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Hematopoietic stem cell transplantation (HSCT) is an effective treatment option for

several malignant and non-malignant hematological diseases. The clinical outcome of this

procedure relies to a large extent on optimal recovery of adaptive immunity. In this regard,

the thymus plays a central role as the primary site for de novo generation of functional,

diverse, and immunocompetent T-lymphocytes. The thymus is exquisitely sensitive to

several insults during HSCT, including conditioning drugs, corticosteroids, infections,

and graft-vs.-host disease. Impaired thymic recovery has been clearly associated with

increased risk of opportunistic infections and poor clinical outcomes in HSCT recipients.

Therefore, better understanding of thymic function can provide valuable information for

improving HSCT outcomes. Recent data have shown that, besides gender and age, a

specific single-nucleotide polymorphism affects thymopoiesis and may also influence

thymic output post-HSCT, suggesting that the time of precision medicine of thymic

function has arrived. Here, we review the current knowledge about thymic role in HSCT

and the recent work of genetic control of human thymopoiesis. We also discuss different

transplant-related factors that have been associated with impaired thymic recovery and

the use of T-cell receptor excision circles (TREC) to assess thymic output, including its

clinical significance. Finally, we present therapeutic strategies that could boost thymic

recovery post-HSCT.

Keywords: T-cells, thymus, hematopoietic stem cell transplantation, TREC, immune reconstitution, thymic

function

INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) represent the earliest form of stem cell therapy
and has been used over six decades as treatment for several malignant and non-malignant
blood conditions (1). Its clinical outcome relies on a successful immune recovery, particularly an
optimal T-cell reconstitution. Following HSCT, innate immune cells recover in the initial weeks to
months post-HSCT, while the T-cell pool recovery is accomplished through thymic-independent
homeostatic proliferation of donor-derived mature T-cells in the 1st year (2). Thereafter, the
thymic-dependent de novo generation of naïve T-cells from donor hematopoietic stem cells (HSCs)

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01341
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01341&domain=pdf&date_stamp=2020-07-31
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lucas.arruda@ki.se
https://doi.org/10.3389/fimmu.2020.01341
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01341/full
http://loop.frontiersin.org/people/526761/overview
http://loop.frontiersin.org/people/42125/overview
http://loop.frontiersin.org/people/193722/overview
http://loop.frontiersin.org/people/31018/overview
http://loop.frontiersin.org/people/83460/overview


Gaballa et al. Thymic Function and HSCT Outcomes

play an essential role for immune restoring in a process that
can take years and is responsible for the full restoration of
TCR specificities (3). The appropriate reconstitution of the T-
cell compartment is of utmost importance not only to fight
opportunistic pathogens but also to promote tumor control. A
prolonged post-transplant immunodeficiency is still a hurdle
associated with increased infection, secondary malignancies,
relapse, and high mortality rates (3). The key role played
by T cells have been highlighted by the efficacy of donor
lymphocyte infusions (DLI) in controlling disease relapse
and by several works on T-cell reconstitution (4, 5). T-cell
reconstitution, as result of thymic rebound post-transplant, is
therefore strictly related to HSCT success and will be the focus of
this review.

T-CELL RECONSTITUTION POST-HSCT

The T-cell compartment recovery after transplantation occurs by
two temporally and spatially distinct pathways. In the 1st weeks
and months post-transplant, donor-derived, and remaining
T cells not depleted by the conditioning regiment undergo
peripheral expansion, comprising a thymic-independent T-
cell reconstitution (Figures 1A,B) (6). This mechanism of
homeostatic proliferation, also called lymphopenia-induced
proliferation, is dependent of homeostatic cytokines such as
IL-2, IL-7, and IL-15 (7–9). This results in the preferential
expansion of CD8+ memory T cells, a subpopulation more
responsive to cytokines due to previous antigen experience (such
as cytomegalovirus, CMV) (10). Although thymic-independent
pathway serves as a short track for rapid replenishment of the
virtually empty T-cell pool, the extent to which it contributes
to protect against infection is rather limited due to skewness of
the TCR repertoire (11, 12). Additionally, T cells undergoing
intense homeostatic proliferation are dysfunctional (13), present
short telomeres (14, 15), and are more prone to activation-
induced cell death (13). This altogether contributes to an
incomplete T-cell reconstitution associated with high incidence
of infections post-HSCT.

