4. Experiment and parametrization
In all experiments, expansion starts at the coordinates of the Tupi
site with the earliest date [13]. The chosen site is within the
boundaries of the hypothetical homeland of the Tupi language
family [28]. We set the starting date to 5000 BP based on the esti-
mates for the beginning of the Tupi expansion. This is later than
the earliest reported radiocarbon date (5910–5600 cal BP).
However, the earliest appearance of an archaeological culture
does not necessarily correspond to the beginning of its expan-
sion, as demonstrated, for example, by the delay of the
Neolithic expansion in reaching Europe from the Near East [59].

To adjust the friction surface in the EBM, we kept the relative
cost of traversing tropical forests equal to 1 (no extra cost) and
changed the cost of other biomes. In the CA, every run starts
with a single settled cell, whose population is initialized at K,
immediately dispersing to the neighbouring cells. The simulation
then runs for a number of generations until the approximate date
of the European arrival, at ca 500 BP, is reached.

The following values were adopted for the model parameters
(table 1).

— Maximum population density: a wide range of densities are
observed among modern Amazonian populations, most of
which are relatively low as a result of post-contact decline
[50,84]. Archaeological estimates, by contrast, suggest
higher densities in some areas [85,86]. We kept K constant
at 1 person km−2. This relatively high density is supported
by the ethnohistory of Tupi-speaking people, which
abound with references to extended-family communal
houses and villages of hundreds of dwellers [47,82,87,88].

— Annual growth rate: based on the ethnography of pre-
industrial farmers and Neolithic skeletal data, growth
rates varying from 2.4 to 4% have been reported in the
literature, with the lower end of the interval being more
common [56,60,89]. Among modern Amazonian popu-
lations, some of the fastest growth rates have been
recorded, reaching ca 3–4%, probably owing to a recovery
from recent epidemic-driven loss [90]. We tested values
between 2 and 4% and chose a default value of 2.5%,
which is close to the values adopted by previous simulations
of the Neolithic expansion [59,60] and Neotropical farmer
expansion [4].

— Emigration rate: the percentage of migrants per generation is
difficult to derive from ethnographic data. We tested values
between 10 and 50% and adopted the default value of 30%
based on published dispersal kernels of pre-industrial farm-
ers, and considering the percentage of the population that
moves at least 50 km [91].

2.5. Evaluation
The uncertainties surrounding the Tupi chronology hinder the
evaluation of simulated arrival times [4,39]. One method,
common in demic-diffusion models, is to compare the simulated
chronology with the earliest observed radiocarbon dates in
different regions [4,57,60]. This is justified by the fact that most
dates are expected to be considerably later than the first arrival
time in a region. At the same time, this approach is sensitive to
incorrect dates that may over or underestimate the first arrival
times. While recognizing such problems, in the absence of a
more reliable method and considering the limitations of the
available Tupi chronology, we use the root mean square error
(RMSE) between simulated arrival times at a given Tupi site
and the earliest date at that site as a heuristic measure of
model accuracy.
3. Results and discussion
The default parameter values in the null model result in a
speed of advance of ca 1 km yr−1, consistent with the speed
of demic-diffusion processes elsewhere [56,59,92]. Assuming
the dispersal started ca 5000 BP, the null model greatly over-
estimates arrival times in the regions settled by the Tupi
outside of the Amazon (figures 2–6). Setting the start of the
expansion at 5800 BP (the earliest date published for a Tupi
site) would result in even earlier simulated arrival times,
and therefore a poorer fit.

