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Abstract

Triacylglycerol lipases (EC 3.1.1.3) catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates
rendering them especially suitable for many biotechnological applications. Most lipases used today originate from
mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here,
we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional
metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75uC and
screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified
encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase
families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70uC. The lipT gene encoded for a multimeric enzyme
with a half-life of 3 h at 70uC. LipS had an optimum temperature at 70uC and LipT at 75uC. Both enzymes catalyzed
hydrolysis of long-chain (C12 and C14) fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates.
LipS was highly specific for (R)-ibuprofen-phenyl ester with an enantiomeric excess (ee) of 99%. Furthermore, LipS was able
to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70uC with rates similar to those of the lipase CalB from Candida
antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis
activities. Its X-ray structure was solved with a resolution of 1.99 Å revealing an unusually compact lid structure.
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Introduction

Lipolytic enzymes including lipases (EC 3.1.1.3) and carbox-

ylesterases (EC 3.1.1.1) are important biocatalysts employed for

a large number of biotechnological applications [1–3]. Many

lipases exhibit high chemo-, regio- and enantioselectivity and are

tolerant against organic solvents which makes them even more

attractive for organic synthesis reactions [4,5].

A variety of biotechnologically interesting reactions require

elevated temperatures and thermostable rather than mesophilc

enzymes [6–8]. While the general prediction of thermostabilty of

an enzyme entirely based on the deduced amino acid sequence of

a protein is perhaps not reliable [9], several traits appear to be

associated with thermostable proteins. Mainly disulfide bonds and

intrahelical salt bridges are more frequently observed in thermo-

stable enzymes. Furthermore, the overall composition of amino

acids appears to be of importance for the thermostability and

especially polar residues that form additional hydrogen bonds

appear to be of importance. Further the use of charged residues to

form additional ionic interactions is yet another key trait of

thermostable enzymes [10,11]. Recently it was also suggested that

the frequency of Asn-Glu could be a factor to distinguish between

mesophilic and thermophilic proteins [12]. Esterification at higher

temperatures offers the advantages that the reactions can take

place at higher rates and the use of organic solvents can be

avoided. The respective biocatalysts thus need to be thermo-

tolerant showing high activity at elevated temperatures above

70uC. Ideal resources for such enzymes are microbes living under
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extreme conditions [13,14]. While in the last decade many

thermostable enzymes - including a significant number of esterases

- have been uncovered, the number of truly thermophilic and

bacterial lipases is still limited with less than ten thermostable

bacterial lipases being characterized to date. Among them is

a remarkably stable enzyme from Thermoanaerobacter thermohydro-

sulfuricus (LipTth) and a lipase from Caldanaerobacter subterraneus

(LipCst) [15]. Further, several thermoactive lipases have been

reported in the genus Geobacillus [16–18]. Although these enzymes

are active at high temperatures, they appear to be less stable over

time when incubated at elevated temperatures. Furthermore,

thermostable lipases have been reported in different Thermus

isolates [19,20] and were recently expressed in thermophilic yeasts

[21,22]. A thermostable esterase from Thermus scotoductus has been

reported that was partially biochemically characterized [23].

Finally, two thermostable lipases have been reported from

Thermosyntropha lipolytica, an anaerobic, thermophilic, alkali-tolerant

bacterium that grows syntrophically with methanogens on lipids

[24]. Both enzymes from this microbe were active at temperatures

of .90uC and showed remarkable half-life times at 100uC.

Furthermore, a number of moderately thermostable lipases that

originated from fungi have been described and some of them have

been analyzed or optimized through evolutive strategies [25–28].

Of those, the most frequently used and best characterized

moderately thermostable lipase is CalB, which originates from

the mesophilic yeast Candida antarctica [25]. By applying several

rounds of protein engineering methods, the thermal stability of

CalB was improved greatly [29–31]. While these enzymes were all

derived from cultivable bacteria or fungi, surprisingly, no truly

thermostable lipases acting on long-chain pNP-esters with

temperature optima of 70uC or higher have been reported using

a metagenome-based approach since the first discovery of lipolytic

enzymes from metagenomes over ten years ago [32,33].

Metagenome-based technologies for the identification of novel

biocatalysts have been applied very successfully within the last

decade and have resulted in the identification of numerous novel

biocatalysts [34,35]. However, the basic steps of accessing non-

cultivated microorganisms have been outlined earlier and include

the isolation of environmental DNAs, cloning into small or large

insert vectors and amplification of these libraries in a suitable host

[36,37]. The libraries are then screened using a wide array of

different methods. With respect to the screening and detection of

lipases and esterases in metagenomes [38], more than 100

metagenomic enzymes have been reported and in part character-

ized [33]. Some of these enzymes reveal remarkable traits that are

potentially useful for biotechnological applications and have

broadened our knowledge on the diversity of lipases. Perhaps

the first true lipase reported from a metagenome source was

described by Henne and colleagues [32]. Unfortunately, only

a fraction of the metagenome-derived lipolytic enzymes has been

characterized in more detail concerning their structural features

[39–43].

Here, we have used metagenome-based technologies to identify

and characterize novel bacterial lipolytic enzymes which catalyze

both hydrolysis and esterification reactions at temperatures above

70uC. Metagenomic libraries from enriched soil and water samples

were constructed and screening revealed two novel lipases

designated LipS and LipT which showed a high temperature

optimum and also a high stability against thermal denaturation.

These lipases were biochemically characterized and the X-ray

structure of LipS was solved at a resolution of 1.99 Å in its apo

form and together with spermidine. Thus, LipS belongs to the first

metagenomic lipases that have been analyzed by crystallographic

methods so far.

Materials and Methods

Environmental Samples and Enrichment Cultures
Ten soil and water samples were collected from different sites at

the Botanical Garden (Klein Flottbek, Hamburg, Germany,

53u33944.569N, 9u51940.119E). The sample sites included topsoil

that consisted mainly of sand as well as humus-rich soil. Water

samples were taken from sweet water brooks and ponds.

Approximately 0.5 g of each soil sample and 0.5 ml of each

liquid sample were then mixed in a 100 ml Erlenmeyer flask

containing 50 ml of mineral salt medium (MSM) and incubated

overnight at room-temperature and 150 rpm in order to detach

bacterial cells from soil and plant particles. After sedimentation of

these particles by gravity, the samples were used to inoculate

mineral salt medium (MSM) in a 2 l glass bottle composed of 0.8 l

H2O, 0.1 l solution 1 and 0.1 l solution 2 [solution 1 (1 l, 106):

70 g Na2HPO462 H2O, 20 g KH2PO4. Solution 2 (1 l, 106):

10 g (NH4)2SO4, 2 g MgCl266 H2O, 1 g Ca(NO3)264 H2O].

