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Industrial bioreactors range from 10.000 to 700.000 L and characteristically show different zones of substrate
availabilities, dissolved gas concentrations and pH values reflecting physical, technical and economic constraints
of scale-up. Microbial producers are fluctuating inside the bioreactors thereby experiencing frequently changing
micro-environmental conditions. The external stimuli induce responses on microbial metabolism and on tran-
scriptional regulation programs. Both may deteriorate the expected microbial production performance in large
scale compared to expectations deduced from ideal, well-mixed lab-scale conditions. Accordingly, predictive
tools are needed to quantify large-scale impacts considering bioreactor heterogeneities. The review shows that
the time is right to combine simulations of microbial kinetics with calculations of large-scale environmental con-
ditions to predict the bioreactor performance. Accordingly, basic experimental procedures and computational
tools are presented to derive proper microbial models and hydrodynamic conditions, and to link both for biore-
actor modeling. Particular emphasis is laid on the identification of gene regulatory networks as the implementa-
tion of such models will surely gain momentum in future studies.
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1. Introduction

With the advent of metabolic engineering in the 1990s [1], the engi-
neers' view on microbes changed. Process optimization no longer
based on invitation of Gianni
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considered the extracellular environment (i.e. cultivation conditions)
alone, but started to investigate intracellular mechanisms in addition
[1, 2]. Since then, intracellular reaction rates have been quantified and
models of regulatory processes finally aiming at identifying targets for
further strain and process improvement have been derived. To some ex-
tent driven by the observations that cellular engineering always results
in multiple and complex systemic responses [1], furthermore catalyzed
by the avalanche of omics data that were accessible, systems biology
and systems metabolic engineering emerged in 2000. In essence,
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holistic models have been developed that aim to provide as sound and
comprehensive a cellular view as possible.

The development clearly reflects the general engineeringmindset of
investigating the whole system by modularization, quantitative analy-
sis, reassembling and studying the interaction of the networked mod-
ules. The earliest, simple examples may be given by the Monod
growth model [3], followed by more sophisticated approaches like the
lactose operon considering feedback regulation in Escherichia coli, fi-
nally leading to complex models comprising multiple levels of cellular
regulation [4]. While such movements led to the birth of systems biol-
ogy [5] and systems metabolic engineering [6–9] core engineering ac-
tivities such as scale-up were a matter of steady development, too.

Scale-up is the procedure to transfer lab-bioprocesses in production
(large) conditions, often covering 7 to 8 orders of magnitude of volume.
Unfortunately, loss or even failure of large-scale performance may
occur. Detailed knowhow is necessary to prevent unwanted production
losses. Accordingly, Oosterhuis andKossenwere thefirstwhopresented
a scale-up simulator (1983) for investigating the impact of oxygen gra-
dients on Gluconobacter oxydans [10]. They further introduced bioreac-
tor compartment models to achieve the coarse spatial resolution of
local oxygen transfer rates to identify micro- and anaerobic zones [11].
This line of thinking was followed by a series of similar studies
[12–16] and reached a new level of complexity by linking simulations
of hydrodynamics and mass transports with simple metabolic models
of Saccaromyces cerevisiae and E. coli [17–21]. Notably, cellular dynamics
were modeled by focusing on metabolism dynamics only. This is re-
markable as systems biology has already shown that holistic models
are able to cover a far broader range of complexity. Scale-up engineers
have already pointed out [22] that profound knowhow is necessary to
enable the best knowledge-based scale-up using in silico predictions.

This review addresses the current need for knowledge-based pro-
cess scale-up by elucidating the putative contributions of modeling.
The existing plethora of modeling approaches will be structured with
respect to granularity and usefulness to (i) identify and (ii) model key
regulatory phenomena and (iii) to link cellular models with predictions
of large-scale hydrodynamics. It will be shown that the time is right to
approach the challenging goal of in silico predicted large-scale perfor-
mance of microbial producers.

2. Data-driven Approach

Comprehensive data sets are necessary to develop gene regulatory
models, generated to answer the biological question of interest. This
also holds true for elucidating complex metabolic and regulatory re-
sponses of producer cells that are exposed to industrial production con-
ditions. One approach to collect representative data is to mimic large-
scale conditions and to capture time series of regulatory dynamics as a
basis for unraveling dynamic regulatory models. Such approaches usu-
ally require rapid sampling experiments that ‘freeze’ metabolic states
monitored in scale-down experiments. Examples of experimental pro-
cedures are given in the following.