In the EBM, moderately increasing the cost of crossing
biomes other than tropical moist forests results in a better
fit with the archaeological chronology (electronic supplemen-
tary material, table S2). Similarly, in the CA, restricting
settlement to moist tropical forests creates a delay at ca 3000
BP and the second wave of advance after ca 2000 BP. As a
result, simulated arrival times are closer to the observed
radiocarbon dates in regions such as the Paraná Basin and
the Atlantic coast (figures 2, 4 and 6; electronic supple-
mentary material, table S3). This is coherent with the
expectation that forest expansion between ca 3000 and 2000
BP, as inferred from the pollen records [1,2], opened corridors
for the Tupi advance.
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The expansion under the alternative hypothesis follows a
pattern of ‘pulse and pause’. The second pulse of expansion is
coherent with the model of an ‘explosion’ related to the
spread of the Tupi–Guarani branch, following the long
pause of the Tupi within the Amazon [30]. Similar dynamics
have previously been suggested, at a smaller scale, for the
Guarani occupation in the La Plata Basin [34]. A delay in
the signal of the Neolithic demographic transition in the
radiocarbon record of the La Plata Basin has been suggested
to be because of the adaptation of a package of essentially tro-
pical cultivars to the subtropics [93], which may have
contributed to the lag of the Tupi in leaving the Amazon.
As interesting as this hypothesis may be for future investi-
gation, the current archaeological evidence suggests that the
same Amazonian plants package was carried by the Tupi
wherever they settled [34].

The alternative hypothesis offers a better qualitative
approximation of the branching of the Tupi language
family. The first wave of expansion is restricted to the
Amazon, corresponding to the formation of the Tupi sub-
groups [18,19]. Once the corridors connecting the Amazon
with the Atlantic forest are established, the second wave of
expansion happens, mirroring the rapid diversification of
the Tupi–Guarani branch. In summary, the simulation results
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support the hypothesis that forest expansion facilitated the
dispersal of the Tupi [11].

However, the inclusion of vegetation also creates some
disagreements with the archaeological and linguistic data.
The most obvious weakness is observed in the regions furth-
est from the centre of origin, as in the case of the Paraná Delta
or the northeastern Brazilian coast. If, in the null model,
simulated arrival times are unacceptably early in those
areas, in the alternative model they fail to be settled at all
(figures 2, 4 and 6). Migration routes are also problematic.
It is assumed that at least two migration routes have been fol-
lowed by the Tupi as they left the Amazon: one towards the
Paraná Basin, and a parallel one along the coast [8,16]. In the
CA, however, only the purported migration from the south-
western Amazon to the Paraná Basin—and from there to
most of the coast—is replicated (figures 4 and 6). Although
this does correctly reproduce the Guarani dispersal according
to some models, a route further to the east has been gaining
more acceptance [15,16,27]. This preferred route is correctly
reproduced in the EBM (figure 2). In both the EBM and the
CA, however, the Tupinambá southward migration along
the coast is absent, replaced by a movement in the opposite
direction, which is now discredited [15]. In summary,
although the broad pattern of the Tupi expansion seems to
have been correctly captured, the precise migration routes
as assumed by current linguistic and archaeological data
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have not been completely replicated. It is important to note,
however, that a radial expansion of the Guarani and Tupi-
nambá, the Tupi–Guarani branches that effectively left the
Amazon, has been posited by some linguists and archaeolo-
gists [15,26]. Given our results, this possibility should be
given further consideration.

It is possible that the Tupi dispersal was shaped byother fac-
tors besides forest expansion and social barriers could have been
a key one. The Tupi expansion did not happen in a vacuum—
and the presence of rival populations (either hunter–gatherers
or farmers) has previously been hypothesized to have discour-
aged the settlement in some areas [34]. This argument could
be made, for example, for the Amazon floodplain and the
areas north of it, predominantly occupied by agricultural
societies of the Saladoid–Barrancoid and similar complexes
[94]. The absence of social barriers in our simulation resulted
in the Tupi being free to settle the entire Amazon (figures 2, 4
and 6). We do not consider, however, that this scenario is valid
for other areas outside the Amazon and within the Tupi expan-
sion range. The avoidance of the cerrado, the central Brazilian
savannah, for instance, cannot be attributed to rivalry with
other groups, as societies inhabiting this biome are considered
to have been less densely settled than the Tupi [95]. Similarly,
at the Atlantic coast, the presence of large and sedentary mari-
time-based societies did not stop the Tupi wave of advance
[96]. Therefore, we find that an environmental cause is still the
best explanation for the pattern of Tupi settlement outside of
the Amazon. Nevertheless, the inclusion of friction with other
populations in future versions of the model may provide an
evaluation of the social barrier hypothesis.