The medium was supplemented with pyruvate (0.1% w/v), olive

oil (1% v/v), vitamins [100 ml, 10006: 1 mg biotin, 10 mg

nicotinic acid, 10 mg thiamin-HCl (vitamin B1), 1 mg p-

aminobenzoic acid, 10 mg Ca-D-(+)-pantothenic acid, 10 mg

vitamin B6 hydrochloride, 10 mg vitamin B12, 10 mg riboflavin,

1 mg folic acid] and trace elements [44]. The enrichment culture

was maintained at 65uC and aerated with 120 rpm on a magnetic

stirrer.

For the second enrichment, water samples were taken from

a heating system in the Biocenter Klein Flottbek (Hamburg,

Germany). The temperature of the water at the time of sampling

was above 50uC. The medium [modified medium D [45]]

contained tryptone and yeast extract (0.1% w/v each) as well as

trace elements [46]. This Thermus-enrichment culture was in-

oculated with 20% of water sample (v/v) and incubated at 75uC in

a 2 l glass bottle on a magnetic stirrer with 200 rpm for several

weeks. Both enrichment media were refilled with autoclaved

H2Odest on a regular basis to maintain the initial volume.

No specific permits were required for the described field studies

as the Botanical Garden and the Biocenter Klein Flottbek are non-

protected areas concerning soil and water samples and owned by

the University of Hamburg. The samples did not involve

endangered or protected species.

E. coli Culture Conditions
E. coli strains were grown aerobically at 37uC on Luria-Bertani

(LB) medium supplemented with appropriate antibiotics [47]. E.

coli clones and constructs are listed in TABLE S1.

DNA Isolation, 16S rRNA Analysis and Library
Construction

After three weeks of incubation, cells from the enrichment

cultures were harvested by centrifugation. Genomic DNA was

isolated by using a phenol/chloroform method with TE-buffer

containing sucrose [10 mM Tris-HCl, 1 mM EDTA and 20%

sucrose (w/v)], lysozyme solution (1 mg/ml in TE-buffer) and

proteinase K solution [1 mg/ml, 20% SDS (w/v), 1 mg/ml

RNase].

For phylogenetic characterization of the enrichments, bacterial

16S rRNA genes were amplified using the standard primers 616V

(59-AGAGTTTGATYMTGGCTCAG-39) and 1492R (5-CGGY-

TACCTTGTTACGAC-39). The amplified genes were ligated

into pDrive cloning vector and transformed in competent E. coli

DH5a cells by heat shock. 16S rDNA was sequenced with

automated sequencing ABI377 technology following the manu-

facturer’s instructions.

Thermostable Lipases LipS & LipT from Metagenomes
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Libraries were constructed with the cosmid vector pSuperCos

which carries ampicillin and neomycin resistance genes and phage

packaging mixes which were both supplied within the GigapackH
III Gold Packaging Extract kit (Stratagene, La Jolla, CA, USA).

Construction was carried out according to the manufacturers

instructions. Genomic DNA fragments with a size of 20–40 kb

obtained after partial Bsp143I digestion were ligated into the

BamHI restriction site of the cosmid vector before phage-infection

of E. coli Epi100 cells was performed. Cosmid clones were grown

on LB agar supplemented with 100 mg/ml ampicillin.

Screening of Lipolytic Clones
E. coli clones were tested for lipolytic activity by transferring

them on LB agar plates containing tributyrin (TBT, 1% vol/vol) as

indicator substrate [48]. In order to detect active clones, the

cosmid clones were grown at 37uC overnight; then a further

incubation for 1–3 days at 56uC followed. The second incubation

step was introduced to slowly lyse the E. coli cells and to release

those enzymes that are active on TBT at elevated temperatures

and produce a clear halo. In a microtiter plate scale, clones were

grown in a 96 deep-well plate containing 1.2 ml of LB with

ampicillin. After incubation for 16 to 24 h at 37uC and 250 rpm,

cells were harvested by centrifugation and the supernatant was

discarded. Cells were lysed by 1 h incubation with 125 ml/well

0.1 M potassium phosphate buffer (PB) pH 8.0 containing

lysozyme (10 mg/ml) at 37uC. Cell debris was collected by

centrifugation for 10 min at 3,600 rpm. In a 96 well microtiter

plate, 10 ml of the crude cell extract were incubated with 190 ml of

PB (0.1 M, pH 8.0) that contained either 1 mM 4-nitrophenyl

(pNP) butyrate or dodecanoate. The samples were incubated for

30 min at 56uC and subsequently, the extinction of 4-nitrophenol

released from the substrate was measured spectrophotometrically

in a microtiter plate reader (Benchmark, Bio-Rad, Hercules, CA,

USA) at 405 nm against an enzyme free blank.

Cosmid DNA was isolated from the positive clones obtained in

the initial screening, retransformed in E. coli DH5a and the

resulting clones examined with the same type of assay for esterase/

lipase activity in order to avoid false positive clones.

Subcloning and in vitro Transposon Mutagenesis
For the identification of ORFs encoding lipolytic activity, the

positive cosmid clones were subcloned with EcoRI, HindIII or SacI,

ligated into pTZ19R, which carries a chloramphenicol resistance

gene, and transformed into E. coli DH5a. The subclones were

streaked onto LB agar plates with TBT and screened for

hydrolytic activity. On positive subclones, in vitro transposon

mutagenesis using the EZ::TNTM ,KAN-2. transposon kit

(Epicentre, Madison, Wisconsin, USA) was carried out following

the manufacturer’s instructions. Clones harboring a transposon in

the responsible gene were screened negative on TBT containing

agar plates. With the inserted priming sites of the transposon, the

corresponding gene was sequenced by automated sequencing

ABI377 technology following the manufacturer’s instructions.

Alternatively, the inserts of the subclones were sequenced with the

vector specific primers M13 for (5-GTAAAACGACGGCCAGT-

39) and M13 rev (59-CAGGAAACAGCTATGACC-39).