A complete reconstitution of the T-cell compartment depends
on the thymic rebound and consequent de novo production
of naïve T cells by the recipient thymus. Thymic-generated
T cells undergo TCR rearrangement and stringent selection
steps, resulting in a self-tolerant, highly diverse repertoire of
polyfunctional T cells (3) (Figure 1C). This is supported by
the seeding of the thymus with lymphoid progenitors arising
from donor HSCs in constant maturation in the recipient’s
bone marrow (BM) (16). Within the thymus, T-cell progenitors
undergo multi-differentiation steps and phenotypic changes,
ultimately leading to the generation of a diverse repertoire of
self-tolerant naïve T cells. These steps entail interactions between
T-cell precursors (thymocytes), cortical thymic epithelial cells
(cTECs), and stromal cells such as medullary TECs and dendritic
cells (17, 18). This mechanism is tightly regulated and lead to the
generation of naïve and MHC-restricted T-cells (CD4+, CD8+),
with a non-self-antigen-specific TCR (19). Consequently, there is
long-term immune recovery and complete T-cell reconstitution

with high TCR specificities to several antigens that underlies
infection control.

The thymus is a sensitive organ and suffer considerable
damage during most HSCT protocols by the conditioning
regimen and corticoids, and also post-transplant by infections
and GvHD, leading to incomplete T-cell reconstitution and
increased risk of infection and mortality (Figures 1A,D) (2).
Regenerative therapies are under investigation to avoid thymic
injury and to boost thymic output when appropriate (Figure 1E).

SURROGATE MARKERS OF THYMIC
OUTPUT: ADVANCES AND LIMITATIONS

Understanding how the thymus contributes to T-cell
reconstitution following HSCT has received considerable
attention over the past years. Several efforts have been conducted
to monitor thymic output, including assessment of thymic mass
using computed tomography (20) and identifying recent thymic
emigrants (RTE) using several phenotypic markers of naïve T
cells (CD31+, CD45RA+) (21). Nevertheless, these methods
either have provided semiquantitative estimates or were limited
by their inability to distinguish between RTEs and long-lived
naïve T cells (22, 23). TCR excision circles (TRECs) are stable
episomal circular DNA fragments generated as by-products of
TCR genes rearrangement and are exported from the thymus
to the periphery within RTEs. Since the TCRδ locus is inserted
within the TCRα locus, recombination of TCRα entails deletion
of the TCRδ segment at a specific site that is common for
∼70% of thymocytes, resulting in δRec-Ψ Jα signal joint TRECs
(sjTREC) and coding joint (cjTREC) (24, 25) (Figure 2A).
sjTREC values reflect the thymic output of newly generated T
cells and present a strong positive correlation with naïve CD4+,
CD8+, and regulatory Tcells (26). Douek et al. (25) initially
introduced TRECs as a reliable surrogate marker for thymic
output in the context of HIV infection.

As result of the progress in molecular techniques, besides the
advancement in HSCT and the growing interest in the thymic
role post-HSCT, sjTREC quantification has become feasible
for many researchers and has been extensively utilized for
monitoring RTE in several studies (3, 27–31). However, it is of
utmost importance to take into account that in the lymphopenic
setting post-HSCT, the increase or decrease in sjTREC levels does
not necessarily correlate to thymic output alone (32). In fact,
sjTREC levels can be influenced by other external factors such
as longevity and apoptosis of naïve T cells or degradation of the
sjTREC itself (33). To take into account the issue of peripheral
T-cell proliferation, Ki67 staining within naïve CD4+ T-cells
together with TREC quantification has been proposed to more
accurately model thymic output (34).

