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Abstract

Multispecificity–the ability of a single receptor protein molecule to interact with multiple sub-

strates–is a hallmark of molecular recognition at protein-protein and protein-peptide inter-

faces, including enzyme-substrate complexes. The ability to perform structure-based

prediction of multispecificity would aid in the identification of novel enzyme substrates, pro-

tein interaction partners, and enable design of novel enzymes targeted towards alternative

substrates. The relatively slow speed of current biophysical, structure-based methods limits

their use for prediction and, especially, design of multispecificity. Here, we develop a rapid,

flexible-backbone self-consistent mean field theory-based technique, MFPred, for multispe-

cificity modeling at protein-peptide interfaces. We benchmark our method by predicting

experimentally determined peptide specificity profiles for a range of receptors: protease and

kinase enzymes, and protein recognition modules including SH2, SH3, MHC Class I and

PDZ domains. We observe robust recapitulation of known specificities for all receptor-pep-

tide complexes, and comparison with other methods shows that MFPred results in equiva-

lent or better prediction accuracy with a ~10-1000-fold decrease in computational expense.

We find that modeling bound peptide backbone flexibility is key to the observed accuracy

of the method. We used MFPred for predicting with high accuracy the impact of receptor-

side mutations on experimentally determined multispecificity of a protease enzyme. Our

approach should enable the design of a wide range of altered receptor proteins with pro-

grammed multispecificities.

Author summary

Across biology, many proteins that recognize peptides are multispecific; they interact with

multiple binding partners of disparate sequence. Computational prediction of these multi-

ple peptide partners would enable greater understanding of individual protein-recogni-

tion domains. Additionally, the ability to customize protein-recognition domains by
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designing them to recognize and act upon a new set of peptides and not bind their original

binding partners would be useful in drug design and biotechnology. Current methods for

predicting multispecificity operate on a timescale that is too slow to be used for design.

Here, we present a method, MFPred, for predicting multispecificity. MFPred robustly

recapitulates protein-recognition domain specificity for a range of proteins, at comparable

accuracy and with considerable speed-up relative to current methods. We apply MFPred

to predicting altered multispecificity in a mutant protease to demonstrate its relevance to

design. The rapidity and accuracy of MFPred should enable its use in investigating and

modulating biological processes.

Introduction

Many natural proteins, including signal transduction hubs and enzymes that process biological

information, have evolved to be multispecific–they participate in specific interactions with sev-

eral interaction partners [1,2]. Evolution of multispecificity includes selection for both positive

and negative specificity, involving recognition and non-recognition, respectively, of sets of

interaction partners [3]. Most multispecific interactions arise when the active site of a single

receptor protein interacts with multiple binding partners of differing sequence [4]. Nature

uses structurally conserved protein-recognition domains (PRDs), e.g., SH2, SH3 and PDZ

domains, to mediate many multispecific interactions [5–10]. Thus, it is crucial that methods

that model and modulate PRD specificity are able to accurately recapitulate their multispecific

nature.

Similar to cascades composed of multispecific PRDs like SH3, SH2 and PDZ domains that

mediate signal transduction, proteolytic cascades are ubiquitous in the post-translational

transduction of biological information [11]. Protease activity and selectivity is involved in a

diverse range of biological processes including digestion, blood clotting, apoptosis and cancer

[12–15]. Proteases are inherently multispecific such that they recognize and proteolyze (or

cleave) a range of substrates (positive specificity) while not recognizing others (negative speci-

ficity) [3]. For example, viral proteases such as HCV protease that are involved in viral matura-

tion cleave only specific sites in the viral polyprotein but do not cleave others [16]. These

proteases may also have evolved the ability to cleave specific host proteins [17]. Prediction of

protease multispecificity is, therefore, key for identifying their substrates under healthy and

disease conditions. Additionally, designed proteases with programmed multispecificity have

the potential to be used as therapeutics and protein-level knockout reagents in cell culture

[18]. The ability to manipulate protease specificity computationally would enable the creation

of such designer proteases with dialed-in recognition specificity, thereby providing tools to

interrogate and intervene in biological processes.

Rational modulation of protein-protein or protein-peptide interaction multispecificity has

met with limited success, except in a few notable cases, such as coiled-coil interfaces [19,20]. In

principle, computational structure-based modeling methods should be able to recapitulate and

modulate multispecificity. In fact, several methods relying on, among others, Monte-Carlo

(MC) simulations in sequence and conformation space, and genetic algorithms (GA) have

been developed to predict PRD multispecificity [21–25]. However, these methods are limited

by the time required to enumerate a sufficiently large number of sequences to sample the sub-

strate/peptide sequence space. As multispecific design entails additional sampling of (thou-

sands) of receptor variants and modeling the multispecificity of each variant separately, using

current methods to design receptors for and against specificity profiles is not computationally

feasible.

Computational prediction of protein-peptide multispecificity
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We have developed a structure-based method that eliminates the expense of explicit

sequence enumeration in multispecificity modeling. The method uses a self-consistent Mean-

Field theory-based Prediction (MFPred) approach that expresses specificity as a sitewise prob-

ability distribution function that can be calculated relatively rapidly. We have benchmarked

MFPred on four diverse proteases and compared the results to MC- and GA-based methods.

MFPred has comparable accuracy to MC-based and GA-based methods and provides a tens-

to thousands-fold speedup. We demonstrate the generality of MFPred by obtaining significant

multispecificity predictions for five diverse classes of protein-recognition domains (PRDs).

Finally, as a proof-of-concept for design, we demonstrate that MFPred can recapitulate experi-

mentally determined changes in specificity profiles due to receptor-side mutations.

Results

Self-consistent mean field theory-based specificity profile prediction

algorithm

To predict the specificity profile, we consider an ensemble of peptide backbone conformations

bound to a receptor. For each peptide backbone conformation, we simultaneously sample all

rotameric conformations of all amino acids at all peptide residue positions while keeping the

receptor backbone and sidechains in their crystallographic conformations. The sidechain con-

formations at a given peptide position are sampled in the “mean field” of all other sidechain

conformations at all other positions and (fixed) receptor residues, as described in Methods.

Next, the contribution of each peptide backbone conformation at each peptide position is

accounted for by Boltzmann averaging the mean-field specificity profile solution obtained in

the previous step. The final specificity profile is constructed by combining these individual

predictions. While the sequence specificity prediction described here can be performed using

any (pairwise decomposable) energy function, we implemented our prediction method in the

context of the Rosetta modeling suite, thus combining its sophisticated energy function with

the speed of mean-field sampling (Fig 1).

Rationale for choice of benchmark datasets

To test our MFPred method, we sought to first recapitulate experimentally determined speci-

ficity profiles of a variety of PRDs. We chose PRDs where both structural as well as specificity

information has been experimentally determined. We focused primarily on protease enzymes

for methodology development, and tested the generality of our approach with previously

developed benchmarks for multispecificity prediction on PRDs such as a kinase enzyme, and

SH3, SH2, MHC, and PDZ domains.

Protease set. We benchmarked our method on four protease enzymes that had both high-

resolution crystal structures with a bound peptide in the Protein Data Bank (PDB) and experi-

mental cleavage data (see Methods for details). The chosen proteases represent the vast diver-

sity seen in structural fold, biological function, and mechanism of action amongst the protease

enzyme family (S2 Fig). Additionally, there is a mix of highly conserved and less specific posi-

tions among their specificity profiles, thus enabling us to determine how well MFPred per-

forms with regard to varying degrees of flatness in the experimental specificity profile.

Testing on protein-recognition domains. To test the generality of the MFPred method,

we curated a dataset consisting of a variety of non-protease PRDs that had high-resolution

crystal structures as protein-peptide complexes in the PDB and experimental binding specific-

ity data available. We tested fourteen PRDs that comprise five classes of PRDs: kinases, SH2

domains, SH3 domains, PDZ domains, and MHC-I proteins. Including these diverse domains

Computational prediction of protein-peptide multispecificity
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allows us to test the method on a range of underlying recognition modes, binding affinities

and specificities; while proteases bind with relatively high dissociation constants to their sub-

strates (KM ~10 uM), SH2 domains have been known to bind with dissociation constants as

low as 0.3 nM [26].

The binding specificities and mechanisms for each of these domains are distinct, thereby

adding to the diversity of the test set. PDZ domains bind up to 7 C-terminal residues in a

highly specific manner [7]. SH3 domains bind proline-rich regions that often form PPII helices

[10]. SH2 domains show a preference for pTyr-containing peptides [27], while the context sur-

rounding the pTyr residue determines the specificity of the peptide towards a distinct SH2

domain [28]. Kinases are one of the largest families in the eukaryotic genome and share a

common fold that allows for the binding of ATP and a Ser, Thr, or Tyr residue-containing

substrate [29]. Finally, MHC-I domains bind short pathogenic peptides to be presented to

Fig 1. MFPred workflow. MFPred input is a backbone ensemble of a protein/peptide complex, which is generated from a protein

structure from the PDB (1CKA here) as described in Methods. For each backbone, Rosetta pre-calculates the interaction graph, which

stores intrinsic rotamer one-body energies on the vertices (blue circles) and matrices of rotamer-rotamer two-body energies on the edges

(black lines). A probabilities matrix (P) is initialized. Mean-field energies (E) are calculated using the interaction graph and P, and a new

matrix, P’ is generated from E. If P’ is equal to P, convergence has been reached. If not, the process is repeated by updating P with a

combination of P and P’. Once convergence is reached, the final energies matrix and probabilities matrix is used to generate the

Boltzmann weights of each backbone position, which is then used to average all the backbone specificity profiles together. This specificity

profile is divided by the background specificity profile to reach the final predicted specificity profile.

https://doi.org/10.1371/journal.pcbi.1005614.g001
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cytotoxic T lymphocytes (CTLs). MHC-I domains are promiscuous and may bind many pep-

tides; generally, one or two substrate positions are conserved, while others are tolerant to

mutations [30].