Cloning and Expression of lipS and lipT
Gene sequences were amplified from cosmid DNAs by PCR in

35 cycles with the primer pairs pCos9D12_for (59-CATAT-

GAGCCGGAAAAGCAGG-39) and pCos9D12_rev (59-

AAGCTTGCTGTGCTTCCGGATGAAC-39) for the amplifica-

tion of lipS and pCos6B1_for (59-CATATGCGGCGGTTAC-

TAGCCTTGC-39) and pCos6B1_rev (59-AAGCTTCCG-

CACCCTAGGCGCCGCC TTC-39) for lipT. Primers were

designed to introduce a 59-NdeI and a 39-HindIII restriction site

into the cloned fragments. The PCR fragments were ligated into

pDrive cloning vector (Qiagen, Hilden, Germany), cut with NdeI

and HindIII and ligated into pET21a (Novagen, Merck, Darm-

stadt, Germany), which has an ampicillin resistance gene and

a His-tag coding sequence for the C-terminus of the corresponding

protein. Plasmids containing lipS and lipT gene sequences were

designated lipS::pET21a and lipT::pET21a, respectively. To

confirm that the correct genes had been amplified from the

original cosmid DNA, the PCR fragments cloned into pET21a

were sequenced. Competent E. coli BL21 (DE3) cells were

transformed by heat shock with lipS::pET21a and lipT::pET21a

for the overproduction of the corresponding proteins. Cultures

were grown at 17uC and 250 rpm for 6–8 h until an optical

density at 600 nm of 0.8 was reached. The production of the

recombinant proteins was then induced by the addition of 1 mM

isopropyl-b-D-thiogalactopyranoside (IPTG). After 16 h, the cells

were harvested by centrifugation and disrupted by French pressure

cell and ultrasonication in order to purify LipS and LipT from

soluble fractions. Cell extracts were incubated with Ni-NTA

Agarose (Qiagen, Hilden, Germany), loaded on columns and

affinity chromatography was carried out according to the

manufacturers protocol. Protein containing elution fractions were

then dialyzed overnight against 0.1 M PB (pH 8.0). The proteins

were analyzed by SDS polyacrylamide gel electrophoresis using

12 or 15% (w/v) gels and Western-immunoblotting using 6-His-

specific antibodies.

Catalytic Activity Toward 4-nitrophenyl (pNP) Substrates
Enzyme activity studies were performed by incubating the

enzymes with 1 mM pNP-substrate in 0.1 M PB (pH 8.0) at assay

temperatures of 70uC (LipS) or 75uC (LipT), unless otherwise

indicated. The reaction was measured against an enzyme-free

blank to subtract auto-hydrolysis by spectro-photometrical quan-

tification of the released 4-nitrophenol at 405 nm [molar

extinction coefficient e (0.1 M PB pH 8.0) = 19,454 M21 cm21,

e (0.1 M PB pH 7.0) = 10,400 M21 cm21]. One unit is defined as

the amount of enzyme that catalyzes the formation of 1 mmol 4-

nitrophenol per minute. Enzyme activity was tested against

different pNP-acyl esters [butyrate (C4), hexanoate, octanoate,

decanoate, dodecanoate, myristate (C14), palmitate (C16) and

stearate (C18), Sigma]. Above 70uC, even long-chained pNP esters

(C16–C18) were sufficiently soluble, so that no detergents were

added. The temperature optima of LipS and LipT were de-

termined with pNP-dodecanoate as substrate at temperatures

ranging from 20 to 90uC for 10 min. To study the thermal stability

of the enzymes, LipS and LipT were incubated at 70 and 90uC,

respectively, for up to 72 hours and their residual activity was

measured using pNP-dodecanoate (1 mM final concentration) by

incubation for 20 min at 70uC for LipS and 75uC for LipT.

The pH optimum of LipS and LipT was investigated with

buffers of different pH values, that were adjusted at 70uC [pH 5–

5.6, citrate buffer (0.05 M); pH 5.6–8, PB (0.1 M); pH 8–9, Tris-

HCl (0.1 M); pH 9–10.6, glycine/NaOH (0.1 M)]. Enzyme

activity was measured with pNP-decanoate as substrate.

LipS and LipT were tested for their stability and activity in the

presence of metal ions, inhibitors, detergents and solvents. After

1 h incubation with these substances at room temperature,

residual enzyme activities were determined at 70uC or 75uC and

at pH 8.0 in 0.1 M PB by using pNP-decanoate or -dodecanoate

as substrates.

As metal ions, Ca2+, Co2+, Cu2+, Fe3+, Mg2+, Mn2+, Rb2+ and

Zn2+ were used with a concentration of 1 or 10 mM in 0.1 M PB.

Thermostable Lipases LipS & LipT from Metagenomes
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EDTA (ethylenediaminetetraacetic acid), DTT (dithiothreitol) and

PMSF (phenylmethyl-sulfonyl fluoride) were used as enzyme

inhibitors with 1 or 10 mM concentration in PB. In order to

examine the stability against detergents, SDS (sodium dodecyl

sulfate), Triton X-100 and Tween 80 were applied with 1 or 5%

concentration (w/v, v/v) in 0.1 M PB pH 8.0.

The stability of LipS and LipT in various organic solvents was

studied using dimethyl sulfoxide (DMSO), isopropanol, methanol,

dimethylformamide (DMF), acetone, acetonitrile and ethanol at

final concentrations of 10% or 30% (v/v) in 0.1 M PB pH 8.0.

The substrate range of the two enzymes was tested with the

following achiral or racemic pNP-esters at a final concentration of

0.5 mM in 0.1 M PB pH 8.0:2-phenylpropanoate, 3-phenylbu-

tanoate, cyclohexanoate, 2-(3-benzoylphenyl) propanoate, 2-

naphthoate, 1-naphthoate, adamantanoate and 2-(4-isobutylphe-

nyl)-N-propanamide ester. Activity was measured at 405 nm after

10, 20 and 30 minutes incubation at 70uC.

Activity on chiral pNP-esters was analyzed with (S)-/(R)-2-

methyldecanoic acid ester [49,50], (S)-/rac-/(R)-2,3-dihydro-1H-

indene-1-carboxylate [‘‘Indancarboxylic acid ester’’, [51]], (S)-/

rac-ibuprofen-ester and (S)-/rac-/(R)-naproxen-ester [52,53].

Enzyme activity on these pNP-esters with 0.33 mM final

concentration was measured at 410 nm after incubation for up

to 40 min at 60 and 65uC in 0.05 M Soerensen buffer pH 8.0

containing 0.1% (w/v) gum arabic, 5 mM sodium deoxycholate

and 10% DMSO. Controls concerning these additives did not

reveal a significant effect on enzyme activity.