Given the potential limitation of using sjTREC alone, a
Canadian-French group developed a novel method that depends
on simultaneous quantification of TRECs generated at two
different thymopoietic checkpoints. βTREC is produced during
DβJβ rearrangement at the DN3 stage and sjTREC generated at
the DP stage (35). The estimation of βTREC provides valuable
information about intra-thymic proliferation that occurs between
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FIGURE 1 | Thymic function and T-cell reconstitution post-HSCT. Upper panel: (A) During HSCT, the thymus is subject to damage by the conditioning drugs,

corticosteroids, and other agents used in transplantation protocol, leading to impaired function. (B) The profound lymphopenia that follows immunosuppression leads

to homeostatic expansion of residual non-depleted T cells or donor cells driven by homeostatic cytokines (IL-2, IL-7, and IL-15), resulting in oligoclonal expansion and

low TCR diversity. (C) Within few months post-HSCT, the thymus undergoes endogenous regeneration and start to export newly generated T cells that harbor TRECs.

The production of self-tolerant T cells with a broader TCR repertoire will lead to a long-lasting immune recovery and to a complete T-cell reconstitution, associated with

infections control and less HSCT-associated complications. (D) Depending on several patient- or HSCT protocol-associated causes, the reactivation of thymic

function may be limited, leading to reduced TCR diversity and impaired T-cell reconstitution, associated with increased risk of infections and high mortality. (E) Thymic

regenerative therapies may improve thymic function post-HSCT and promote complete T-cell reconstitution. Bottom panel: TREC values (dark blue) and TCR diversity

(light blue) are reduced early after HSCT and slowly increase to baseline levels in a process that can take months to years as result of thymic rebound.

TCRβ- and TCRα-chain rearrangements (36) (Figure 2A).
Furthermore, the sj/βTREC ratio is not influenced by the dilution
effect of peripheral proliferation (37). Despite the advantages of
this method, it is labor intensive and time consuming which has
limited its wide use. To overcome this, other researchers have
developed more simplified methods for quantification of βTREC
(36, 37).

FACTORS AFFECTING THYMIC FUNCTION
POST-HSCT

Restoration of the normal T-cell repertoire post-HSCT is a slow
and long-term process that depends on the regenerative capacity
of the thymus. The over-time exportation of TREC + RTEs
results in an increased TCR repertoire diversity, that does not
reach baseline values until months or even years post-HSCT

(Figure 1). Several parameters have been shown to influence
thymic recovery following transplantation. Some of them are
general, like the age, gender, and the genetic variation; while some
others are transplant-specific such as conditioning, GvHD, and
graft source. Here, we will briefly discuss some of these factors.

General
Age
Age-related thymic atrophy/involution is a physiologic process
that has been described even before revealing the immunological
function of the thymus itself. Thymic function reaches its peak
by the 1st year of life and gradually declines thereafter (16). It
has been postulated that thymic mass decreases by an annual
rate of 3% until middle age, and subsequently by 1% per year
(38). In the same way, recent data have described that sjTREC
values present a decrease of about 4–5% per year (26), resulting
in the subsequent reduction in of naïve T-cell counts. During
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FIGURE 2 | Thymic function analysis by TREC and genetic control of thymopoiesis. (A) In the thymus, thymocytes undergo through positive and negative selections

for self/non-self-education and cell maturation. During β-chain recombination, the non-replicative episomal DNA βTREC arise from the TCRB locus excision and

remain stable in the daughter cells. After differentiating and proliferating several times, thymocytes recombine the α-chain, and excise the TCRA/D locus, generating

the sjTREC. The ratio between sjTREC and βTREC indicates the intrathymic proliferative activity of the thymocytes, once they remain conserved in the peripheral

blood and directly reflect thymic function. (B) TREC values are influenced by genetic variation at the TCRA-TCRD locus, with the GG genotype at the genetic locus

rs2204985 being associated with higher TREC numbers than AG and GG genotypes. (C) Difference between chronological age and thymic age as a function of sex

and SNP rs2204985 variant. Thymic age was predicted from a regression model described in reference 26, where the age of male carrying the AA genotype are

assumed as the baseline.