2.1. Experimental Set-Ups Mimicking Large-Scale Heterogeneities

In large-scale production processes micro-environmental inhomo-
geneities often occur. Insufficient mixing leads to severe axial and hori-
zontal concentration gradients. Producer cells frequently cross these
poorly mixed zones which triggers metabolic and transcriptional re-
sponses accordingly [23]. Because large-scale experimental data are
rarely accessible, experimental scale-up simulators are typically ap-
plied, reflecting large-scale conditions [24]. Pioneering studies were
performed by Oosterhuis et al. [10] using a two compartment system
comprising two stirred tank reactors (STRs) to investigate the effect of
different oxygen levels upon the gluconic acid fermentation of
Gluconobacter oxydans. Since then, variations of the two compartment
set up considered the combination of an STR and a plug flow reactor
(PFR). Reviews have been given by Delvigne et al. and Neubauer and
Junne [22, 25, 26]. Fig. 1 depicts selected examples for several STR-STR
and STR-PFR applications.

Experimental scale-up simulators do notmerely consist of two com-
partments. Three compartment approaches have been studied as well.
Examples are the STR-STR-STR cascade of Buchholz et al. [13] and the
PFR-STR-PFR set-up of Lemoine et al. [28]. Accordingly, more complex
scale-up scenarios could be analyzed.

Notably, two and three compartment scale-up simulatorsmirror the
cellular responses on repeated, frequent stimuli. In contrast, investiga-
tions of single perturbations may be a proper tool for deriving distinct
stimulus/response correlations, see Fig. 1 for examples. On this basis, ex-
plicit metabolic and transcriptional dynamics can be deduced that,
when properly superimposed, result in the complex cellular response
observed. However, signal transduction is highly networked in the
cells whichmay cause the cross-interference ofmultiple stimuli. The co-
incidence of multiple stimuli in large-scale fermentation is the rule
rather than the exception [29, 30]. Accordingly, multiple stimulus/re-
sponse studies are likely to gain importance in the future.

2.2. Experimental Access to Metabolic and Transcriptional Responses

Samples taken from the scale-up simulators need to be processed so
that metabolic and transcriptional states are ‘frozen’ immediately. Met-
abolic inactivation and purification can be achieved via several ap-
proaches [31–34] and requires individual optimization for the given
problem. Blocking intracellular transcription is achieved by sampling
into RNA protect kits [14]. Correctly prepared, samples can be treated
further to identifymetabolic compositions viametabolic profiling or fin-
gerprinting techniques [35–37], protein contents via affinity tags [38] or
mass spectrometry [39] and transcript levels, either applying microar-
rays or, more preferred, next generation sequencing technologies ana-
lyzing mRNAs [40–42]. To reduce the overall sequencing expenses,
library preparation usually is done via a rRNA depletion or poly-A en-
richment step to remove non-coding rRNA.

Various methods for RNA Seq analysis are available and have been
reviewed recently by Conesa et al. [43]. Regardingmodeling, time series
of transcripts are particularly important which requires methods of dif-
ferential gene expression analysis. Fig. 2 provides an overview of a typ-
ical workflow making use of public R packages.

Once time series of transcripts are available, modelers may be inter-
ested in unraveling gene clusters showing similar transcription dynam-
ics and data integration in dynamic models. Applicants may be guided
via evaluating reports of Rapaport et al. [49], Hecker et al. and Banf
et al. [50, 51]. Currently, algorithms such as DeSeq2 [52] and MaSigPro
[53] are often applied.

Application examples are given by transcript time series and moni-
toring of metabolic changes reflecting the stimuli of glucose [14, 15,
54], nitrogen [55], oxygen [16, 56] or temperature stress [57] of E. coli.
Data like this, derived from transcriptome analysis as it is described in
Fig. 2, are the basis of proper validatedmathematical models. Transcript
analysis even enabled the engineering of robust E. coli strains [58] by at-
tenuating the level of the alarmone ppGpp, the inducer of the stringent
response regulation program. The newhost is able tomaintain high glu-
cose uptake rates even under non or slow growing conditions.