Choosing metrics for evaluation of prediction accuracy

We evaluated the performance of MFPred by quantifying the differences between predicted

and experimentally determined specificity profiles using several metrics (see S1 Note for

detailed descriptions of these metrics). Four of these metrics, the cosine similarity, Frobenius

norm, average absolute distance (AAD) and Jensen-Shannon divergence (JSD) are correlated,

as shown in S3 Fig. The Frobenius norm and AAD are distance-based metrics that have been

used previously to compare profiles [21,22]. The Frobenius norm is more sensitive to flatness

in the specificity profile than the AAD (S4 Fig). Additionally, we evaluated the profiles by their

cosine similarity, which is another distance-based metric that is less sensitive to flatness than

either AAD or Frobenius norm. It falls between 0 and 1, where 0 denotes a random prediction

and 1 denotes a perfect prediction. The Jensen-Shannon divergence (JSD) has also been used

in the past to evaluate profiles [21] and is less distance-based. We used cosine distance as the

general score of a profile, as it is easy to visualize and interpret. It falls between 0 and 1, where

0 denotes a random prediction and 1 denotes a perfect prediction. For each position, we evalu-

ated the significance of its JSD score by scoring 100,000 random profiles against the experi-

mental profile and thus determining the p-value of the JSD score (see S1 Note for details).

We also used a second metric as a general score for each profile: area under the ROC

(receiver operating characteristic) curve (AUC) is a non-distance-based metric that evaluates

predictions based on their ranking more tolerated amino acids correctly [22]. It is relatively

unaffected by flatness (S4 Fig) but will not evaluate well if either the experimental or predicted

profile is close to uniform. It is not correlated with the above metrics. Additionally, we devel-

oped a new metric, Score Sequence AUC Loss (SSAL), which encapsulates the efficacy of the

predicted specificity profile in differentiating between substrates which are recognized and

cleaved by a given protease (cleaved sequences) and substrates which are not cleaved by that

protease (uncleaved sequences). A perfect prediction scores an SSAL of zero. It does not corre-

late well with any other metric (S3 Fig).

Recapitulation of protease specificity profiles

Proteolysis is a multi-step reaction which involves substrate peptide binding, the formation of

a tetrahedral intermediate (acylation) and hydrolytic cleavage of the tetrahedral intermediate

(deacylation). We have previously found that modeling a near-attack conformation for the

acylation step was successful in discriminating between known cleaved and uncleaved peptides

[31]. Therefore, starting from structures of protease-substrate complexes in a near-attack con-

formation, we performed MFPred-based specificity prediction. We found that MFPred

robustly recapitulates protease specificity profiles (Fig 2B) in our benchmark set. The cosine

similarities of the entire profiles range from 0.66 to 0.89, AUC ranges from 0.73 to 0.86, and

SSAL ranges from 0.21 to 0.002. Out of 31 substrate positions across the protease dataset, 20

were predicted with a significant JSD p-value. The best prediction is obtained for the common

biotechnologically used protease TEV-PR. The predicted profile has a high cosine similarity of

0.89 (1 would be a perfectly accurate prediction). The primarily steric and hydrogen-bonding-

based nature of molecular recognition at TEV-PR-substrate interfaces is well suited to the

strengths of the Rosetta energy function underlying MFPred. Similarly, the profiles of HCV

protease and granzyme B (GrB) protease are also generally recapitulated with a high degree of

accuracy, except for positions with no marked preference for specific amino acids (flat

Computational prediction of protein-peptide multispecificity
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positions)–positions P5 and P2 in HCV protease and positions P4, P1’, and P2’ in granzyme B

protease. We attribute the lack of correlation at these flat positions to small errors in energy

evaluations being equivalent to the size of the energy gaps being modeled, thus leading to

Fig 2. Comparison of backbone ensemble generation methods. (a) Experimental specificity profiles. (b)

MFPred on FastRelax backbone ensemble. The p-value of the JSD for a given position is represented by the

color of the square under that position; white denotes a p-value > 0.5 and dark blue denotes a p-value of 0. A

given circle to the right of a profile represents the cosine similarity (white) and AUC (black) of that profile. The

ROC plots beneath each profile depict the SSAL calculation via the experimental ROC (blue) and predicted

ROC (red) with their respective AUC values. (c) MFPred on FlexPepDock backbone ensemble. (d) MFPred

on Backrub backbone ensemble.

https://doi.org/10.1371/journal.pcbi.1005614.g002
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erroneous ranking. Challenges in measuring prediction accuracy at flat positions have indeed

been noted before [22].

The worst performance among the proteases in the benchmark set is observed for the pre-

diction of HIV protease-1 (HIVPR1) specificity. This protease is known to have a relaxed spec-

ificity profile, with preference for small hydrophobic residues at P1 and P1’ positions. The

cavity of HIV protease-1 is large and peptides may adopt large variations in backbone confor-

mation depending on their sidechains. Additionally, substrate binding involves flexibility on

the protease side, with two loops (“flaps”) that are mobile and close over the binding pocket.

Incorporation of greater backbone flexibility on both the receptor and peptide parts of the

HIVPR1-peptide interface may help improve predictions, as previously observed by us and

others [31–33].

Modeling backbone flexibility is key for prediction accuracy

To determine the contribution of modeling backbone flexibility to the accuracy of prediction

and to investigate if backbone sampling could be optimized for specificity prediction, we gen-

erated MFPred profiles with different levels of backbone flexibility.

First, we found that predictions generated by starting from a single crystallographically-

determined backbone structure for the peptide led to poor accuracy for HCV and HIV prote-

ases (panels f,h in S6 Fig), indicating that incorporating peptide backbone diversity is a key

requirement for the observed accuracy of prediction. Second, we generated peptide backbone

ensembles by threading on a varying number of known substrate (cleaved) peptides using three

different Rosetta-based backbone sampling protocols (FastRelax [34], FlexPepDock [35], and

Backrub [36]) separately to further diversify the peptide backbone ensemble. In each case, geo-

metric constraints [31] were used to limit the scissile peptide bond to a near-attack conforma-

tion and the catalytic residues to an active conformation. The MFPred simulations were then

performed on all backbone ensembles and their results were compared to each other (Fig 2).

While the algorithm is relatively robust to the method of backbone generation as long as

scissile bond geometry is maintained, the FastRelax (FR) protocol has a small improvement in

overall performance over the FlexPepDock (FPD) protocol, with 20 significant p-values (out of

31) for FR vs. 19 for FPD, and FPD has a minor increase in overall performance over Backrub

(BR), with 19 significant p-values for FPD vs. 18 for BR. The profile for TEV-PR is predicted

best by FR, due to better prediction of Q at P1 and S at P1’. In the case of HIV protease-1, FR

recapitulates the profile better than FPD and BR do. However, the performance of FPD is mar-

ginally better than that of FR and significantly more accurate than that of BR in the cases of

HCV protease and granzyme B protease.

To determine how MFPred accuracy depends on the number and sequences of known

cleaved substrates used to generate the backbone ensemble, we generated a peptide backbone

conformational ensemble that was independent of peptide sequence. For all positions on the

peptide backbone, we enumerated every combination of phi/psi dihedral angles that were x-

15, x, and x+15, where x is the dihedral angle of the relaxed crystal structure peptide backbone.

The resulting structures were filtered to remove those with clashes and to preserve hydrogen-

bond interactions. The remaining structures were further clustered by all-heavy-atom RMSD

of the peptide residues (see S2 Note for details) and MFPred was performed on the cluster cen-

ters. The resulting predictions are significantly less accurate than those of FR, FPD, or BR (S5

Fig), indicating that successful prediction requires a backbone ensemble that is optimally posi-

tioned in the binding site for cleavage.

As a second test of the dependence of MFPred on the cleaved sequence information, we

threaded five known uncleaved (i.e., not bound by the protease in a productive conformation)

Computational prediction of protein-peptide multispecificity
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sequences on the peptide backbone and then performed FastRelax on the resulting structures.

The prediction accuracy of MFPred decreased on these structures (S5 Fig), to the extent that

the specificity profiles are almost uniform. Therefore, diversifying the peptide structure in sub-

optimal sequence space led to worse predictions than those obtained while diversifying it with-

out any sequence information.

Next, to determine the impact of starting from bound complexes to generate MFPred pre-

dictions, we performed MFPred simulations on apo structures of two proteases: HCV NS3

protease and HIV protease-1 (S12 Fig). As HIV protease-1 has two flaps that can assume either

a closed or open form [37], we used both a ‘closed apo’ structure and an ‘open apo’ structure

for our simulations. In each case the protease all-atom RMSD between bound and open states,

as determined by PyMol [38], were 1.04 Å, 1.85 Å, and 2.00 Å. In all three cases, MFPred accu-

racy was higher when starting from the bound complex compared to the apo state. While the

number of significant p-values remains similar, the overall cosine similarities, AUC, and SSAL

decreased for the apo structure-based simulations. Additionally, the information content

decreased significantly for the apo structures of HIV (0.72–0.74 bits) as opposed to the bound

complex (1.18 bits). Overall, the prediction accuracies between apo and bound states were

more similar for the HCV protease where small backbone changes in the protease are incurred

upon binding, compared to HIV protease where larger differences in prediction accuracy were

apparent. These results suggest that especially in cases where there is significant backbone con-

formational change in the receptor upon peptide binding, such as the HIV protease, the incor-

poration of receptor flexibility may be needed for maintaining MFPred accuracy.