involution, adipose tissue gradually replaces thymic stromal cells
resulting in shrinkage in its size and progressive reduction in
thymopoiesis, as shown in mice (39). This leads to the involution
of thymic epithelial space and reduction of number of thymocytes
due the increase of thymopoiesis-suppressive cytokines (40, 41).
The reduction in IL-7 (42), impaired TCRβ-chain rearrangement
(43), alterations in hormones and growth factors, and changes
in thymic niche have also been suggested as possible underlying
mechanisms in rats and humans (44, 45). Of note, age-related
involution does not lead to a complete loss of thymic function
as residual thymic output can still be retained even in advanced
ages, albeit significantly reduced (46). On this matter, age is an
independent risk factor related to thymic function impairment
in HSCT (47), with the thymic rebound post-HSCT shown to be
reduced in elderly as compared to young adults and resulting in
reduced naïve T-cells production (48).

Impaired immune reconstitution post-HSCT correlates with
increased morbidity and mortality caused by infection and
relapse (3, 49). Thus, is critical the development of strategies that
enhance thymic output and immune reconstitution, particularly
in elderly patients.

Sex
Apart from age, thymic output has also been linked to gender.
Age-related thymic involution is higher in males compared to
females (50) and testosterone treatment results in decreased
thymic output (51). This was confirmed by two large population
studies where the women presented 66–86% higher sjTREC
values than men of all age ranges (26). It is therefore expected
that women would have a better outcome post-HSCT with
regards to infections and relapse due to the higher thymic
function than men. In fact, recent data from a large cohort of
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around 12,000 patients have shown that recipient gender is an
important prognostic factor independent of donor gender, with
male recipients having inferior survival compared to females
regardless of donor gender (52). This might partly be associated
with the higher thymic function in females. Although a female
recipient is beneficial, female donors to a male recipient has
been shown to be deleterious, and a higher transplant-related
mortality for male recipients of female allografts compared with
other recipient-donor sex combinations was initially reported
(53). Such observations led the European Group for Blood
and Marrow Transplantation to include the female-to-male
HSCT as a risk score, making male donors a safer choice for
transplantation (54). This remark can result from the reduced
thymic function in males, but it may also be due to the allogeneic
response of female donor T cells towardminor histocompatibility
antigens from male recipient (52).

Genetic Factors
Genetic background can also be implicated in determining the
thymic function and the rate of thymic involution. In this
regard, Clave et al. (26) have assessed the impact of 5,699,237
common single-nucleotide polymorphisms (SNPs) on sjTREC
levels in a genome-wide association study of 1,000 patients from
a Milieu Intérieur cohort. This revealed for the first time a
common genetic variant (rs2204985) in a 25-kb region within the
TCRA-TCRD locus in the intergenic Dδ2–Dδ3 segments affecting
thymic output (Figure 2B). This was further replicated in an
independent cohort. In both cohorts, a 43 and 44% increase of
sjTREC values in GG homozygotes was observed as compared
to AA homozygotes, respectively (26). The impact of this SNP
was further validated in immunodeficient mice transplanted with
human donor HSCs carrying the GG, GA, or AA genotype.
The GG genotype was associated with a higher sjTREC and
TCR diversity compared to mice transplanted with AG and AA
donor genotype. Thymic age based on TREC output was then
predicted from a regression model taking into account age, sex,
and this genetic variation. Accordingly, the thymic function of
a 40-year-old female with a GG genotype would be the same
as a 21.5-year-old male with the AA genotype (Figure 2C).
This study has introduced a new concept of thymic age which
accounts for age, gender, and genotype (26). Their results
highlight the need for personalized medicine and can be of great
significance particularly in donor selection for HSCT settings.
Further studies are required to reveal the clinical relevance of this
SNP post-HSCT.