HPLC-MS Analysis of LipS on pNP and Phenyl Esters of
Ibuprofen

To determine enantioselectivity referring to the pNP and the

phenyl ester of ibuprofen, kinetic resolution has been carried out in

analytical scale: 17.32 ml potassium buffer (0.1 mM, pH 8.0) were

mixed with 2 ml DMSO and 0.66 ml of a substrate stock solution

(10 mM in DMSO). 652 mg LipS were added and the reaction was

shaken at 60uC for 30 min. The reaction was stopped by adding

8 ml 2 M HCl and followed by immediate extraction with methyl

tert-butyl ether (MTBE, 2620 ml). The solvent was removed under

reduced pressure. The extracted ibuprofen was converted to the

corresponding methyl ester by adding a 0.5 M diazomethane

solution in diethyl ether. The solvent was removed under reduced

pressure. The ee was determined by HPLC (Dionex) using a chiral

stationary phase: Chiralpak IA (Daicel), 99.8:0.2 (n-heptane:iso-

propanol), 0.5 ml/min, 225 nm, tR(S) = 10.23 min,

tR(R) = 11.17 min. The ee of the phenyl ester was determined

using the same conditions as the methyl ester [tR(S) = 16.32 min,

tR(R) = 18.07 min]. Because the enantiomers of the pNP ester

could not be separated by chiral HPLC, the ee was determined by

measuring the g factor (dissymmetry factor) with achiral HPLC

with CD detector [54–56]. Column: Hyperclone ODS C18,

conditions: 90:10, CH3CN:H2O, 0.5 ml/min, 220 nm, tR(ibupro-

fen) = 2.7 min, tR(pNP ester) = 4.5 min. Calculation of the en-

antioselectivity (E) value was performed by the method of Faber et

al. [57].

Catalytic Activity Measured using Titration Assays
Tributyrin, triolein and polyglycerol-3-laurate were chosen as

substrates for LipS and LipT to study activity on triglycerides using

an automated titrator (Titrando 842 with Dosino 800, Metrohm,

Filderstadt, Germany) and the pH-stat method. The substrate

concentrations of the triglycerides ranged from 5 to 50 mM and of

polyglycerol-3-laurate from 0.5 to 7.5% (w/v) in 2 mM Tris-HCl

buffer pH 7.0. The substrate was emulsified with an automated

stirrer (stirrer 802, Metrohm, Filderstadt, Germany) in the

reaction vessel. The reaction was performed at 60uC, below the

optimal temperature of the enzymes, in order to avoid auto-

hydrolysis of the substrates. In order to have a control rate and for

determination of autohydrolsis, the pH of the substrate solution

was measured at 60uC for 5 min before the enzyme was added.

The consumption rate of 20 mM KOH which was used to keep

the pH at 7.0 indicated enzyme activity and was used to calculate

the specific activity expressed in units per milligram of enzyme (U/

mg). One unit was the amount that produced 1 mmol of fatty acid

per minute under the specified assay conditions.

Esterification (Propyl Laurate) Assay
The propyl laurate assay was applied with 1-propanol and lauric

acid as well as 1-tetradecanol and myristic acid as substrates for

LipS. Both reactants were incubated in equimolar conditions

(20 mmol) at 70uC together with 15 mg of lyophilized enzyme in

a closed bottle under slow rotation. After 0, 24 and 48 h, the acid

values of the reaction mixtures were determined by titration of

a 0.5 g sample solved in 20 ml of toluene against 0.5 M

KOHethanol with phenolphthalein as pH indicator. The resulting

acid values were used for the calculation of propyl laurate/

tetradecyl myristate units per mg of enzyme. One unit was defined

as 1 mmol of propyl laurate or tetradecyl myristate formed per

minute by the enzyme under above mentioned assay conditions.

Enzyme-catalyzed Kinetic Resolution of Four Acetates of
Secondary Alcohols

Three racemic acetates, i. e. 1-phenyl-1-propyl acetate, 1-

phenyl-2-butyl acetate and 1-phenyl-2-pentyl acetate, were

synthesized from the corresponding racemic alcohols as already

described [58,59] except for 1-phenyl-1-ethyl acetate, which was

commercially available. For the kinetic resolution, 10 mM acetate

were added to a 1 ml solution containing 0.25 mg pure enzyme

dissolved in PB (0.1 M, pH 7.0) and were mixed in a thermoshaker

(Eppendorf, Hamburg, Germany) with 13,000 rpm at 70uC.

Samples (100 ml) were taken at different time intervals and

extracted twice with 100 ml dichloromethane. The combined

organic layers were dried over anhydrous sodium sulfate and the

organic solvent was removed in a nitrogen stream. The

enantiomeric excess (%ee) of substrate and product were de-

termined by gas chromatography as described earlier [58,59] [GC,

Shimadzu GC-14A gas chromatograph, column: heptakis(2,6-O-

methyl-3-O-pentyl)-b-cyclodextrin (Machery-Nagel, Düren, Ger-

many); carrier gas H2; flame ionization detector]. The retention

times were as follows: 1-phenyl-1-propyl acetate tR(S) = 5.7 min,

tR(R) = 6.9 min; 1-phenyl-1-propanol tR(S) = 11.8 min,

tR(R) = 12.7 min; 1-phenyl-1-ethyl acetate tR(S) = 3.9 min,

tR(R) = 5.3 min; 1-phenyl-1-ethanol tR(S) = 6.2 min,

tR(R) = 6.8 min; 1-phenyl-2-butyl acetate tR(S) = 17.5 min,

tR(R) = 19.3 min; 1-phenyl-2-butanol tR(S) = 21.9 min,

tR(R) = 23.6 min; 1-phenyl-2-pentyl acetate tR(S) = 31.5 min,

tR(R) = 31.9 min; 1-phenyl-2-pentanol tR(S) = 37.5 min,

tR(R) = 37.5 min. E-value and conversion were calculated from

the ee of substrate and product according to Chen et al. [60].

Classification of LipS and LipT
Amino acid sequences of the eight major bacterial lipase/

esterase families [61] were obtained from the NCBI GenBank

database (see supplementary TABLE S2). Independent alignments

for all families were constructed using T-coffee [62]. All

metagenome derived lipase/esterase sequences were sorted into

the eight families based on alignment scores (see supplementary

TABLE S3) and visual inspection of the respective alignments.

Thermostable Lipases LipS & LipT from Metagenomes

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e47665



Sequences homologous to LipS and LipT were retrieved from the

NCBI GenBank database. The LipS and LipT groups of

sequences as well as 11 other metagenome sequences could not

unequivocally be assigned to any of the known lipase families.

Therefore, all of those sequences were compared to each other

and when feasible sorted into a subgroup. In conclusion, those

sequences constitute the LipS and LipT family as well as five

additional unknown metagenome lipase/esterase sequence fami-

lies (UF1-5).

Due to low sequence conservation between the different

bacterial lipase/esterase sequence families, the independently

constructed alignments had to be combined into a final dataset

using Genedoc [63]. Tree reconstruction was carried out using the

RaxML webserver [http://phylobench.vital-it.ch/raxml-bb/,

[64]]. Tree viewing and editing was carried out using ATV [65]

or TreeIllustrator v0.52 [66].