2.3. Experimental Access to Single Cell Analysis

It is a well known fact that microbial populations in bioreactors are
rather heterogeneous than homogeneous. A combination of stimuli
such as local substrate availabilities, temperature and pH conditions
may induce differences in cell cycle status, cell division, growth rates,
etc. [59].

Such subpopulations can be experimentally analyzed via studies, for
instance using fully-automated real-time, flow injection flow cytometry
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Fig. 1. Matrix of STR-STR and STR-PFR applications with different fluctuating conditions and operation modes (blue dots). The E. coli strain is the standard strain W3110. Alternative
approaches or different operation modes within the same publication are displayed as blue circles with a white filling. The experimental setups are arranged by the year of publication.
Investigations with redundant application information are mentioned once according to the most recent paper.
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(FI-FCM) [60, 61] or real-time imaging in combinationwithmicrofluidic
cultivation devices [62–64].

Bennett and Hasty [65] reviewed several microfluidic devices which
can be used to examine intracellular signaling pathways and the dy-
namics of gene regulation in bacteria, yeast and higher eukaryotes on
a single cell basis. Often, on-line monitoring is combined with
microfluidic studies to achieve full resolution of complex interactions.
These technologies are expected to yield novel insights and allow the
construction of mathematical models that more accurately describe
the complex dynamics of gene regulation [65]. Lemoine et al. provided
a review about tools formonitoring population heterogeneities on a sin-
gle cell basis [66]. Today, even single cell transcription analysis using
novel sequencing technologies is becoming achievable [67] which may
further increase the quality of mathematical models.

3. Modeling Microbial Growth With Different Granularity

Based on proper analyzed experimentally data sets, mathematical
models can be derived to simulate the microbial behaviour under
different conditions with a varying level of detail. Following the well-
known classification of Bailey [68] microbial models can be divided
into non-structured/structured and non-segregated/segregated ap-
proaches. Non-structured/Non-segregated approaches represent the
simplest growthmodels assuming average cells without subcellular de-
tail. Suchmodels are typically applied for bioprocess design. For the sake
of simplicity, they are also applied in agent-basedmodeling for tracking
individual cells. The consideration of subpopulations or individual cell
properties leads to segregated approacheswhich, thanks to the improv-
ing availability of experimental data, is gaining more and more attrac-
tion. Structured, non-segregated models are commonly used for
implementing the subcellular details of metabolic and transcriptional
regulation, compartmentation or signal transduction [69, 70]. They are
computationally intensive but represent a powerful tool for predicting
detailed cellular responses to extracellular stimuli. The most accurate
approach are structured/segregatedmodels [71],which for example de-
scribe the whole glycolysis process with reactions for each enzyme, de-
pending on enzyme affinites and turn over rates. These paramters are
more difficult to identify but transferable to other conditions. However,
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models like this are limited in scale, due to the complexity of the cellular
mechanisms and the single cell consideration, which results in a qua-
dratic scaling problem.
Table 1
Comparison of bottom-up and top-down approach.

Bottom-up Top-down

Design steps From single molecule to pattern From single elements
to relations

Model size Small-scale Coarse-grained
large-scale

Model
complexity

Detailed Global

Prediction
goals

Detailed time-scale resolution Global cellular
dynamics

Limitations Lack of kinetic parameters and in-depth
knowledge

Neglect of single
reaction steps
3.1. Identifying Structured and Non-Structured Microbial Models

Non-segregated, structured models typically consist of a rigid net-
work structure and a set of rate expressions including sensitive param-
eters. Knowledge of the network structure, the kinetic equations and
the parameters is key to identifying a proper model. Often, such struc-
tures are determined following the bottom-up approach, i.e. the statis-
tically profound identification of correlations between the structuring
elements based on experimental data. The bottom-up concept can be
applied to merge already existing small-scale models into large models
[72–74]. Alternatively, top-down approaches aim for the identification
of model parameters for a given structure. Accordingly, the top-down
approach is a powerful tool for deciphering details of pathway interac-
tion with the network, provided that the given structure is correct [75,
76]. Table 1 depicts a comparison of the two approaches, including pre-
diction goals and limitations. Statements hold true irrespective of
whether model complexity is limited to metabolic interactions or
whether superior regulation levels such as transcriptional or post-
translational feedbacks are included.