Transplant-Related
GvHD
GvHD is a common complication post-HSCT. Although the
skin, liver, gastrointestinal tract, and lung are the classical
primary targeted organs, accumulating evidences also suggest the
damage on the hematopoietic system (55, 56). Using sj/βTREC
quantifications, Clave et al. have shown a significant reduction
in thymic output in patients with acute GvHD (aGvHD).
However, this effect was transient in young patients, suggesting
that aGvHD-induced insults are reversible in <25 years old
patients and depend on the regenerative capacity of the thymus

(57). Consistent with their findings, we showed that sjTREC
levels were not affected by aGvHD in a long-term follow-
up study (58). Conversely, chronic GvHD was associated with
decreased TREC levels regardless of disease resolution (58–60),
suggesting a permanent irreversible insult. Divergent GvHD
prophylaxis regimens are employed in different centers and
have been suggested as possible underlying cause or long-term
reduced thymic function. We then studied in a prospective
randomized trial, the effect of different GvHD prophylaxis
(cyclosporine/methotrexate vs. tacrolimus/sirolimus) on TREC
levels post-HSCT. Results indicated no difference between the
two arms of the study at any time point (60).

Conditioning Regimen
HSCT is preceded by cytoreductive conditioning regiments,
with the aims of reducing malignant burden, avoiding graft
rejection, and enhancing engraftment (61). The severity of
toxicities associated with the conditioning varies according to
the intensity of conditioning protocol used during HSCT. In
contrast to reduced intensity conditioning (RIC), myeloablative
conditioning (MAC) is associated with higher toxicity and organ
damage (61, 62). Thus, it is reasonable to assume that patients
receiving MAC are more prone to impaired thymopoeisis.
Surprisingly, reports from several groups were inconsistent; while
some studies showed rapid reconstitution in RIC recipients (63,
64), no difference or even delayed T-cell reconstitution in RIC
recipients was shown by others (57, 65, 66). This controversy can
be justified by realizing that RIC is mainly indicated for elderly
and patients with co-morbidities. Additionally, the combination
of ATG and/or DLI with RIC regimen in some works can
jeopardize the real effect of mild conditioning on thymic
output. Randomized trials comparing the impact of different
conditioning regimens on the thymic function is warranted.

Graft Source
HSCs source has also been shown to impact TREC values
following HSCT. However, whether peripheral blood or BM is
favorable for better thymic recovery is still elusive. We have
earlier shown increased TREC levels in BM recipients early post-
HSCT (60, 67). Furthermore, in a recent retrospective study,
we assessed TREC levels in 63 recipients after a median of 12
years post-HSCT. We found that TREC levels were higher in
BM graft recipients, suggesting a beneficial role in the long-
term (58). Despite other studies have not shown a significant
association between TREC and stem cell graft source (59, 68), a
higher engraftment and supportive thymic function is expected
in BM grafts, which contain mesenchymal stromal cells and
dendritic cells that can possibly engraft in the host after HSCT
and support hematopoiesis.

CLINICAL SIGNIFICANCE OF
MONITORING THYMIC FUNCTION IN
HSCT SETTING

Monitoring thymic output in HSCT patients have significantly
improved our understanding main issues related to HSCT
and has allowed researchers to identify factors affecting
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thymic recovery post-HSCT. The association between pre-
transplantation TREC values and survival established thymic
function to be a reliable predictor for morbidity and mortality
(3, 69). Additionally, the clearance of CMV viremia and survival
after umbilical cord blood (UCB) depends on a successful
reconstitution of thymopoiesis (70, 71). In this regard, the
monitoring of TREC levels in 331 samples from 158 allogeneic
HSCT patients showed a strong correlation between low TREC
levels and opportunistic infection in the first 6 months post-
HSCT (72). Moreover, low TREC levels post-HSCT has been
associated with higher incidence of relapse (49). Similarly, results
by Wils et al. (73) indicated a significant reduction in incidence
of severe infections and lower risk of non-relapse mortality
in patients who showed effective thymic recovery early post-
HSCT. In children undergoing T-cell depleted haploidentical
HSCT, Clave et al. (74) showed that the incidence of leukemia
relapse was found to be higher in patients who had undetectable
βTREC and low sjTREC levels post-HSCT. The same group
has also reported similar findings in children who underwent
UCB-HSCT (75). In a retrospective study, we earlier showed
increased OS and decreased transplantation-related mortality in
patient who had higher TREC levels at 3 months post-HSCT
(67). In another study, we found high TREC levels post-HSCT
to be associated with improved survival and decreased relapse
incidence in leukemia patients (76). Corroborating with these
results, Torlen et al. (60) reported reduced transplantation-
related mortality and increased 5-year OS in patients with high
TREC levels in the first 6 months post-transplantation. Of note,
the thymic rebound post-transplantation is associated with a
favorable clinical response to autologous HSCT in autoimmune
disease patients as well (71).