Crystallographic Analyses
LipS was crystallized and crystallographic data sets were

collected and reduced as described previously [67]. The structure

of wild-type LipS (LipS-WT) was solved by molecular replacement

(MR) using the structure of carboxylesterase Est30 from Geobacillus

stearothermophilus (PDB code 1TQH) as a model. The search was

carried out with Molrep [68], which identified 4 molecules per

asymmetric unit (a.u.), as expected from a Matthews parameter of

2.6 [69]. Iterative cycles of manual rebuilding in COOT [70] with

crystallographic refinement in Refmac5 [71] converged at a final

model at 1.99 Å resolution of good quality. The last rounds of

refinement were done without non-crystallographic symmetry

(NCS) restraints and with individual, isotropic B-factors.

A second construct of LipS with His6-tag at the C-terminus

(LipS-H6) crystallized in SG P42212 and diffracted X-ray radiation

to 2.80 Å resolution. Those data were phased by MR using the

refined structure of LipS-WT solved in SG P4. Crystals in this SG

contained only 2 molecules per a.u. Refinement and quality

statistics of both models are given in TABLE S4. The PyMOL

software was used for structural alignment, analysis, secondary

structure assignment and visualization of protein structures [72].

Data Submission to Public Databases
The DNA sequences of lipT and lipS were deposited at

GenBank under the accession numbers JQ028671 and

JQ028672, respectively. The crystallographic data were submitted

with the PDB database under the accession codes 4FBL and

4FBM.

Results

Enrichment Strategies and Construction of Metagenomic
Libraries

From two different habitats, altogether 11 samples were taken

and used to inoculate two different enrichment cultures. Bacteria

from a water sample of a heating water system were grown at

75uC on medium D, while bacteria from the ten different soil and

water samples of the Botanical Garden were enriched at 65uC on

MSM supplemented with pyruvate and olive oil. After one and

two weeks, respectively, visible turbidity appeared in the culture

media. After three weeks of incubation, the cell density was high

enough so that cells were harvested and sufficient genomic DNA

could be isolated for library construction. The growth of the

organisms appeared to be rather slow, probably because of the

relatively low cell density of the inoculum that was used. The

microbial communities were characterized on a phylogenetic level

by amplification and sequencing of 16S rRNA genes. The gene

sequences were aligned with nucleotide sequences deposited in the

NCBI database via BLAST-search [http://blast.ncbi.nlm.nih.

gov/Blast.cgi, [73]]. An examination of five highly similar 16S

rRNA sequences from the enrichment of heating water samples

showed, that it mostly contained bacteria closely related to Thermus

scotoductus [NCBI acc. no. EU330195.1; max. identity 97%, Expect

(E)-value 0.0]. Twenty analyzed sequences revealed that the

enrichment of soil and water samples from the Botanical Garden

contained 70% bacteria belonging to the Symbiobacterium group

with the highest similarity to Symbiobacterium thermophilum IAM

14863 (NCBI acc. no. NC_006177; 99% max. identity, E-value

0.0). The phylum Bacillales was represented by Geobacillus-species

and uncultivated Bacilli to 25% (e. g. NCBI acc. no. AB548612.1;

Geobacillus debilis gene for 16S rRNA, partial sequence, 99% max.

identity, E-value 0.0), whereas 5% of the community comprised

members of Clostridia (e. g. NCBI acc. no. FN667168.1;

uncultured compost bacterium partial 16S rRNA gene, clone

FS1689, 95% max. identity, E-value 0.0).

With the extracted DNA, large insert metagenomic libraries

were constructed by using the cosmid vector pSuperCos and E. coli

Epi100 as heterologous host. The library of the heating water

enrichment culture comprised 576 clones, of which 28 analyzed

clones had an average insert rate of 70%. The library of the soil

and water samples enrichment consisted of 6,500 clones. The

analysis of 87 clones showed an insert rate of 96%. Both libraries

had an average insert size of 27.5 kb.

Identification of the Lipolytic Genes lipS and lipT from
Metagenomic DNAs

Screening of both libraries using a microtiter plate assay and

pNP-dodecanoate as substrate identified four clones from the

heating water enrichment library and six putative clones from the

soil and water enrichment library that showed significant activities

in these tests. The two most promising clones, one from each

library, were characterized in detail. The positive clone from the

heating water enrichment library was designated pCos6B1 and

encoded a 27 kb insert. The clone from the soil and water samples

enrichment library was designated pCos9D12 and encoded for

a 26.5 kb insert. The cosmid clones pCos6B1 and pCos9D12 were

subcloned in pTZ19R plasmids and transformed into E. coli

DH5a. Sequencing of these subclones in combination with activity

screening was pursued to identify the corresponding lipolytic

genes. For pCos6B1, one subclone showed activity on TBT agar

plates after incubation at 56uC and subsequently, a transposon

mutagenesis was carried out and resulted in the identification of

the corresponding ORF. The corresponding lipase gene on

pCos9D12 was identified by sequencing in combination with

primer walking. The ORFs linked to the lipolytic activities were

designated lipS and lipT for the clones pCos9D12 and pCos6B1,

respectively. The genes lipS and lipT encode putative proteins that

consist of 280 and 331 amino acids, respectively. The translated

gene sequences of lipS and lipT were compared with protein

sequences deposited in the NCBI database by a BLASTX-search

[73]. The BLASTX-search revealed their high similarities with

genes annotated as putative esterases in known thermophilic

microbes. The amino acid sequence of LipS shows 100% identity

to a predicted Symbiobacterium thermophilum esterase (YP_075874)

and LipT shows 97% identity to a predicted esterase from Thermus

scotoductus (YP_004201971.1). LipT only showed low amino acid

similarity to a previously described esterase EstTs1 of Thermus

scotoductus [GenBank acc. no. ACS36170; 27.5% similarity

according to a Needle (EMBOSS) alignment (http://www.ebi.ac.

uk/Tools/psa/) [23]]. A common GXSXG motif that occurs in

carboxylesterases and lipases was found in both enzymes. In LipS,
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the catalytic serine is embedded in a GLSMG motif, while LipT

contained a GCSAG motif. Furthermore, sequence analyses with

SignalP 4.0 [http://www.cbs.dtu.dk/services/SignalP/[74]] in-

dicated that lipT presumably encodes a secretion signal sequence

with a cleavage site between Ala21 and Val22. For lipS, only a very

low probability for a possible signal sequence was found with

a hypothetical cleavage site between Ala17 and Gln18.