3.2. Identifying Gene Regulatory Networks (GRNs)

When cells are exposed to dynamic stimuli, such as the fluctuating
micro-environmental changes in large-scale bioreactors, they show
short- and long-term physiological responses. Whereas the first are



250 J. Zieringer, R. Takors / Computational and Structural Biotechnology Journal 16 (2018) 246–256
dominated by metabolic interactions, the second include strategies for
microbial adaptation usually comprising changes of transcriptome and
proteome. However, recent findings [14–16, 54] have shown that tran-
scriptional response occurs massively, even during short-term, sub-
minute periods. Accordingly, GRN models gain importance even for
modeling short-term responses which explicitly motivates their use.

A gene regulatory network links transcription factors to their target
genes thereby creating a dynamic interaction map connecting external
stimuli with internal transcriptional and even metabolic responses. Ac-
cordingly, GRN models may comprise the signal stimulus, its transduc-
tion to the receptor, the transcriptional response and downstream
processes such as translation, post-translational modifications of pro-
tein and protein degradation. Altogether, these interactions form a
very complex regulatory network. Roughly, the plentitude of GRNs
may be divided into three representative approaches: continuous
models (in this case based on ordinary differential equations) [71,
86–91], Boolean models [92–95] and probabilistic models [96–99].
These and other methods, such as Petri nets, Bayesian networks or neu-
ral networks, have been extensively reviewed by Karlebach and Shamir
[100] and Machado et al. [101].

Stochastic models start from the assumption that gene expression
should be described by random events e.g. caused by the shortage of
mRNA molecules and factors of transcription. Similarly, initiation and
elongation factors are scarce and may cause stochastic translation pro-
cesses. Accordingly, the continuum paradigm, i.e. the assumption of a
sufficient, homogeneous availability of eachmodel entity, may be ques-
tionable and could be checked using the chemical master equation. In
case the number of molecules per cell is too low, stochastic models
should be considered [102]. Pragmatic guidelines have been published
by Kremling et al. [103] and Turner et al. [97], identifying molecule
numbers of about 100 per cell as the threshold value.

Alternatively, systems of ordinary differential equations (ODEs) can
be applied ignoring stochastic transcription events and assuming cellular
continuum instead. Cellular entities are simulated as continuous time
courses. Such models require knowledge about gene regulatory mecha-
nisms to select appropriate rate laws and to identify corresponding rate
parameters for parameter estimation. Standardized formats simplify the
development process and encourage the automatic construction of ki-
netic models. However, the prediction quality of the model may deterio-
rate for the prediction of cellular states that are not reflected by the
experimental data. Checking thermodynamic feasibility for estimated
fluxes is strongly encouraged to prevent misleading findings [104]. If
only a small amount of data is available, Boolean approachesmay be use-
ful to model regulatory networks. As a key feature, Boolean models con-
sider on/off activation and the inhibition of transcription factors and
genes. Accordingly, such models are helpful to predict on/off-like gene
switching but fail to simulate distinct time series of transcriptional dy-
namics that occur after frequent stimulations in large-scale bioreactors.

Moreover, Mochizuki [105] showed that high prediction qualities
and the easy handling of Boolean models is limited to small-scale
models. Consequently, large-scale GRNs should preferably be composed
of ODEs [100]. A short summary of the different class of models with
their specific advantages and disadvantages is given in Table 2.
Table 2
Summary of advantages, disadvantages and application of the above mentioned methods.

Model class Application Advantages

Structured Systems in transient state Cellular compartment
Non-structured Steady-state systems Easy to build
Segregated Heterogeneous, individual cell systems More representative a
Non-segregated Systems with average cell description Easy to build, for a larg
Probabilistic Randomly distributed events in time Realistic behaviour
Continuous Evenly distributed events in time (cellular

continuum)
Large-scale possible

Boolean Discrete dynamical system Small amount of exper
conditions)
Inferring gene regulatory networks from gene expression data re-
mains a challenging task due to the large number of potential interac-
tions, the relatively small number of available measurements and the
intrinsic noise often caused by the biological variance which reflects
the heterogeneity of the cell population. Despite success with auto-
mated model set-up and identification, manual curation of the inferred
network interactions can become time intensive and cumbersome due
to the amount of data investigated [106].