Finally, to investigate the dependence of performance accuracy on the number of known

cleaved (recognized) sequences, we executed MFPred simulations on backbone ensembles

generated from differing numbers of starting peptide sequences threaded on to the crystallo-

graphic backbone conformation. We varied the number of sequences used to generate the

backbone ensemble from one sequence to five sequences to ten sequences to all known

sequences in the benchmark set. We found that MFPred is highly dependent on N, the number

of cleaved sequences used, when N is small (panels e-h in S6 Fig). However, as N increases, this

effect is decreased. For TEV-PR and HCV protease, which have relatively few sequences (68

and 198 respectively), the prediction accuracy plateaus after ten sequences, although in some

cases it may fluctuate slightly from five to ten to all sequences. However, for granzyme B and

HIV proteases (356 and 374 cleaved sequences respectively), the accuracy of MFPred has a

minor increase from ten to all sequences. Thus, there is a near-maximum of accuracy for each

system; once that point of diminishing returns has been reached, incorporating more cleaved

sequences does not lead to significant increases in the accuracy.

Besides determining that the level of backbone sampling was optimal for prediction, we also

optimized sidechain sampling (S3 Table). Using an older version of the rotamer library (2002)

[39] decreased scores for all systems. Increasing the fineness of rotamer chi-angle sampling or

removing the starting sidechain conformation from the rotamer sampling had little impact on

the results. Packing protease sidechains around the peptide (between distances of 4–8 Ang-

stroms) decreased the accuracy of the results. This may be explained by the finding that hot spot

residues at protein-protein interfaces often adopt strained rotamer configurations [40]; packing

protease interface sidechains while designing peptide residues within MFPred may force prote-

ase sidechains to adopt conformations that are unfavorable for productive substrate binding.

Comparison of MFPred with other structure-based approaches

We compared our results to the two previously developed methods for specificity prediction

that have been implemented in the Rosetta software. MFPred performed with comparable or

Computational prediction of protein-peptide multispecificity
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greater accuracy than the sequence_tolerance [22] and pepspec [21] methods (Table 1). Addi-

tionally, MFPred was between 23-fold to 120-fold faster than the pepspec method and between

154-fold to 1154-fold faster than the sequence_tolerance method, depending on the number of

peptide backbone conformations and rotamers (Table 1). For comparative benchmarking pur-

poses, simulations were performed using a single AMD Opteron 6276 2.3 GHz processor. Fur-

thermore, MFPred is more accurate on single backbones and smaller backbone ensembles

than the other two methods; when performed on a backbone ensemble generated from five

substrate sequences, MFPred predicts 19 out of 31 positions with a significant p-value, whereas

only 11 of the positions predicted by sequence_tolerance and 8 of the positions predicted by

pepspec yield significant p-values (S7 Fig). When executed on a single backbone conformation,

MFPred predicts 12 positions with a significant p-value, while both sequence_tolerance and

pepspec predict only 8 positions with a significant p-value. Both sequence_tolerance and pep-

spec are designed to be used with larger peptide ensembles–their success is dependent on a

diverse backbone ensemble–and, as expected, their prediction accuracy increases as the num-

ber of backbones in the ensemble rises (Fig 3A–3D), with sequence_tolerance predicting

15 significant positions and pepspec predicting 16 significant positions on the backbone

ensemble generated from all cleaved sequences (S8 Fig). When performed on this expanded

backbone ensemble, MFPred prediction accuracy was also higher, with 25 significant predic-

tions. Thus, compared to two state-of-the-art existing methods, MFPred-based predictions are

of comparable or higher accuracy, and can be obtained with 10-1000-fold higher computa-

tional efficiency.

Besides informing us about the accuracy and speed of MFPred relative to existing methods,

the comparison of MFPred to pepspec and sequence_tolerance allows us to categorize inaccu-

racies in MFPred predictions into those obtained from incorrect sequence sampling and those

due to the Rosetta energy function or incomplete backbone conformational diversity. For

example, MFPred on all cleaved backbones does not recover the experimentally determined

high frequency for G at P2 of TEV-PR. Since both pepspec and sequence_tolerance also do not

recover G at P2 with the same peptide backbone conformational ensemble, we attribute this

inaccuracy to imperfections in the underlying Rosetta energy function and/or an incomplete

peptide backbone ensemble used for prediction.

Generally, MFPred predicts lower information content (i.e. flatter shape) for the profiles

than both sequence_tolerance and pepspec (Table 1, Fig 3E–3H). In the cases of granzyme B

protease and HIVPR1, the predicted lower information content is reflective of the experimen-

tally determined profiles; however, in the case of TEV-PR MFPred underestimates the infor-

mation content relative to pepspec and sequence_tolerance. All protocols underestimate the

information content of the profile of HCV protease. This underestimation may be due to an

incomplete experimental dataset or sampling/scoring inaccuracies as discussed above. Overall,

the difference between the predicted information content and the experimental information

content was smaller for MFPred than for sequence_tolerance and pepspec, especially when

performed with smaller backbone ensembles.

Generalizing MFPred to other protein-recognition domains

To investigate the generality of our method for specificity prediction, we utilized the MFPred

method to predict the specificity profiles for a variety of peptide-recognition domains: kinase,

SH2, SH3, PDZ, and MHC domains. We achieved 17 significant p-values out of 31 positions

and high cosine similarities (0.77–0.85) for three out of five PRD classes: PKA (kinase), Src

(SH2), and c-Crk (SH3) domains (Fig 4). However, these three systems had lower AUCs (0.60–

0.65). This may be due to the inadequacy of AUC as a metric for scoring positions that have low
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Table 1. Results of all methods—MFPred (MF), sequence_tolerance (ST), and pepspec (PS)—on variously-sized backbone ensembles.

Protease Method #Seq Time(m) Cosine Frob AAD JSD AUC SSAL Bits

TEV MF 1 0.18 0.86 1.06 0.04 0.22 0.87 0.00 0.43

5 0.80 0.89 0.85 0.04 0.21 0.86 0.00 -0.34

10 2.08 0.88 0.86 0.04 0.20 0.91 0.00 -0.55

All (68) 11.97 0.89 0.84 0.03 0.20 0.91 0.00 -0.69

ST 1 195.65 0.84 1.49 0.04 0.28 0.83 0.00 1.82

5 923.91 0.84 1.49 0.04 0.28 0.84 0.00 1.79

10 1827.32 0.84 1.49 0.04 0.28 0.85 0.00 1.82

All (68) 12333.94 0.84 1.44 0.04 0.28 0.84 0.00 1.65

PS 1 17.46 0.72 1.50 0.05 0.36 0.81 0.01 0.83

5 96.01 0.85 1.06 0.04 0.24 0.92 0.00 0.44

10 189.43 0.82 1.17 0.04 0.24 0.85 0.00 0.34

All (68) 1290.41 0.86 1.04 0.03 0.21 0.86 0.00 0.27

HCV MF 1 0.68 0.59 1.37 0.06 0.35 0.77 0.08 -0.51

5 3.61 0.72 1.13 0.05 0.31 0.79 0.02 -1.28

10 7.14 0.71 1.15 0.05 0.30 0.82 0.02 -1.28

All (196) 132.15 0.71 1.14 0.05 0.29 0.84 0.02 -1.29

ST 1 115.04 0.30 1.77 0.07 0.53 0.63 0.30 -0.59

5 574.01 0.43 1.54 0.06 0.46 0.68 0.21 -0.93

10 1101.15 0.44 1.49 0.07 0.44 0.70 0.17 -1.16

All (196) 22239.05 0.43 1.51 0.07 0.44 0.67 0.17 -1.08

PS 1 17.78 0.24 2.19 0.08 0.63 0.61 0.34 0.66

5 91.68 0.37 1.69 0.07 0.55 0.55 0.20 -0.53

10 171.30 0.61 1.30 0.06 0.39 0.73 0.05 -0.73

All (196) 3462.64 0.63 1.26 0.06 0.36 0.71 0.05 -1.19

GrB MF 1 0.34 0.82 0.85 0.04 0.23 0.71 0.20 0.60

5 2.39 0.84 0.73 0.04 0.20 0.76 0.21 0.07

10 5.24 0.89 0.60 0.03 0.17 0.80 0.17 0.06

All (356) 145.63 0.91 0.53 0.03 0.13 0.87 0.15 -0.08

ST 1 114.80 0.28 2.02 0.07 0.46 0.76 0.26 1.29

5 544.28 0.33 1.71 0.06 0.35 0.78 0.26 0.68

10 1109.45 0.35 1.62 0.05 0.31 0.82 0.17 0.55

All (356) 39036.17 0.34 1.67 0.05 0.32 0.84 0.21 0.53

PS 1 19.58 0.62 1.45 0.06 0.51 0.61 0.38 1.59

5 101.24 0.63 1.15 0.06 0.39 0.70 0.34 0.68

10 203.69 0.76 0.99 0.05 0.29 0.78 0.27 0.61

All (356) 6814.15 0.88 0.64 0.03 0.17 0.86 0.18 0.13

HIV MF 1 0.23 0.47 1.55 0.06 0.42 0.66 0.17 0.96

5 1.29 0.65 0.96 0.05 0.27 0.73 0.14 -0.01

10 3.15 0.70 0.88 0.04 0.23 0.78 0.08 -0.04

All (374) 110.65 0.72 0.82 0.04 0.21 0.81 0.05 -0.21

ST 1 92.37 0.40 2.48 0.08 0.64 0.62 0.19 2.78

5 453.18 0.41 2.20 0.07 0.57 0.67 0.24 2.14

10 907.90 0.45 2.05 0.07 0.51 0.73 0.16 1.93

All (374) 34090.45 0.48 1.81 0.06 0.42 0.73 0.14 1.38

PS 1 23.05 0.37 2.13 0.07 0.60 0.59 0.22 2.05

5 109.77 0.55 1.54 0.06 0.40 0.69 0.11 1.21

10 218.41 0.53 1.51 0.06 0.39 0.70 0.16 1.04

(Continued )
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information content in the experimentally-derived profile; if few of the experimental amino

acid frequencies are greater than 10%, the AUC reveals little about the prediction accuracy.