Overexpression, Purification and Molecular Weight of
LipS and LipT

Both genes lipS and lipT were cloned and overexpressed in order

to verify the hydrolytic function of the corresponding enzymes and

allow a biochemical characterization. Therefore, the genes were

ligated into pET21a and transformed into E. coli BL21 (DE3). The

recombinant enzymes contained a C-terminal His6-tag and were

purified by Ni-NTA affinity chromatography under native

conditions. LipS could be purified with 15.0 mg/g of cell pellet

(wet weight). The maximum yield of LipT was 1.6 mg/g of pellet

(data not shown). Thus, the protein yield after purification was

overall better for LipS than for LipT (supplementary TABLE S5).

The molecular weights of the proteins were verified by SDS-

PAGE analysis under denaturing conditions. After Coomassie-

staining, LipS was visible as a single band with a size of 31.7 kDa

including the His6-tag (supplementary FIGURE S1A). LipT

appeared to be at least a dimer, revealing a molecular weight of

at least 78 kDa after incomplete denaturation (supplementary

FIGURE S1B).However, a monomeric form of approx. 36 kDa

corresponding with the calculated molecular weight was observed

by a Western blot analysis using His6-tag specific antibodies (data

not shown) and after extended heat denaturation of 30 min at

70uC (supplementary FIGURE S1A).

Activity of LipS and LipT on Commercial pNP-ester
Compounds

To characterize both enzymes, a substrate spectrum was

recorded with pNP-esters which had an acyl chain length of 4 to

18 C-atoms. The highest activities were observed with pNP-

octanoate in case of LipS and with pNP-decanoate in case of LipT

(FIGURE 1). Both enzymes were most active between acyl-chain

lengths of 6 to 14 C (25–58% of the maximum activity).

Significantly lower activities were measured with short (C4) and

long (C16 and C18) acyl chain lengths (FIGURE 1). Kinetic

studies with the preferred substrates pNP-octanoate (LipS) and

pNP-decanoate (LipT) disclosed significant differences between

both enzymes (TABLE 1). LipS revealed a 20-fold higher specific

activity compared to LipT and both enzymes differed in their Km

and kcat values significantly.

Temperature Optima, Thermostability and pH
Dependent Activities of Recombinant LipS and LipT

Using 1 mM pNP-dodecanoate as substrate, the recombinant

enzymes LipS and LipT revealed temperature optima of 70uC and

75uC, respectively. Interestingly, LipS was only weakly active at

temperatures lower than 40uC, whereas LipT showed 50% of its

activity at 40uC. Intriguingly, at 90uC, LipT still retained 91% of

its maximum activity, LipS, however, only 23.5% (FIGURE 2A).

To assess thermostability, both enzymes were incubated at

elevated temperatures over extended time periods. After 48 h of

incubation at 70uC, LipS revealed 50% residual activity; after

72 h, 13.6% of the activity could be measured (FIGURE 2B);

incubated at 90uC, LipS still possessed 52% of its initial activity

after 4 h of incubation. However, after 24 h, less than 1% of

residual activity was measured at 90uC. LipT showed 43%

residual activity after 24 h at 70uC and 23% after 52 h

(FIGURE 2B). Incubation at 90uC for 24 h resulted in a residual

activity of 22%. Altogether, these data suggest that both enzymes

were thermostable.

LipS and LipT were most active at pH 8.0 when tested in

0.1 M PB and with 1 mM pNP-decanoate as substrate at their

temperature optima. Below pH 8.0, activity was rapidly de-

creasing and at pH 6.0, only 11.4% (LipS) and 6.8% (LipT)

residual activity was observed. Above pH 9.0, no significant

activities were measured (data not shown).

Activity of LipS and LipT in the Presence of Metal Ions,
Inhibitors, Detergents and Solvents

To characterize the effects of metal ions, different ions (Ca2+,

Co2+, Cu2+, Fe3+, Mg2+, Mn2+, Rb2+ and Zn2+) were added to the

assays at 1 and 10 mM final concentrations. Activity was

measured with pNP-dodecanoate and compared with a metal

ion-free control. The activity of LipS as well as LipTs activity

decreased in the presence of most of these ions and no significantly

stimulating effects indicating a cofactor-dependent activation were

observed (supplementary FIGURE S2).

Furthermore, EDTA, DTT and PMSF were applied in final

concentrations of 1 and 10 mM (FIGURE S3). EDTA decreased

LipSs activities at 1 mM to 74.1% and at 10 mM to 46.0%

residual activity. The effects on LipT were less pronounced as it

still revealed 98.0% residual activity at 1 mM EDTA and 65.7%

at 10 mM EDTA. Incubation with 1 and 10 mM DTT resulted in

a residual activity of LipS of 76.3% and 71.5%, respectively. LipT

was not affected by the presence of 1 mM DTT and 85.4% of its

activity remained in the presence of 10 mM DTT. PMSF did not

show an effect on the activity of LipS in both concentrations of the

inhibitor. LipT was inhibited by 10 mM PMSF to a residual

activity of 49.0%, while lower concentrations of PMSF had no

effect. SDS, Triton X-100 and Tween 80 were applied with 1 and

5% concentration (w/v, v/v) as detergents. With a final concen-

tration of 1%, the substances lowered the activity of LipS only

insignificantly. A concentration of 5% strongly decreased the

activity to 0% (SDS), 14.3% (Triton X-100) and 20.1% (Tween

80). LipT was not even active in the presence of 1% SDS and was

Figure 1. Substrate spectrum of LipS and LipT shown as
relative activity on 4-nitrophenyl (pNP) esters with fatty acid
chains of 4 to 18 C-atoms. Reactions were incubated at 70uC (LipS)
or 75uC (LipT) with final substrate concentrations of 1 mM in potassium
phosphate buffer (PB, 0.1 M, pH 8.0). Extinction was measured at
405 nm against an enzyme-free blank. Data are mean values of at least
three independent measurements and bars indicate the standard
deviation.
doi:10.1371/journal.pone.0047665.g001
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strongly affected by 1% Triton X-100. It revealed only 13.0%

residual activity; and in the presence of 1% Tween 80, only 18.4%

residual activity was observed. After incubation with 5% solutions

of the two detergents Triton X-100 and Tween 80, LipT was

almost completely inactivated (3.3% residual activity with Triton

X-100; 0.3% residual activity with Tween 80).