To achieve high prediction quality, kinetic parameters need to be ac-
curate and sensitive, i.e. parameter variance should be low and param-
eter sensitivity should be high to enable highly accurate model
prediction with the lowest amount of parameters necessary. Parameter
values may be extracted from experimental data, taken from public da-
tabases or already existing dynamic models and kinetics used.

Parameters of theGRNmodel can be deduced fromexperimental data
usually applying least-square error estimation. In essence, parameter es-
timation is an optimization problem which minimizes the weighted
squared distance between simulation and experimental observation to
achieve a parameter set for the least squares. Such approaches can be
combined with model discrimination methods [107]. In case the param-
eter estimation problem does not have a unique solution, the solution
space can be further constrained using thermodynamic laws or by
expanding the experimental basis taking into account other experimental
conditions to challenge the applicability of themodel [108]. Parameter es-
timation methods have been reviewed by Lillacci and Khammash [109].

For example, small-scale regulatory networks of E. coli [71, 87, 110]
and also large or genome-scale regulatory networks [98, 111–113]
have already been published. In general, applicants should pay attention
to the transferability of themodels because reference conditionsmay be
different compared to the current case which is likely to cause the im-
proper extrapolation of experimental findings.

Once a model has been identified, its validity needs to be checked
against new data sets that were not used for parameter identification.
When models can successfully simulate such new data, it is a strong in-
dication that the mechanistic principles and assumptions behind the
model are sound. If amodel fails to pass the validation step, themodeler
needs to revise the previous steps of their modeling process.

Recent examples of data-driven GRN models are given by Erickson
et al. [76], Palsson and Nielson [114–117] and others [98, 118–122].
For example, Klipp et al. [72, 123] describes bacterial growth transitions
considering the proteome level, the complex interactions of the yeast
cell cycle and the prediction of complex regulatory patterns following
the mindset of optimized resource allocation in yeasts, respectively.
The current developments of metabolism and gene expression (ME)
models are in line with the pioneering approach of Chassagnole et al.
[71] who published a comprehensive dynamicmodel of the central me-
tabolism in E. coli.

4. Simulating the Cellular Environment With Embedded Growing
Cells

Large-scale bioreactor conditions need to be calculated, aiming at a
spatial resolution of the mass, momentum and energy balances via
Disadvantages

ation Biological knowledge
Only phenomenological cell description

nd informative Difficult to handle mathematically
e number of cells Average cell description

Only for low number of molecules in cell
Detailed knowledge about mechanisms and biological
parameters

imental data (On/Off Fails to simulate distinct time series
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numerical simulation. In particular, the Navier-Stokes equations (NSE)
representing the conservation of momentum, the continuity equation
representing the conservation of mass and the energy equation
predicting the temperature in the fluid of a multiphase system have to
be considered. The Navier-Stokes equations basically describe the mo-
tion of viscous fluid flows where the fluids are considered as a contin-
uum rather than a number of colliding particles. Under the typical
mixing conditions given, the occurrence of turbulent zones is likely. Tur-
bulence is defined as a state consisting of structures such as eddies
which affect molecular diffusion, heat transfer and themixing behavior.

4.1. Modeling of Hydrodynamics and Mass Transfer

To describe hydrodynamic turbulence, multiple suggestions have
been published, often applying the modified Reynolds-averaged
Navier-Stokes equation (RANS) for multiphase systems [124]. Other al-
ternative approaches, such as Large Eddy Simulation (LES) and Direct
Numerical Simulation (DNS), offer increased accuracy, but require im-
mense computational capacity [125, 126] as displayed in Fig. 3.

The Reynolds-averaged Navier-Stokes equations are time-averaged
equations of motion for turbulent flows approximating different turbu-
lent scales through fluctuating quantities, an idea first proposed by
Reynolds [127]. RANS models offer the most economic approach for
simulating complex turbulent flows, because turbulences are consid-
eredwith different levels of complexity. Themost commonRANS turbu-
lence models are classified with respect to the number of additional
transport equations that need to be solved along with the RANS flow
equation. Besides, the often used two-equation models, such as the
standard k-ϵ, k-ω or Renormalization group k-ϵ models, one-equation
models (low-cost RANS models, e.g. the Spalart-Allmaras approach) or
even zero-equation models which estimate the turbulence viscosity
via the mean velocity and the length scale using an empirical formula
are available [128]. Details are given in the review of Rodi [129].