We predicted the specificity profiles of seven different PDZ domains: NHERF-2 PDZ2,

PSD-95, AF-6 PDZ, Erbin PDZ, MPDZ-13, ZO-1 PDZ1, and DLG1-2 PDZ (Fig 4, S10 Fig).

The specificity of NHERF-2 PDZ-2 was already predicted computationally by Zheng et al.

[41], who were able to achieve good prediction via the use of CLASSY and FlexPepDock. King

and Bradley previously predicted the specificity profile for PSD-95 computationally using pep-

spec [21], while the five other PDZ domain specificities were previously predicted by Smith

and Kortemme via sequence_tolerance [22]. Six out of seven PDZ domains were predicted

with medium to high accuracies, with cosine similarities of 0.63–0.86, AUCs of 0.60 to 0.88,

and 25 out of 38 significant p-values. However, the prediction accuracy of the final PDZ

domain, AF-6 PDZ was much lower, with a cosine similarity of 0.43, AUC of 0.59, and no sig-

nificant p-values. This low accuracy may be due to the flexibility of the AF-6 PDZ domain,

which has been known to bind in multiple binding modes and can be characterized as belong-

ing to multiple classes of PDZ domain specificity [42,43]. Similar to the HIVPR1 case above,

addition of receptor flexibility to MFPred may assist in AF-6 specificity profile recapitulation.

Finally, we tested the performance of MFPred on predicting MHC-I peptide recognition

specificities. We selected four MHC-I domains with crystallographic structure availability and a

large pool of known peptide binders [44]. The experimentally derived specificity profiles for the

MHCs were highly conserved at one or two positions but relatively flat at others (Fig 4, S11 Fig).

The MFPred predictions reflected this pattern: while 30 out of 36 positions had p-values that

were not significant, due to the high tolerance of a diversity of amino acid at those positions,

the cosine similarity of the predictions was high (0.63–0.78), reflecting good overall profile reca-

pitulation (Fig 4, S11 Fig). These results indicate that robust and accurate predictions of the speci-

ficity profiles of a variety of peptide-recognition domains can be obtained using the MFPred

approach, pointing to its wide applicability, especially for cases where receptor backbone flexibility

is minimal. Improved modeling of backbone conformational diversity, an area where methodo-

logical improvements are needed [45], is likely to improve prediction accuracy further.

Prediction of changes in multispecificity upon receptor mutation

When used to design receptors for and against specificity profiles, MFPred should be able to

accurately recapitulate changes in specificity profiles due to protease mutations, when simula-

tions are performed on a constant set of backbones. As a proof of concept, we predicted the

changes in the specificity profiles of two variants of granzyme B protease for which altered

multispecificity has been experimentally determined (Fig 5). R192E granzyme B protease and

R192E/N218A granzyme B protease have been shown to have decreased specificity for glu-

tamic acid and increased specificity for lysine and arginine at P3 [46,47]. To investigate

whether MFPred can recapitulate mutant specificity profiles without changing the peptide

backbone, we modeled the variants of granzyme B protease by performing the necessary muta-

tions in Rosetta on the five FastRelaxed granzyme B protease backbones.

Table 1. (Continued)

Protease Method #Seq Time(m) Cosine Frob AAD JSD AUC SSAL Bits

All (374) 8134.56 0.57 1.23 0.05 0.28 0.76 0.10 0.33

Most Similar 1.00 0.00 0.00 0.00 1.00 0.00 0.00

Most Different 0.00
p

(2n)1 0.06 1.00 0.00 1.00 4.32

1n refers to the number of positions in the profile

https://doi.org/10.1371/journal.pcbi.1005614.t001
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The MFPred-predicted specificity profile for the mutated structures accurately recapitu-

lated the experimentally predicted specificity profile for the mutants. In the case of R192E, the

change from a positively-charged arginine to a negatively-charged glutamic acid yields an

increased frequency of positive amino acids such as lysine and arginine and a decreased fre-

quency of negative amino acid glutamic acid. MFPred predicts the shift toward lysine and argi-

nine and away from glutamic acid correctly, although it upweights the frequency of arginine

and downweights the frequency of glutamic acid relative to the experimental profile. In the

case of R192E/N218A, the shift towards arginine and lysine is even more pronounced in the

experimentally-derived profile. Sterically, the mutation of N to A may allow for the longer

sidechains of R and K (relative to E) to fit at P3. MFPred correctly predicts this shift as well.

The sensitivity of MFPred to altered multispecificity at a given position due to a given receptor

mutation should enable its use in designing for or against a given specificity profile.

Discussion

Protein-peptide interactions underlie much of biology, and the ability to computationally

manipulate these interactions would enable intervention in many biological processes. The

rational design of receptor proteins, including enzymes that act upon peptide substrates, for

and against peptide recognition specificity profiles is an open challenge. Such design would

benefit from a specificity profile prediction technique that is both (i) rapid enough to be used

in each step of the design process, and (ii) able to predict changed specificity for receptor vari-

ants with a constant peptide backbone conformational ensemble. The MFPred method devel-

oped here represents a step forward in achieving in both of these goals. MFPred is able to

predict profiles for both proteases and a diverse set of PRDs, and it can recapitulate changes in

the profile of variant granzyme B. This result sets the stage for application of the MFPred

Fig 3. Number of sequences vs. accuracy and information for methods of profile prediction. (a)-(d) Number of

sequences vs. accuracy for TEV, HCV, GrB, and HIV, respectively. Number of sequences is varied over 1-5-10-All

experimentally derived sequences, which is different for each protease. (e)-(h) Number of sequences vs. information

content (i.e. shape of profile) difference for TEV, HCV, GrB, and HIV, respectively. Information difference is equal to the

predicted bits minus the experimental bits. An information difference that is close to zero approximates the experimental

information content well; a highly positive information difference indicates a more peaked predicted than experimental

profile while a highly negative information difference denotes a flatter predicted than experimental profile.

https://doi.org/10.1371/journal.pcbi.1005614.g003

Fig 4. Generalize MFPred to PRD benchmark. (a) Experimental specificity profiles. (b) MFPred prediction.

The p-value of the JSD for a given position is represented by the color of the square under that position; white

denotes a p-value > 0.5 and dark blue denotes a p-value of 0. A given circle to the right of a profile represents

the cosine similarity (white) and AUC (black) of that profile. For the PDZ domain, prediction was performed at

a kT of 0.6, which was found to be optimal for PDZ domains.

https://doi.org/10.1371/journal.pcbi.1005614.g004
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algorithm to enable the design of proteins for and against specificity profiles, by combining the

MFPred algorithm with multi-state design [48].

The MFPred method, implemented in the context of the Rosetta software, performs speci-

ficity profile prediction with equivalent or better accuracy when compared to two previously

developed methods (pepspec, sequence_tolerance) in the Rosetta framework, but with a signifi-

cant decrease in run time (~10- to 1000-fold). Practically, this means that given a receptor vari-

ant and a peptide backbone ensemble, a specificity profile can be obtained, on a standard single

processor, on a time-scale of seconds vs. hours required for other approaches. While pepspec

and sequence_tolerance are less accurate on a smaller peptide backbone ensemble, MFPred is

relatively robust to the size of the backbone ensemble. Additionally, MFPred can predict infor-

mation content (determined from the amino acid frequency distribution at a given peptide

position) better than other methods (Fig 3E–3H). The ability to recapitulate information con-

tent should enable design for a narrow or wide range of amino acid types at a given peptide

position, thereby allowing greater control over binding selectivity. The speed, prediction accu-

racy on a small backbone ensemble, and robust recapitulation of information content of

MFPred are due to the mean-field approach of MFPred: rather than attempt to enumerate

many sequences on varying backbones, MFPred predicts a specificity profile by treating amino

acid energies as a Boltzmann probability distribution. However, optimal sampling of the peptide

backbone conformational space by MFPred does require some prior knowledge in the form of

several (~5) recognized substrates, which is not required for pepspec or sequence_tolerance.

While MFPred can rapidly and consistently generate recognition profiles with high accu-

racy compared to experimental data, it was not possible to achieve a perfect prediction using

MFPred. Several reasons may underlie these limitations of MFPred. First, our experimental

dataset may be incomplete: it comprises various in vitro and in vivo sources in the literature,

each of which may have their biases. In vitro experimental profiles vary with the definition of a

cleaved sequence; when few sequences are included in this definition, the profile will converge

on a few optimal sequences. In vivo experimental profiles are subject to biases due to biological

factors [21]. Second, any specificity prediction challenge is composed of several, smaller

Fig 5. Proof-of-concept for design. Changes in specificity profile upon granzyme B protease mutation are

recapitulated by MFPred. (a) Experimental (bold) specificity (average of Harris et al. [46] and Ruggles et al. [47]) and

predicted P3 specificity for WT granzyme B protease. (b)-(c), WT granzyme B protease structure. (d) R192E granzyme

B protease active site. (e) Experimental specificity (bold) [46] and predicted P3 specificity for R192E granzyme B

protease. (f) R192E/N218A granzyme B protease active site. (g) Experimental specificity (bold) [47] and predicted P3

specificity for R192E/N218A granzyme B protease.

https://doi.org/10.1371/journal.pcbi.1005614.g005
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problems–sampling the vast sequence space, sampling the significantly larger conformational

space, and scoring the structures–each of contributes multiplicatively to the error-rate. In our

study, the sequence sampling problem is solved by MFPred itself. As it is an approximation,

MFPred may not sample the sequence space effectively; the free parameters, which are opti-

mized for overall success, are sub-optimal for each system. This is especially true in the case of

the temperature parameter, which we found to be the most system-dependent. Thus, applica-

tion of MFPred to domain families that are not included in our benchmark set may require

further system-specific optimization of model parameters to achieve comparable accuracy. In

terms of structure sampling, our method of utilizing a small number of known recognized pep-

tides to generate a backbone ensemble is an attempt to more efficiently sample the large back-

bone conformational space (which also determines sidechain sampling due to the use of a

backbone-dependent rotamer library [49]); however, this space is so large, especially in the

case of a flexible binding pocket such as the HIV protease-1, that sampling efficiency is still

limited. The sampling of receptor backbone flexibility is also required in such cases, as evi-

denced by a decreased prediction accuracy when the apo-structure of the complex is used (S12

Fig). Finally, we score the structures using an empirical energy function (from Rosetta); subtle

errors in the energy function may also contribute to the observed inaccuracies. As both confor-

mational and sequence sampling in the MFPred approach rely on, and are limited by, the

underlying rotamer library and energy function as implemented in Rosetta, improvements in

these features [49,50] should yield higher accuracy predictions.