BOOSTING THYMIC OUTPUT POST-HSCT

Despite the thymus can spontaneously restore its function post-
HSCT, depending on recipient’s age or repeated insults suffered
during transplantation protocol, thymic regeneration might be
impaired for long periods. Enhancing thymic function leading
to efficient T-cell reconstitution might be a promising route
for future HSCT. In this regard, several strategies have been
investigated yet so far only few have been successfully translated
to the clinic (Figure 1E) (2).

Growth hormone (GH) is one of the somatotropic hormones
with a pivotal role in hematopoiesis. In a prospective randomized
trial, Napolitano et al. investigated the impact of daily
subcutaneous injections of rGH for 6 months on thymic function
of HIV-infected patients. They demonstrated increased thymic
output and TREC levels in treated patients (77). Corroborating
with these findings, Hansen et al. (78) reported in a randomized
placebo-controlled trial increase in thymic indices in HIV group
treated by low dose rGH. Although GH treatment has been used
in children undergoing HSCT to treat post-radiation growth
disorders (79, 80), its role in immune reconstitution has not so
far been well-investigated.

The observation of rapid decline of thymic function with
onset of puberty has suggested a role of sex hormones in thymic

involution and set sex steroid inhibition (SSI) as a feasible
strategy to restore immune competence in immunodeficient
individuals (81). In fact, SSI surgically or pharmacologically has
been associated with improved thymic function following HSCT
in humans (82, 83), indicating that this approach can be used to
boost thymic regeneration.

Keratinocyte growth factor (KGF) is produced by thymocytes
and other stromal cells in the thymus and act inducing
the expansion of epithelial cells. Several studies showed that
administration of KGF alone or in combination with androgen
blockade before HSCT is associated with improved regenerative
capacity of the thymus and efficient T-cell reconstitution post-
transplantation (84). Additionally, it has been shown that KGF
protects TECs from the radiation-, conditioning-, and GvHD-
induced damage in murine models (85–87), but its effects in
humans are still elusive.

In addition to the above described strategies, several studies
on murine models highlighted the role of IL-7, IL-21, IL-22, and
zinc in restoring normal thymopoeisis (42, 88–93). In fact, rIL-
7 administration after human allogeneic T-cell depleted HSCT
demonstrated an increase in T-cell recovery and increased TCR
diversity, but no significant increase on thymic output was
reported (94). Additionally, the advances in thymic organoids
bioengineering technologies can provide a novel solution in the
future (95, 96).

CONCLUDING REMARKS

The understanding of thymic function on HSCT outcomes
have evolved tremendously in the last decades. Recently, the
role of recipient age and sex and donor genotyping has been
unrevealed as important factors associated with HSCT response,
together with GvHD, conditioning regiment, and graft source.
The remarkable finding that a donor genetic SNP affects strongly
the recipient thymic output open a new era of graft selection
(26), especially in cases when the recipient would benefit from an
improved thymic function. Additionally, the recently published
thymus cell atlas paved the way for a better understanding of
human T-cell development and may impact HSCT research in
the near future (97). The challenge for the next decades will be to
translate these advances into a better donor selection and how to
identify the proper recipient that should be treated with thymic
boosters and which one to be used.
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