In addition to the simulation of turbulence, the proper modeling of
interactions between different phases (e.g. aqueous media, air bubbles
and solid cells) is a challenge. Table 3 provides an overview of three
common approaches.

Another way to predict hydrodynamics is the use of compartment
models (CM) [130]. Characteristically, the reactor is divided into a sub-
set of spatial parts, each assumed to be ideally mixed, see Fig. 4.

Compartment models are much less computationally demanding
than CFD simulations and moreover, allow easy implementation of
complex reaction schemes. Fluxes between the compartments are
RANS
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Fig. 3. Different approaches of turbulence models, regarding the model scope and fields of app
averaged Navier-Stokes equation, LES: Large Eddy Simulation, DNS: Direct Numerical Simulati
often defined by considering global quantities which are not represen-
tative of the flow complexity. Moreover, incoming concentrations are
instantly ideally mixed in the whole compartment and erratic changes
occur, which are not observed in reality [24].

Recently, the combination of CFD and CM modeling has been pre-
sented to couple the accuracy of hydrodynamic CFD simulations with
the simplicity and speed of compartmented modelings [24, 131–133].
As shown in Fig. 5, the approach can be applied for describing concen-
tration gradients in industrial-scale bioreactors, calculating the inter-
compartmental fluxes from CFD velocity fields. Characteristically, tur-
bulent liquid flows are computed by CFD first, followed by the imple-
mentation of net mean and turbulent flow rates in the compartment
approach. The simplicity of the approach even allows complex
genome-scale kinetic models to be used.

Likewise for gene regulatory models, fluid flow simulations must be
validated based on independent experimental data. However, experi-
mental observation of large-scale hydrodynamics is often lacking,
which limits the comparison with the predicted flow patterns.

4.2. Hydrodynamic Modeling Linked to GRN Models

The physiological state of microorganisms and its impact on growth
and product formation is the result of a complex interaction between
the cellular environment and the cells. Large-scale studies have shown
that homogeneous culture conditions are difficult to establish, never-
theless process engineering and bioreactor design may aim to create
the least heterogeneous impact possible [134].

So far, large-scale simulations almost entirely focused on the integra-
tion of metabolism kinetics. They basically mirror the instantaneous cel-
lular response on environmental changes [21, 143, 144]. However, cells
react in a multi-response, multi-layer fashion also comprising the on-
and offset of transcriptional regulation programs. Such responses are trig-
gered in poorly mixed zones and are propagated into well mixed zones
[14, 99]. Initiation andexecutionmaybe spatially disconnectedwhich dif-
fers fundamentally from the metabolic responses studied so far.

To investigate the consequences of environmental heterogeneities,
proper modeling frameworks should link local variations with cellular
and subcellular kinetics.

The tool of choice is CFD simulationwhich can link the interaction of
cellular activities with local environments [22, 135, 136].

Regarding the Euler-Euler approach, the liquid phase and themicro-
organisms are considered as a continuum. A continuum is a continuous
system which does not allow erratic changes [137]. However,
LES
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lication, as well as the corresponding computational capacity required. RANS: Reynolds-
on.



Table 3
Comparison of CM and CFD model approaches.

CFD

Euler-Euler Euler-Lagrange Compartmentation

Prediction purpose Reactor
heterogeneity

Cell-Environment
Interaction

Reactor design

Computational effort High High Low
Level of detail High High Low
Prediction accuracy of
flow regime

High High Low

Single cell tracking No Yes Yes
Integrable model size Coarse-grained

small-scale
Coarse-grained
small-scale

Genome-scale

Amount of particles High Low (b10%) High
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microorganisms are individual in their behavior and therefore the con-
tinuum description is a greatly simplified assumption. As a result, the
continuum approach leads to a lack of individual responses of the cells.

Conventional Euler-Euler approaches of two-phase flow scenarios
can be extended considering Population Balance Equations (PBEs)
with unstructured kinetic growth models [138–141]. PBEs are used to
model population adaptation dynamics considering nutrient gradients
inside large-scale bioreactors. In general, Euler-Euler approaches in
combination with PBEs are suited to model particle (cell) swarms that
follow flow patterns in the reactor [142].