Methods

Inputs

Structure preparation. Crystal structures of the four protease-peptide complexes, four-

teen protein-recognition domains, and three protease apo structures were procured from the

Protein Data Bank (PDB) (S1 Table) [27,37,42,51–65]. Structures were filtered for a resolution

equal to or lower than 2.8 Å and a bound peptide or peptidomimetic inhibitor. Active site

mutations were reverted to the wild-type residues.

The selected crystal structures were optimized using Rosetta FastRelax to find a low energy

structure, which was used as a starting point in further calculations. In the case of the protease

enzymes, constraints were applied to catalytic residues during FastRelax to maintain active site

geometry and keep the protease in a pre-transition-state near-attack conformation, and coor-

dinate constraints were applied to the backbone to ensure that the enzyme did not unfold; we

did not apply constraints in the general PRD benchmark, as constraints were found to decrease

prediction accuracy in those cases. Peptide side chains and backbone were allowed to sample

all degrees of freedom including rotation, translation, and rigid body orientation with respect

to the protease. The models were scored with Rosetta’s talaris2013 energy function.

The apo crystal structures were aligned with the relaxed models of the protease-peptide

complexes using PyMol [38], and the peptides from the protease-peptide complexes were

placed within the apo models. The crystal structures were further optimized using Rosetta Fas-

tRelax as described above.

Experimental sequence profiles and cleaved/uncleaved sequences. The sequences of

cleaved and uncleaved substrate peptides for each protease and bound peptides for each PRD

were obtained as described in Table 2. For further details on the curation of the protease data-

sets, please see our recent study [31]. To generate a specificity profile for each protease, we first

removed duplicates from the set of cleaved peptides and then calculated the frequency of each

amino acid at each position. We followed the same procedure for the PRDs; however, we did

not remove duplicates from those sets. The sequence sets are provided in S1 Dataset.
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Backbone ensemble generation

We generated a flexible backbone ensemble by constructing models of the proteins bound

to several cleaved sequences, and then diversifying those models via FastRelax [34], FlexPep-

Dock [35], or Backrub [36] backbone sampling protocols, as described in detail below. For

each protein, N cleaved sequences were chosen from the dataset by sorting the sequences in

alphabetical order and then choosing evenly spaced sequences from the sorted dataset. Two

alternative methods of picking cleaved sequences—randomly, or at even intervals from a set

sorted by hamming distance from an arbitrarily chosen cleaved sequence—did not impact the

results.

Then those N cleaved sequences were threaded onto the original FastRelaxed protein-

peptide complex to create N structure-sequence models. Each model was subjected to 10 tra-

jectories of FastRelax simulations, 10 trajectories of FlexPepdock refine simulations, or 10

trajectories of Backrub simulations, and the resulting 10 models were considered to be the

backbone conformational ensemble. As we found that the FastRelax protocol was more accu-

rate than FlexPepDock and Backrub, we used FastRelax alone in the final version of the proto-

col. The model was constrained to active catalytic geometry for the proteases; we did not apply

constraints to the PRD systems. Finally, the x lowest-scoring models for each sequence (with x
dependent on the protocol in question, and generally set as 1) were chosen as the final back-

bone ensemble.

Table 2. Substrates for proteases and PRDs.

Protease # Cleaved # Uncleaved References

TEV-PR 68 1520 • Kostallas et al. [66]

• Boulware et al. [67]

HCV protease 196 1943 • Shiryaev et al. [68]

• Rögnvaldsson et al. [69]

Granzyme B protease 353 1973 • Barkan et al. [70]

HIV-PR 374 1251 • Rögnvaldsson et al. [69]

PRD #Bound in vitro #Bound in vivo References

c-Crk SH3-N 13 N/A • Sparks et al. [10]

cAMP-dependent PKA 346 19 • PhosphoELM [71]

• Schutkowski et al. [5]

Src SH2 13 117 • PepCyber [72]

• Khati et al. [6]

PSD-95 PDZ3 93 2 • PDZBase [73]

• Tonikian et al. [7]

NHERF-2 PDZ2 132 N/A • Vouilleme et al. [8]

• Stiffler et al. [9]

• Tonikian et al. [7]

AF-6 PDZ 176 N/A • Tonikian et al. [7]

Erbin PDZ 86 N/A • Tonikian et al. [7]

MPDZ-13 (PDZ) 91 N/A • Tonikian et al. [7]

ZO-1 PDZ1 71 N/A • Tonikian et al. [7]

DLG1-2 (PDZ) 58 N/A • Tonikian et al. [7]

HLA-A*0201 (MHC) 3273 N/A • Vita et al. [44]

HLA-B*1501 (MHC) 1187 N/A • Vita et al. [44]

HLA-B*4402 (MHC) 236 N/A • Vita et al. [44]

HLA-B*4403 (MHC) 207 N/A • Vita et al. [44]

https://doi.org/10.1371/journal.pcbi.1005614.t002
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Mean-field algorithm

Various self-consistent mean-field theory-based methods have been developed for use in pro-

tein sidechain packing and design [74–81]. In the canonical self-consistent mean field theory-

based method for protein sidechain packing as proposed by Koehl and Delarue [74], the

energy landscape is investigated by using an effective energy potential to approximate the

effects of all possible rotamers at all positions to be modeled. Thus, the mean-field energy of

rotamer r occurring at position i is determined by Eq 1:

Eði; rÞ ¼ eðirÞ þ
XN

j¼1;j6¼i

XKj

s¼1

eðir; jsÞPðj; sÞ ð1Þ

e(ir) represents the one-body energy of the rotamer, or the energy between a residue and the

fixed components of the protein. e(ir,js) represents the two-body energy between a rotamer r at

position i and a rotamer s at position j. Energies are truncated at a threshold that we optimized

as a free parameter. P(j, s) represents the probability of rotamer s occurring at position j and is

initially given as 1/Kj, where Kj is the total number of available rotamers at position j (obtained

from a rotamer library).

A probability matrix (P) of size N × Kmax, where N is the number of positions to be analyzed

and Kmax is the maximum number of rotamers at any position, is used to model the probabili-

ties of each rotamer occurring. Once the effective energy of each rotamer is determined using

(1), the probability of each rotamer is:

P j; sð Þ ¼
e� bEðj;sÞ

PKj
x¼1e� bEðj;xÞ

ð2Þ

β (= 1/kT) is also optimized as a free parameter. The algorithm iterates between the two equa-

tions until convergence is reached. We use a pre-calculated interaction graph in Rosetta [82]

to store the one-body and two-body energies, which do not change between iterations, so the

iteration is rapid. Convergence is improved with the use of a memory in the updating of P, so

that the probability matrix after iteration x is given by Px = λPx−1 + (1−λ)Px, where λ is a free

parameter between 0 and 1. Once convergence is reached, the probability matrix P can be used

to obtain the probability for every rotamer.

We extended the algorithm for use with a flexible backbone and with any given amino acid

alphabet. Given an ensemble of backbone conformations, the probability matrix P is calculated

for each backbone using the canonical self-consistent mean field method, while allowing each

position to take on any amino acid, so that the vector for that position contains all the rotamers

for all amino acids at that position. Paa(bb, i), the probability of amino acid aa occurring at

position i in backbone bb, is determined for all amino acids at all positions in all backbones:

Paa bb; ið Þ ¼

PKaa
r¼1

Pbbði; rÞ
.

Kg
aa

P20

x¼1

PKx
r¼1

Pbbði; rÞ
.

Kg
x

ð3Þ

where Kaa is the number of rotamers available to amino acid aa at position i, and γ is a free

parameter optimized to 0.8 in our implementation. Dividing the sum of probabilities over all

rotamers for amino acid aa by Kg
aa thus corrects for cases where numerous rotamers of an

amino acid artificially inflate the probability of a specific amino acid occurring (S1 Fig).The

probability matrices for all backbones are then averaged together using a Boltzmann-weighting

scheme in a two-step process. First, Ebb(i,aa), the weighted sum of the energies for rotamers of

amino acid aa at position i in backbone bb, divided by Kg
aa, is calculated (Eq 4). Then Ebb(i,aa)
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is used to find W(i), the probability of backbone bb occurring at position i (Eq 5). M is the

number of (peptide) backbones in the ensemble.

Ebb i; aað Þ ¼

PKaa
r¼1

Ebbði; rÞPbbði; rÞ
Kg

aa

ð4Þ

W ið Þ ¼
e� b

P20

aa¼1
Ebbði;aaÞ

PM
s¼1

e� b

P20

aa¼1
Esði;aaÞ

ð5Þ

Finally, a weighted average P is determined and taken to be the predicted specificity profile

for that protease:

Pði; aaÞ ¼
XM

bb¼1

Paaðbb; iÞWðiÞ ð6Þ

Thus, MFPred can be used for prediction of multispecificity for both one backbone and

multiple backbone conformations.

Parameter optimization of MFPred

To optimize four free parameters for MFPred (λ, γ, threshold, and kT), we enumerated all

combinations of λ (0.25, 0.5, 0.75), γ (0, 0.2, 0.4, 0.6, 0.8, 1.0), threshold (5, 10, 50, 100, 250,

500), and kT (0.2, 0.4, 0.6, 0.8, 1.0). We selected 68 structures from the peptiDB (a peptide-pro-

tein complex database) [83] that met our criteria of having at least eight peptide residues. The

structures were input into MFPred as a backbone ensemble and all combinations of the above

parameters were tested. The resulting background specificity profiles were compared to the

background residue distribution in the Rosetta database (S1 Fig, S9 Fig) and the combination

of parameters with the lowest cosine distance from the known background distribution was

chosen as our final set of parameters. While varying λ had little impact on the results, all other

parameters had a significant, system-dependent impact on the results.