The solvent stability of LipS and LipT was investigated in the

presence of DMSO, isopropanol, methanol, DMF, acetone,

acetonitrile and ethanol at concentrations of 10 and 30% (v/v)

in 0.1 M PB pH 8.0 (TABLE S6). The presence of all solvents

affected LipS. With 10% of solvent, residual activities between

67.9 and 27.7% were detected when compared to a solvent-free

control, while 30% of solvent decreased the activities of LipS to

45.9–8.5%. The only exception was 30% of DMSO, where at least

92.9% of activities of both enzymes remained. Interestingly, LipT

was much more stable in the presence of various solvents.

Substrate Range and Enantioselectivity of LipS and LipT
LipS and LipT were tested for their hydrolytic activity on a wide

range of substrates; among them achiral or racemic pNP-esters in

a final concentration of 0.5 mM at 70uC (TABLE 2). LipS

hydrolyzed 2-phenylpropanoate (0.42 U/mg), 3-phenylbutanoate

(0.09 U/mg), cyclohexanoate (1.26 U/mg), 2-(3-benzoylphenyl)

propanoate (0.62 U/mg), 2-naphthoate (0.06 U/mg), and 2-(4-

isobutylphenyl)-N-propanamide ester (0.07 U/mg). The substrates

1-naphthoate and adamantanoate were, however, not converted

by LipS. The substrate range of LipT was narrower in

comparison, as it hydrolyzed 3-phenylbutanoate (0.03 U/mg), 2-

(3-benzoylphenyl) propanoate (0.06 U/mg), 2-naphthoate

(0.02 U/mg) and 2-(4-isobutylphenyl)-N-propanamide ester

(0.08 U/mg). Interestingly, LipT hydrolyzed 1-naphtoate, even

though with weak activity (0.01 U/mg). LipT did not cleave the

ester bonds of 2-phenylpropanoate, cyclohexanoate and adaman-

tanoate.

The stereoselectivity of LipS and LipT were assayed on chiral

pNP-esters namely (S)-/(R)-2-methyldecanoic acid ester, (S)-/rac-/

(R)-2,3-dihydro-1H-indene-1-carboxylate (‘‘indancarboxylic acid

ester’’), (S)-/rac-ibuprofen-ester and (S)-/rac-/(R)-naproxen-ester

(TABLE 2). Reactions with pNP-esters as substrates were

measured after incubation at 60uC and 65uC. These relatively

mild temperatures were chosen to avoid autohydrolysis that

readily occurs at higher temperatures. In comparison, the

commercial enzymes CalB and ROL (Rhizopus oryzae lipase) were

tested at the same temperatures. CalB and LipT did not show

stereoselectivity. ROL showed a preference for the (R)-enantiomer

of indancarboxylic acid ester and ibuprofen ester. The highest

activity of all enzymes at this temperature was observed with LipS

and it also revealed the most distinct enantioselectivity, as it was

more active on the (R)-enantiomers of the different substrates. LipS

favored the (R)-enantiomers of 2-methyldecanoic acid ester (E= 8),

indancarboxylic acid ester (E= 12) and naproxen-ester (E= 9)

[75]. It, however, revealed only very poor activities on the (S)-

ibuprofen ester (TABLE 2). This result was verified by HPLC

analysis. LipS preferred the (R)-enantiomer of ibuprofen pNP-ester

with an ee of ..59% for the product and ,90% for the

remaining substrate (E= 11, conversion 60%). The stereoselectiv-

ity of LipS was even higher on ibuprofen phenyl ester, where an ee

of 99% was detected for the product and 81% for the substrate at

45% conversion for the phenyl ester which leads to an E-value

..100 (FIGURE 3).

Activity of LipS on Tri- and Polyglycerides
Furthermore, we assayed the activities of LipS and LipT on tri-

and polyglycerides. LipT did not reveal significant activities in the

titration assays using tributyrin, triolein and polyglycerol-3-laurate

as substrates. However, LipS had a specific activity of 0.14 U/mg

at 60uC using 50 mM tributyrin. The activity was higher with

Table 1. Biochemical parameters of recombinant LipT and LipS determined using 4-nitrophenol-decanoate (C10) for LipT and –
octanoate (C8) for LipS.

Enzyme U/mg vmax (mol min21) Km (mol l21) kcat (min21) kcat/Km (M21 sec21)

LipT 0.6 5.4 N 1028 1.1 N 1023 0.1 0.8

LipS 12.0 2.0 N 1027 2.2 N 1023 1.3 10.3

The measurements were performed at 75 and 70uC, respectively, in 0.1 M PB pH 8.0.
Data are mean values of three independent measurements.
doi:10.1371/journal.pone.0047665.t001

Figure 2. Temperature optimum (A) and thermal stability (B) of
LipS and LipT. Data are mean values of at least three independent
measurements and bars indicate the standard deviation. Temperature
range and optimum of LipS and LipT were measured with pNP-
dodecanoate at temperatures ranging from 20uC to 90uC for 10 min.
Assays were performed by incubation of the enzymes at 70uC for up to
72 hours and by measuring residual activities with pNP-dodecanoate at
70uC (LipS) and 75uC (LipT).
doi:10.1371/journal.pone.0047665.g002
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50 mM triolein (0.20 U/mg); and LipS revealed 0.61 U/mg on

a 7.5% emulsion of polyglycerol-3-laurate.

Kinetic Resolution of Acetates of Secondary Alcohols
In addition, the enantioselective hydrolysis of four acetates of

secondary alcohols was investigated using LipS. Whereas the

hydrolysis of 1-phenyl-1-propyl acetate and 1-phenyl-1-ethyl

acetate proceeded with low enantioselectivity (E= 3–4), excellent

selectivity of LipS was observed for 1-phenyl-2-butyl acetate and

1-phenyl-2-pentyl acetate. In both cases, the corresponding chiral

(R)-alcohols were obtained with .96% ee at approx. 50%

conversion. This suggests that selectivity of LipS towards

secondary alcohols is higher if the chiral center is not adjacent

to the aromatic ring, but a further CH2-group away to enable high

discrimination of the two enantiomers.

Esterification by LipS
To further study the esterification of LipS, the enzyme activity

was assayed in the propyl laurate assay and benchmarked with

CalB as a control. At 70uC, the esterification reactions between 1-

propanol and decanoic acid as well as 1-tetradecanol and myristic

acid were catalyzed by 15 mg of lyophilized LipS and CalB. After

48 h, the formation of 1-propyl laurate was catalyzed by LipS

(0.12 U/mg) and CalB (0.35 U/mg). The synthesis of 1-tetradecyl

myristate also took place with LipS (0.09 U/mg) and CalB

(0.28 U/mg) (FIGURE 4).