However, an inherent limitation of PBEs is that the incorporation of a
detailed kinetic network leads to massive computational effort because
of high dimensional distribution functions that need to be solved.
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Fig. 4. Compartmentation of a PFR and STR. Each section is homogeneously mixed and represen
term due to bacterial growth and death, and convection and diffusion terms (in/out) which des
due to tangential mixing.
Additionally, no information on the level of single particles, such as
their lifelines and history can be obtained with this approach.

This limitation can be tackled by using the Euler-Lagrange approach,
which tracks the fate of each particle (cell) individually. The Lagrangian
implementation requires detailed metabolic models of the cell, e.g. to
describe the transport processes across the cellular membrane, via sub-
strate uptake rates and product excretion rates. For simplification,
massless cells are often used which are described via Monod-like
black-boxmodels. Such cells are assumed to travel along the flow fields
thereby experiencing substrate gradients.

Notably, the cellular environment is typically ‘frozen’, i.e. fundamental
cellular reactions are implemented in the Euler continuum and traveling
cells only respond to the givenhydrodynamic and concentration gradients
[143]. Pioneering studies have been performed by Lapin et al. [18] and
have been elaborated further in many follow-up studies [21, 143–145].

Such studies clearly outline that cells are subject to repetitive and
fast changes which in turn create heterogeneity within the population.

However, the computational effort for the spatial resolution of the
conservation equations is high, requiring smart compositions of the
computational grid and, for simplifying, assumptions to solve the nu-
merical problem. Recently, Chen et al. [146] used a rather simple CMap-
proach to simulate a syngas fermentation of Clostridium ljungdahlii. As a
result, they could show thatmulti-compartment approaches, even if not
widely used yet, give good results regarding the interaction of rather
complex cells with their environment. Thus, in situations where a sim-
ple model structure meets the requirements of the modeling purpose,
non-essential details should be avoided since they will unnecessarily
prolong the modeling process.
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cribe the environmental conditions. Other than the PFR, the STR needs finer discretization
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between the two cells, (5) Incorporation of genome-scale model. Common simulation frameworks: Step (1) & (2): ANSYS Fluent, Step (3), (4) & (5): Matlab.
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5. Conclusion and Perspectives

Understanding the function of cellular behavior under varying con-
ditions requires the development of computational approaches that in-
corporate gene regulatory models as well as environmental
perturbation simulations relying on reliable experimental evidence.

On the one hand, due to efficient large-scale simulations and stimu-
lus/response experiments, experimental findings have revealed a com-
plex organization of regulatory response in the cell and improved the
understanding of several regulatory processes. To further expand this
understanding, development towards single cell resolution techniques
has evolved. Although this is at the very beginning, this topic has signif-
icant potential for further developments regarding reactor design and
genetic engineering towards robust strains.

On the other hand, numerical gene regulatorymodels based on ODE
systems or modeling on a single molecular level with stochastic algo-
rithms in combination with hydrodynamic simulations provided a
broad and detailed insight into the regulatory mechanisms of microor-
ganisms inside large-scale bioreactors. But due to a lack of large-scale
experimental data, many regulation theories are still based to some ex-
tent on empirical observations. To date, hydrodynamic simulations as
well as kinetic cellularmodels are availablewith different scales of com-
plexity which favors the usability regarding the computational effort.

It could also be shown that a combination of already existing
methods is often advantageous, such as CFD-based compartment
models, providing the possibility of combining genome-scale models
with hydrodynamic simulations.
Based on the extended variety and good results of cellular and hy-
drodynamic modeling approaches and the availability of reliable exper-
imental data allowing detailed insight into cellular mechanisms, the
time is right to use and combine these methods to predict the large-
scale performance of microbial producers.

However, the above discussion has highlighted the need for
knowledge-based process scale-up by elucidating the putative contri-
butions of modeling. The contribution of numerical simulations also
warrants further investigation with in vivo experiments that incorpo-
rate large-scale conditions and single cell resolution. The development
towards automated high resolution processes and the detection of sin-
gle cell behavior is a promising trend. This review shows that the basis
to predict in silico large-scale performance of microbial producers is
given. As a result, robust strains, as well as reactor design parameters
and optimized cultivation conditions for more efficient processes can
be developed.
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