Enrichment over background

Since the MFPred predictions include noise arising from limited sampling and the scoring func-

tion used (as mentioned above), we divided its predictions by the background profile to find the

final prediction. The background profile was determined by averaging the frequencies of each

position in the peptiDB profile. We divided each amino acid frequency in the initial predicted pro-

file by the frequency of that amino acid in the background profile to find the final profile (S9 Fig).

Software availability

MFPred is available as a RosettaScripts Mover within the master branch of Rosetta. Sample

cases for how to use MFPred can be found in S2 Note and in online Rosetta documentation.

Supporting information

S1 Fig. The need for γ in the mean-field algorithm when averaging rotamers of an amino

acid to find the probability of that amino acid. (a) Background amino acid composition as

defined in Rosetta database (P_AA). This is the gold-standard which we attempted to match

in our background profile generation (see Methods). (b) MFPred’s background prediction

with γ = 0, i.e. the rotamer probabilities are simply summed to find the amino acid probability.

Serine and threonine are overrepresented as the Rosetta Dunbrack library contains many
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more rotamers for S and T, and glycine and alanine are underrepresented due to having only

one rotamer each. (c) MFPred’s background prediction with γ = 0.8 (current settings). This is

closest to the P_AA distribution (Frobenius distance of 0.24). (d) MFPred’s background pre-

diction with γ = 1.0, i.e the amino acid probability is simply the average of the rotamer proba-

bilities. While this is better than γ = 0, alanine and glycine are now overrepresented and serine

and threonine are underrepresented. Frobenius distance is 0.39.

(PNG)

S2 Fig. Protease benchmark specificity profiles, models, active centers, and recognition

modes. (a) Tobacco etch virus (TEV) protease is a cysteine protease displaying extensive

hydrogen bonding at the protease-substrate interface. (b) Hepatitis C virus (HCV) NS3 prote-

ase, a serine protease, recognizes substrates via interfacial hydrogen bonding. (c) Granzyme B,

a serine protease, recognizes substrates through electrostatic interactions. (d) Human immu-

nodeficiency virus (HIV) protease I, a symmetric aspartyl protease, has been proposed to rec-

ognize substrates via the substrate-envelope hypothesis.

(PNG)

S3 Fig. Specificity profile metric correlation. Correlation coefficients between pairs of met-

rics are shown in the upper diagonal while scatterplots are shown in the lower diagonal. Cosine

similarities and AUC values are shown as 1 –cosine and 1 –AUC, respectively, so that a lower

value represents a better prediction. Scatterplot points are colored by the number of bits in the

predicted profile, with darker blue representing fewer bits, or more peaked profiles.

(PNG)

S4 Fig. Profile shape affects evaluation metrics differently. (a) “Experimental” profile to

compare to. (b) Each metric is affected differently by the shape of the profile (x-axis). Accuracy

is normalized for all metrics so that the worst metric corresponds to one. Both AUC and cosine

are subtracted from 1, as well. Cosine similarity varies slightly with regard to flatness of the

profile, whether or not the most frequent amino acid is correct. Frobenius distance varies

more than the cosine similarity; it decreases somewhat consistently with the shape of the pro-

file. While AAD does not vary much with regard to flatness when the most frequent amino

acid is incorrect, it decreases very quickly when the most frequent amino acid is correct. JSD

also varies more when the most frequent amino acid is correct, although to a lesser extent than

AAD. AUC is relatively unaffected by flatness; if the most frequent amino acid is incorrect, it

is ~0.5 (or random), and if the most frequent amino acid is correct, it is zero.

(PNG)

S5 Fig. Incorporating cleaved sequences into backbone ensemble generation improves

MFPred’s accuracy. (a) Experimental specificity profiles. (b) Results of running MFPred on back-

bone ensemble of five cleaved sequences FastRelaxed. (c) Results of running MFPred on backbone

ensemble generated by enumerating combinations of phi/psi angles (see paper for details). (d)

Results of running MFPred on backbone ensemble of five uncleaved sequences FastRelaxed.

(PNG)

S6 Fig. Number of sequences vs. accuracy and number of backbones vs. accuracy for methods

of backbone ensemble generation. (a)-(d) Number of backbones per sequence vs. accuracy for

TEV, HCV, Granzyme B, and HIV, respectively. Each protocol begins with five sequences, which

are then relaxed using FR, FPD, or BR 1, 2, 5, or 10 times each. (e)-(h), Number of sequences vs.

accuracy for TEV, HCV, Granzyme B, and HIV, respectively. Number of sequences is varied

over 1-5-10-All experimentally derived sequences, which is different for each protease.

(PNG)
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S7 Fig. MFPred vs. other Rosetta prediction techniques on ensemble of five sequences. (a)

Experimental specificity profiles. (b) MFPred. (c) pepspec. (d) sequence_tolerance.

(PNG)

S8 Fig. MFPred vs. other Rosetta prediction techniques on ensemble of all sequences. (a)

Experimental specificity profiles. (b) MFPred. (c) pepspec. (d) sequence_tolerance.

(PNG)

S9 Fig. Enriching specificity profiles over background specificity profile improves accuracy.

(a) Experimental specificity profiles. (b) Initial MFPred-predicted specificity profiles. (c) Speci-

ficity profiles divided by background specificity profile. (d) Background specificity profile.

(PNG)

S10 Fig. MFPred prediction for six PDZ domains. (a,c) Experimental specificity profiles. (b,

d) MFPred prediction. Prediction was performed at a kT of 0.6, which was found to be optimal

for PDZ domains.

(PNG)

S11 Fig. MFPred prediction for three MHC-I domains. (a) Experimental specificity profiles.

(b) MFPred prediction.

(PNG)

S12 Fig. Using structures of receptor-peptide complexes vs. apo structures improves the

accuracy of MFPred. (a) Experimental specificity profiles. (b) MFPred prediction on recep-

tor-peptide complexes. (c) MFPred prediction on HCV NS3 protease apo structure. (d)

MFPred prediction on HIV protease 1 closed form apo structure. (e) MFPred prediction on

HIV protease 1 open form apo structure.

(PNG)

S1 Table. Details of model generation for four proteases and fourteen PRDs.

(DOCX)

S2 Table. Results of MFPred on different backbone ensembles.

(DOCX)

S3 Table. Effect of various Rosetta settings on MFPred predictions on five sequence back-

bones.

(DOCX)

S1 Note. Explanation of metrics.

(DOCX)

S2 Note. Supplementary software.

(DOCX)

S1 Dataset. Lists of cleaved/uncleaved/bound sequences.

(XLSX)

Author Contributions

Conceptualization: ABR SDK.

Data curation: ABR MAP.

Formal analysis: ABR.

Computational prediction of protein-peptide multispecificity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005614 June 26, 2017 20 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s016
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s017
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005614.s018
https://doi.org/10.1371/journal.pcbi.1005614


Funding acquisition: SDK ABR.

Investigation: ABR.

Methodology: ABR.

Project administration: SDK.

Software: ABR.

Supervision: SDK.

Visualization: ABR.

Writing – original draft: ABR SDK.

Writing – review & editing: ABR MAP SDK.

References
1. Kim P, Long L, Yu X, Mark G. Relating Three-Dimensional Structure to Protein Network Provides Evolu-

tionary Insights. Science. 2006; 314(December):1938–41. https://doi.org/10.1126/science.1136174

PMID: 17185604

2. Erijman A, Aizner Y, Shifman JM. Multispecific recognition: mechanism, evolution, and design. Bio-

chemistry. 2011; 50:602–11. https://doi.org/10.1021/bi101563v PMID: 21229991

3. Tawfik DS. Accuracy-rate tradeoffs: How do enzymes meet demands of selectivity and catalytic effi-

ciency? Curr Opin Chem Biol. 2014; 21:73–80. https://doi.org/10.1016/j.cbpa.2014.05.008 PMID:

24954689

4. Schreiber G, Keating AE. Protein binding specificity versus promiscuity. Curr Opin Struct Biol. 2011; 21

(1):50–61. https://doi.org/10.1016/j.sbi.2010.10.002 PMID: 21071205

5. Schutkowski M, Reimer U, Panse S, Dong L, Lizcano JM, Alessi DR, et al. High-content peptide micro-

arrays for deciphering kinase specificity and biology. Angew Chemie—Int Ed. 2004; 43(20):2671–4.

6. Khati M, Pillay TS. Phosphotyrosine phosphoepitopes can be rapidly analyzed by coexpression of a

tyrosine kinase in bacteria with a T7 bacteriophage display library. Anal Biochem. 2004; 325(1):164–7.

PMID: 14715298

7. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, et al. A specificity map for the PDZ

domain family. PLoS Biol. 2008; 6(9):2043–59.

8. Vouilleme L, Cushing PR, Volkmer R, Madden DR, Boisguerin P. Engineering peptide inhibitors to over-

come PDZ binding promiscuity. Angew Chemie—Int Ed. 2010; 49(51):9912–6.