Another possibility to take into consideration is that not
all the Tupi dispersal was a demographic phenomenon, but
that some degree of cultural diffusion may have taken
place, influencing the rate of spread. Adoption of language
and material culture, rather than migration, has been
suggested to explain other linguistic expansions in the
Amazon, namely the Arawak [97]. However, cranial
morphological data and genomic analysis of modern Tupi
speakers confirm their common Amazonian ancestry and
act as strong evidence that the Tupi expansion was mostly
owing to demic diffusion [98,99].

A limitation that must be recognized in the current
approach is the dependence on radiocarbon dates for evalu-
ation. The number of Tupi dates is still relatively small
when compared to applications in other parts of the world,
and the chronology in some regions is still unresolved. The
acquisition of new dates, or the exclusion of dates that may
be found to be unreliable, would necessarily lead to a re-
evaluation of our model results. One way to overcome this
limitation would be to include other lines of evidence—for
example, comparing the simulated routes of expansion with
linguistic and cultural phylogenies [56,57]. Unfortunately, in
our case, this is hindered by disagreements about the internal
classification of the Tupi–Guarani languages and archaeolo-
gical ceramic phases [25]. If those questions are resolved in
the future, linguistic and material culture data can act as
additional lines of evidence for the model evaluation.

Finally, we recognize that models are sensitive to initial
conditions. Even in the null model, the fit with the archaeolo-
gical data could be improved by using lower growth and
emigration rates (electronic supplementary material, tables
S2 and S3). A more serious problem is the dependence of
the simulations on the quality of the underlying vegetation
model. Although we selected the best palaeovegetation
reconstruction available at the moment, at least for our pur-
pose [61], we do not discard that in the future better results
can be obtained by using an improved vegetation model.
4. Conclusion
The long tradition of archaeological and ethnographic
research about the dispersal of the Tupi across the Neotropi-
cal lowlands has, recently, gained new interest thanks to the
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application of computational methods [4,39]. The hypothesis,
postulated since at least the 1970s, that climate-driven forest
expansion and retraction could have influenced human dis-
persals out of the Amazon has also been revived thanks to
the accretion of palaeoenvironmental records [11]. Here, we
reassess that hypothesis by employing a simulation
approach. Assuming an origin of the Tupi language family
in the southwestern Amazon at ca 5000 BP, we tested the
null model of no environmental influence in their rate of
expansion against an alternative model in which biomes
other than tropical moist forests were more costly to traverse
or were not settled.

Our results, albeit preliminary, bring further support to
the role of Late-Holocene climate change in causing or facil-
itating the Tupi dispersal. We show that the inclusion of
land cover as a factor that delays or restricts settlement results
in better agreement with the archaeological chronology and
with the reconstructed internal branching of the Tupi
languages. However, some uncertainties remain, particularly
concerning the specific migration routes and the controver-
sies surrounding the Tupi radiocarbon record [4,39]. In the
future, we expect that an increase in the number of dates
with reliable contexts will lead to a re-evaluation of the
models. We expect that the results of our model will motivate
future hypothesis-driven research. Specifically, the suggested
migration route towards the Atlantic coast should be
re-evaluated given the simulation results by refining the
chronology in the proposed migration corridors. Most impor-
tantly, interdisciplinary research combining the collection of
new palaeovegetation records and radiocarbon dates in
regions of Tupi occupation (particularly in the corridors con-
necting the Amazon and the Atlantic forest) would offer
support to or contradict our simulation results. We also
foresee that improved palaeovegetation models (either
climate-based or pollen-based) will allow for more accurate
simulations of the Tupi and other Amazonian expansions
in the context of Late-Holocene climate change.
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