9. Stiffler MA, Chen JR, Grantcharova VP, Lei Y, Fuchs D, Allen JE, et al. PDZ domain binding selectivity

is optimized across the mouse proteome. Science. 2007; 317(5836):364–9. https://doi.org/10.1126/

science.1144592 PMID: 17641200

10. Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quillam LA, Kay BK. Distinct ligand preferences of Src

homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc Natl

Acad Sci U S A. 1996; 93(4):1540–4. PMID: 8643668

11. Li Q, Yi L, Marek P, Iverson BL. Commercial proteases: present and future. FEBS Lett. 2013;

587:1155–63. https://doi.org/10.1016/j.febslet.2012.12.019 PMID: 23318711

12. Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu Rev

Physiol. 1997; 59:63–88. https://doi.org/10.1146/annurev.physiol.59.1.63 PMID: 9074757

13. Hirsch T, Xiang J, Chao DT, Korsmeyer SJ, Scaife JF, Colell A, et al. Caspases: Enemies Within. Sci-

ence. 1998; 281(August):1312–6. PMID: 9721091

14. Monahan P, Di Paola J. Recombinant Factor IX for Clinical and Research Use. Semin Thromb Hemost.

2010; 36(5):498–509. https://doi.org/10.1055/s-0030-1255444 PMID: 20632248

15. Pampalakis G, Sotiropoulou G. Tissue kallikrein proteolytic cascade pathways in normal physiology

and cancer. Biochim Biophys Acta—Rev Cancer. 2007; 1776(1):22–31.

16. Scheel T, Rice C. Understanding the HCV life cycle paves the way for highly effective therapies.

NatMed. 2014; 19(7):837–49.

17. Kerekatte V, Keiper BD, Badorff C, Cai A, Knowlton KU, Rhoads RE. Cleavage of Poly(A)-binding pro-

tein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis

shutoff? J Virol. 1999; 73:709–17. PMID: 9847377

Computational prediction of protein-peptide multispecificity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005614 June 26, 2017 21 / 24

https://doi.org/10.1126/science.1136174
http://www.ncbi.nlm.nih.gov/pubmed/17185604
https://doi.org/10.1021/bi101563v
http://www.ncbi.nlm.nih.gov/pubmed/21229991
https://doi.org/10.1016/j.cbpa.2014.05.008
http://www.ncbi.nlm.nih.gov/pubmed/24954689
https://doi.org/10.1016/j.sbi.2010.10.002
http://www.ncbi.nlm.nih.gov/pubmed/21071205
http://www.ncbi.nlm.nih.gov/pubmed/14715298
https://doi.org/10.1126/science.1144592
https://doi.org/10.1126/science.1144592
http://www.ncbi.nlm.nih.gov/pubmed/17641200
http://www.ncbi.nlm.nih.gov/pubmed/8643668
https://doi.org/10.1016/j.febslet.2012.12.019
http://www.ncbi.nlm.nih.gov/pubmed/23318711
https://doi.org/10.1146/annurev.physiol.59.1.63
http://www.ncbi.nlm.nih.gov/pubmed/9074757
http://www.ncbi.nlm.nih.gov/pubmed/9721091
https://doi.org/10.1055/s-0030-1255444
http://www.ncbi.nlm.nih.gov/pubmed/20632248
http://www.ncbi.nlm.nih.gov/pubmed/9847377
https://doi.org/10.1371/journal.pcbi.1005614


18. Craik CS, Page MJ, Madison EL. Proteases as therapeutics. Biochem J. 2011; 435:1–16. https://doi.

org/10.1042/BJ20100965 PMID: 21406063

19. Newman JRS, Keating AE. Comprehensive identification of human bZIP interactions with coiled-coil

arrays. Science. 2003; 300(5628):2097–101. https://doi.org/10.1126/science.1084648 PMID:

12805554

20. Havranek JJ, Harbury PB. Automated design of specificity in molecular recognition. Nat Struct Biol.

2002; 10:45–52.

21. King CA, Bradley P. Structure-based prediction of protein–peptide specificity in Rosetta. Cancer Res.

2010;3437–49.

22. Smith CA, Kortemme T. Structure-Based Prediction of the Peptide Sequence Space Recognized by

Natural and Synthetic PDZ Domains. J Mol Biol. 2010; 402(2):460–74. https://doi.org/10.1016/j.jmb.

2010.07.032 PMID: 20654621

23. Wollacott AM, Desjarlais JR. Virtual interaction profiles of proteins. J Mol Biol. 2001; 313(2):317–42.

https://doi.org/10.1006/jmbi.2001.5035 PMID: 11800560

24. Lanouette S, Davey JA, Elisma F, Ning Z, Figeys D, Chica RA, et al. Discovery of substrates for a SET

domain lysine methyltransferase predicted by multistate computational protein design. Structure. 2015;

23(1):206–15. https://doi.org/10.1016/j.str.2014.11.004 PMID: 25533488

25. Grigoryan G, Reinke AW, Keating AE. Design of protein-interaction specificity gives selective bZIP-bind-

ing peptides. Nature. 2009; 458(7240):859–64. https://doi.org/10.1038/nature07885 PMID: 19370028

26. Felder S, Zhou M, Hu P, Urena J, Ullrich A, Chaudhuri M, et al. SH2 domains exhibit high-affinity binding

to tyrosine-phosphorylated peptides yet also exhibit rapid dissociation and exchange. Mol Cell Biol.

1993; 13(3):1449–55. PMID: 7680095

27. Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J. Binding of a high affinity phosphotyrosyl

peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell. 1993;

72:779–90. PMID: 7680960

28. Domchek SM, Auger KR, Chatterjee S, Burke TR, Shoelson SE. Inhibition of SH2 domain/phosphopro-

tein association by a nonhydrolyzable phosphonopeptide. Biochemistry. 1992; 31:9865–70. PMID:

1382595

29. Ubersax JA, Ferrell JE. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol.

2007; 8:530–41. https://doi.org/10.1038/nrm2203 PMID: 17585314

30. Lundegaard C, Lund O, Buus S, Nielsen M. Major histocompatibility complex class I binding predictions

as a tool in epitope discovery. Immunology. 2010; 130(3):309–18. https://doi.org/10.1111/j.1365-2567.

2010.03300.x PMID: 20518827

31. Pethe MA, Rubenstein AB, Khare SD. Large-Scale Structure-Based Prediction and Identification of

Novel Protease Substrates Using Computational Protein Design. J Mol Biol. 2017; 429(2):220–36.

https://doi.org/10.1016/j.jmb.2016.11.031 PMID: 27932294

32. London N, Lamphear CL, Hougland JL, Fierke CA, Schueler-Furman O. Identification of a novel class

of farnesylation targets by structure-based modeling of binding specificity. PLoS Comput Biol. 2011; 7

(10).

33. Smith C, Kortemme T. Predicting the tolerated sequences for proteins and protein interfaces using

RosettaBackrub flexible backbone design. PLoS One. 2011; 6(7):e20451. https://doi.org/10.1371/

journal.pone.0020451 PMID: 21789164

34. Tyka MD, Keedy DA, Andre I, Dimaio F, Song Y, Richardson DC, et al. Alternate states of proteins

revealed by detailed energy landscape mapping. J Mol Biol. 2011; 405(2):607–18. https://doi.org/10.

1016/j.jmb.2010.11.008 PMID: 21073878

35. Raveh B, London N, Schueler-Furman O. Sub-angstrom modeling of complexes between flexible pep-

tides and globular proteins. Proteins Struct Funct Bioinforma. 2010; 78(9):2029–40.

36. Smith CA, Kortemme T. Backrub-Like Backbone Simulation Recapitulates Natural Protein Conforma-

tional Variability and Improves Mutant Side-Chain Prediction. J Mol Biol. 2008; 380(4):742–56. https://

doi.org/10.1016/j.jmb.2008.05.023 PMID: 18547585

37. Heaslet H, Rosenfeld R, Giffin M, Lin YC, Tam K, Torbett BE, et al. Conformational flexibility in the flap

domains of ligand-free HIV protease. Acta Crystallogr Sect D Biol Crystallogr. 2007; 63(8):866–75.

38. The PyMol Molecular Graphics System. p. Version 1.8.0.3, Schrodinger, LLC.

39. Dunbrack R. Rotamer Libraries in the 21st Century. Curr Opin Struct Biol. 2002; 12(4):431–40. PMID:

12163064

40. Watkins AM, Bonneau R, Arora PS. Side-chain conformational preferences govern protein−protein

interactions. J Am Chem Soc. 2016; 138:10386−10389. https://doi.org/10.1021/jacs.6b04892 PMID:

27483190

Computational prediction of protein-peptide multispecificity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005614 June 26, 2017 22 / 24

https://doi.org/10.1042/BJ20100965
https://doi.org/10.1042/BJ20100965
http://www.ncbi.nlm.nih.gov/pubmed/21406063
https://doi.org/10.1126/science.1084648
http://www.ncbi.nlm.nih.gov/pubmed/12805554
https://doi.org/10.1016/j.jmb.2010.07.032
https://doi.org/10.1016/j.jmb.2010.07.032
http://www.ncbi.nlm.nih.gov/pubmed/20654621
https://doi.org/10.1006/jmbi.2001.5035
http://www.ncbi.nlm.nih.gov/pubmed/11800560
https://doi.org/10.1016/j.str.2014.11.004
http://www.ncbi.nlm.nih.gov/pubmed/25533488
https://doi.org/10.1038/nature07885
http://www.ncbi.nlm.nih.gov/pubmed/19370028
http://www.ncbi.nlm.nih.gov/pubmed/7680095
http://www.ncbi.nlm.nih.gov/pubmed/7680960
http://www.ncbi.nlm.nih.gov/pubmed/1382595
https://doi.org/10.1038/nrm2203
http://www.ncbi.nlm.nih.gov/pubmed/17585314
https://doi.org/10.1111/j.1365-2567.2010.03300.x
https://doi.org/10.1111/j.1365-2567.2010.03300.x
http://www.ncbi.nlm.nih.gov/pubmed/20518827
https://doi.org/10.1016/j.jmb.2016.11.031
http://www.ncbi.nlm.nih.gov/pubmed/27932294
https://doi.org/10.1371/journal.pone.0020451
https://doi.org/10.1371/journal.pone.0020451
http://www.ncbi.nlm.nih.gov/pubmed/21789164
https://doi.org/10.1016/j.jmb.2010.11.008
https://doi.org/10.1016/j.jmb.2010.11.008
http://www.ncbi.nlm.nih.gov/pubmed/21073878
https://doi.org/10.1016/j.jmb.2008.05.023
https://doi.org/10.1016/j.jmb.2008.05.023
http://www.ncbi.nlm.nih.gov/pubmed/18547585
http://www.ncbi.nlm.nih.gov/pubmed/12163064
https://doi.org/10.1021/jacs.6b04892
http://www.ncbi.nlm.nih.gov/pubmed/27483190
https://doi.org/10.1371/journal.pcbi.1005614


41. Zheng F, Jewell H, Fitzpatrick J, Zhang J, Mierke DF, Grigoryan G. Computational design of selective

peptides to discriminate between similar PDZ domains in an oncogenic pathway. J Mol Biol. 2015; 427

(2):491–510. https://doi.org/10.1016/j.jmb.2014.10.014 PMID: 25451599

42. Chen Q, Niu X, Xu Y, Wu J, Shi Y. Solution structure and backbone dynamics of the AF-6 PDZ domain/

Bcr peptide complex. Protein Sci. 2007; 16(6):1053–62. https://doi.org/10.1110/ps.062440607 PMID:

17473018

43. Fujiwara Y, Goda N, Tamashiro T, Narita H, Satomura K, Tenno T, et al. Crystal structure of afadin PDZ

domain-nectin-3 complex shows the structural plasticity of the ligand-binding site. Protein Sci. 2015; 24

(3):376–85. https://doi.org/10.1002/pro.2628 PMID: 25534554

44. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope

database (IEDB) 3.0. Nucleic Acids Res. 2015; 43(D1):D405–12.

45. Khare SD, Fleishman SJ. Emerging themes in the computational design of novel enzymes and protein–

protein interfaces. FEBS Lett. 2013; 587(8):1147–54. https://doi.org/10.1016/j.febslet.2012.12.009

PMID: 23262222

46. Harris JL, Peterson EP, Hudig D, Thornberry NA, Craik CS. Definition and redesign of the extended

substrate specificity of granzyme B. J Biol Chem. 1998; 273(42):27364–73. PMID: 9765264

47. Ruggles SW, Fletterick RJ, Craik CS. Characterization of structural determinants of granzyme B reveals

potent mediators of extended substrate specificity. J Biol Chem. 2004; 279(29):30751–9. https://doi.

org/10.1074/jbc.M400949200 PMID: 15123647

48. Leaver-Fay A, Jacak R, Stranges PB, Kuhlman B. A generic program for multistate protein design.

PLoS One. 2011; 6(7).

49. Shapovalov M V., Dunbrack RL. A smoothed backbone-dependent rotamer library for proteins derived

from adaptive kernel density estimates and regressions. Structure. 2011; 19(6):844–58. https://doi.org/

10.1016/j.str.2011.03.019 PMID: 21645855

50. Park H, Bradley P, Greisen P, Liu Y, Mulligan VK, Kim DE, et al. Simultaneous Optimization of Biomo-

lecular Energy Functions on Features from Small Molecules and Macromolecules. J Chem Theory

Comput. 2016; 12(12):6201–12. https://doi.org/10.1021/acs.jctc.6b00819 PMID: 27766851

51. Phan J, Zdanov A, Evdokimov AG, Tropea JE, Peters HK, Kapust RB, et al. Structural Basis for the

Substrate Specificity of Tobacco Etch Virus Protease. J Biol Chem. 2002; 277(52):50564–72. https://

doi.org/10.1074/jbc.M207224200 PMID: 12377789

52. Prabu-Jeyabalan M, Nalivaika EA, King NM, Schiffer CA. Viability of a drug-resistant human immunode-

ficiency virus type 1 protease variant: structural insights for better antiviral therapy. J Virol. 2003; 77

(2):1306–15. https://doi.org/10.1128/JVI.77.2.1306-1315.2003 PMID: 12502847

53. Waugh SM, Harris JL, Fletterick R, Craik CS. The structure of the pro-apoptotic protease granzyme B

reveals the molecular determinants of its specificity. Nat Struct Biol. 2000; 7(9):762–5. https://doi.org/

10.1038/78992 PMID: 10966646

54. Romano KP, Ali A, Royer WE, Schiffer CA. Drug resistance against HCV NS3/4A inhibitors is defined

by the balance of substrate recognition versus inhibitor binding. Proc Natl Acad Sci U S A. 2010; 107

(49):20986–91. https://doi.org/10.1073/pnas.1006370107 PMID: 21084633

55. Saro D, Martin P, Vickrey JF, Griffin A, Kovari LC, Spaller MR. Structure of the third PDZ domain of

PSD-95 protein complexed with KKETPV peptide ligand. To be Publ.

56. Madhusudan, Akamine P, Xuong N-H, Taylor SS. Crystal structure of a transition state mimic of the cat-

alytic subunit of cAMP-dependent protein kinase. Nat Struct Mol Biol. 2002; 9(4):273–7.

57. Wu X, Knudsen B, Feller SM, Zheng J, Sali A, Cowburn D, et al. Structural basis for the specific interac-

tion of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure. 1995;

3(2):215–26. PMID: 7735837

58. Elkins JM, Papagrigoriou E, Berridge G, Yang X, Phillips C, Gileadi C, et al. Structure of PICK1 and

other PDZ domains obtained with the help of self-binding C-terminal extensions. Protein Sci. 2007;

16:683–94. https://doi.org/10.1110/ps.062657507 PMID: 17384233

59. Skelton NJ. Origins of PDZ Domain Ligand Specificity. Structure determination and mutagenesis of the

Erbin PDZ domain. J Biol Chem. 2003; 278(9):7645–54. https://doi.org/10.1074/jbc.M209751200

PMID: 12446668

60. Appleton BA, Zhang Y, Wu P, Yin JP, Hunziker W, Skelton NJ, et al. Comparative Structural Analysis of

the Erbin PDZ Domain and the First PDZ Domain of ZO-1. J Biol Chem. 2006; 281(31):22312–20.

https://doi.org/10.1074/jbc.M602901200 PMID: 16737969

61. Zhang Y, Dasgupta J, Ma RZ, Banks L, Thomas M, Chen XS. Structures of a human papillomavirus

(HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a

high-risk HPV oncoprotein. J Virol. 2007; 81(7):3618–26. https://doi.org/10.1128/JVI.02044-06 PMID:

17267502

Computational prediction of protein-peptide multispecificity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005614 June 26, 2017 23 / 24

https://doi.org/10.1016/j.jmb.2014.10.014
http://www.ncbi.nlm.nih.gov/pubmed/25451599
https://doi.org/10.1110/ps.062440607
http://www.ncbi.nlm.nih.gov/pubmed/17473018
https://doi.org/10.1002/pro.2628
http://www.ncbi.nlm.nih.gov/pubmed/25534554
https://doi.org/10.1016/j.febslet.2012.12.009
http://www.ncbi.nlm.nih.gov/pubmed/23262222
http://www.ncbi.nlm.nih.gov/pubmed/9765264
https://doi.org/10.1074/jbc.M400949200
https://doi.org/10.1074/jbc.M400949200
http://www.ncbi.nlm.nih.gov/pubmed/15123647
https://doi.org/10.1016/j.str.2011.03.019
https://doi.org/10.1016/j.str.2011.03.019
http://www.ncbi.nlm.nih.gov/pubmed/21645855
https://doi.org/10.1021/acs.jctc.6b00819
http://www.ncbi.nlm.nih.gov/pubmed/27766851
https://doi.org/10.1074/jbc.M207224200
https://doi.org/10.1074/jbc.M207224200
http://www.ncbi.nlm.nih.gov/pubmed/12377789
https://doi.org/10.1128/JVI.77.2.1306-1315.2003
http://www.ncbi.nlm.nih.gov/pubmed/12502847
https://doi.org/10.1038/78992
https://doi.org/10.1038/78992
http://www.ncbi.nlm.nih.gov/pubmed/10966646
https://doi.org/10.1073/pnas.1006370107
http://www.ncbi.nlm.nih.gov/pubmed/21084633
http://www.ncbi.nlm.nih.gov/pubmed/7735837
https://doi.org/10.1110/ps.062657507
http://www.ncbi.nlm.nih.gov/pubmed/17384233
https://doi.org/10.1074/jbc.M209751200
http://www.ncbi.nlm.nih.gov/pubmed/12446668
https://doi.org/10.1074/jbc.M602901200
http://www.ncbi.nlm.nih.gov/pubmed/16737969
https://doi.org/10.1128/JVI.02044-06
http://www.ncbi.nlm.nih.gov/pubmed/17267502
https://doi.org/10.1371/journal.pcbi.1005614


62. Ding YH, Baker BM, Garboczi DN, Biddison WE, Wiley DC. Four A6-TCR/peptide/HLA-A2 structures

that generate very different T cell signals are nearly identical. Immunity. 1999; 11(1):45–56. PMID:

10435578

63. Røder G, Blicher T, Justesen S, Johannesen B, Kristensen O, Kastrup J, et al. Crystal structures of two

peptide-HLA-B*1501 complexes; structural characterization of the HLA-B62 supertype. Acta Crystal-

logr Sect D Biol Crystallogr. 2006; 62(11):1300–10.

64. Macdonald WA, Purcell AW, Mifsud NA, Ely LK, Williams DS, Chang L, et al. A naturally selected dimor-

phism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition. J

Exp Med. 2003; 198(5):679–91. https://doi.org/10.1084/jem.20030066 PMID: 12939341

65. Cummings MD, Lindberg J, Lin TI, De Kock H, Lenz O, Lilja E, et al. Induced-fit binding of the macrocy-

clic noncovalent inhibitor TMC435 to its HCV NS3/NS4A protease target. Angew Chemie—Int Ed.

2010; 49(9):1652–5.
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