Crystallographic Analysis of LipS
A variety of constructs were expressed and purified for

crystallization experiments as described earlier [67]. The initial

construct LipS-H6 in SG P42212 diffracted X-ray radiation to

2.80 Å resolution, while a second construct, LipS-WT, diffracted

X-ray radiation to 1.99 Å resolution. Both constructs contain the

native N-termini which are disordered until about residue 35.

LipS displayed a dimeric character during purification by size

exclusion chromatography. Consistent with this observation, the

asymmetric units of LipS in SG P4 and P42212 contain one and

two identical dimers, respectively. Analysis of the LipS-WT and

LipS-H6 interfaces with Protein Interfaces, Surfaces and

Assemblies (PISA) server [76] calculates the buried area between

two protein molecules and based on solvatation energy (DG)

gained upon assembly formation, it calculates a complexation

significance score (CSS). The analysis confirms that the

observed interactions are of biological significance (CSS = 0.69;

DG =220.5), because the CSS is expressed on a scale from 0,

for non-significant interface, to 1, for significant interface. The

dimer interface covers 1245 Å2 (12.2% of the total surface of

a monomer) of accessible surface area per monomer. It is

primarily formed by the short helical segment aD19 at the N-

terminal part of the insertion and the long helix aD

(FIGURE 5A). Several hydrogen bonds and salt bridges

involving Q138, R154, A162, T203 and E209, in addition to

numerous hydrophobic contacts, stabilize the dimer interface.

Table 2. Specific activity* (U/mg) of LipT and LipS on pNP esters.

pNP-Substrate LipT LipS CalB ROL

Octanoate1) / + + + + +

2-Phenylpropanoate2) rac 2 + + n. d. n. d.

3-Phenylbutanoate2) rac + + n. d. n. d.

Cyclohexanoate2) / 2 + + + + n. d. n. d.

2-(3-Benzoylphenyl) propanoate2) rac + + + n. d. n. d.

2-Naphtoate2) / + + n. d. n. d.

1-Naphtoate2) / + 2 n. d. n. d.

Adamantanoate2) / 2 2 n. d. n. d.

Methyldecanoate1) (S) + + + +

(R) + + + + +

2,3-Dihydro-1H-indene-1-carboxylate (indan acid ester)1) (S) + + + 2

rac + + + +

(R) + + + + +

Ibuprofen ester1) (S) + 2 + 2

rac + + + + +

2-(4-isobutylphenyl)-N-(4-nitrophenyl) propanamide
(Ibuprofen amide ester)2)

rac + + n. d. n. d.

Naproxen ester1) (S) + + + +

rac + + + +

(R) + + + + +

CalB (purchased from Sigma-Aldrich, Buchs, Switzerland) and ROL (purchased from Fluka/Sigma-Aldrich, Buchs, Switzerland) were used as references.
The extinction was measured spectrophotometrically against an enzyme-free blank with
1)0.33 mM substrate solution (final concentration in 0.05 M Soerensen buffer pH 8.0 containing 0.1% gum arabic, 5 mM sodium deoxycholate and 10% DMSO) after
incubation at 60uC (CalB) or 65uC (LipT, LipS, ROL) at 410 nm (e= 7,392 M21 cm21).
2)0.5 mM substrate solution (final concentration in 0.1 M PB pH 8.0) after incubation at 70uC at 405 nm (e= 19,454 M21 cm21).
*Specific activity: n. d., not determined; 2, no detectable activity or ,0.01 U/mg; +, 0.01–0.30 U/mg; + +, 0.31–0.60 U/mg; + + +, 0.61–0.90 U/mg; + + + +, 0.91–1.26 U/
mg. Specific activities of CalB and ROL refer to the dry-weight of the lyophilisate. Data are mean values of three independent measurements.
doi:10.1371/journal.pone.0047665.t002
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LipS assumes the fold of a classical a/b hydrolase [77].

Members of this fold family accommodate a wide variety of

enzymatic activities, including lipases, esterases, peroxidases,

dehalogenases and epoxide hydrolases [78]. It consists of a central

b-sheet made of six parallel b-strands (b2, b3, b4, b5, b8, b9) and

one antiparallel b-strand (b1). Hence, the central b-sheet is missing

the first b-strand of the canonical a/b hydrolase architecture so

that it consists of 7 instead of 8 strands. The central b-sheet is

sandwiched by helices aA and aG on one side and helices aB

through aF on the opposite side (FIGURE 5A). The active site of

LipS is formed by the catalytic triad S126, D227 and H257 with

the catalytic serine located at the sharp c-turn between b4 and aD

(FIGURE 5C). The position of the catalytic triad and the

oxyanion hole (F58 and M127) at conserved topological sites

clearly designates this newly characterized enzyme as a hydrolase.

After refinement, the active site of LipS-WT in SG P4 contained

strong residual density immediately adjacent to S126 and H257.

This density was interpreted with spermidine (FIGURE S4A, B).

Spermidine was used as an additive to improve crystal quality and

was subsequently shown to inhibit the activity of LipS with its

substrate pNP-decanoate in concentration dependent manner

(FIGURE S4C). The terminal amino-group of spermidine comes

remarkably close to both S126 and H257 when the secondary

amid group interacts with D187, which lines the end of the active

site cavity. Thus, it is likely that spermidine mimics substrate

bound in the active site (FIGURE S4D).

We reasoned that comparing 3D structures may reveal bi-

ologically interesting similarities that were not detectable by

comparing amino acid sequences. Therefore, the comparison of

LipS with related 3D structures was performed using DALI server

[79]. The structurally most closely related enzymes were esterases,

Est30 from Bacillus stearothermophilus [1TQH, Z-score 30.7, RMSD

1.8, [80]], EstD from Lactobacillus rhamnosus [3DKR, Z-score 28.7,

RMSD 1.8 [81]], Est1E from Butyrivibrio proteoclasticus [2WTM, Z-

score 24.0, RMSD 2.4 [82]] and human mono-glyceride lipase

[3PE6, Z-score 28.1, RMSD 2.2 [83], FIGURE S5]. Structural

superimposition of LipS with these four enzymes revealed notable

similarity of their overall structures which all resemble the a/b-

hydrolase fold (FIGURE 6). The core of the a/b-hydrolase fold,

the central b-sheet and flanking a-helices, was highly similar

between them (RMSD 1.2 Å to 1.8 Å) contrary to the 40 amino

acid large subdomain (E156 to V195) inserted between b5 and aE

of LipS. This subdomain of LipS is surface exposed and folds into

a short helix aD19 and two short antiparallel b-strands, b6 and b7.

Among above listed structural homologues, only Est1E has a mixed

a/b secondary structure topology similar to LipS. The inserted

subdomains of Est30, EstD and human MGL all have a a-helical

topology which differs from the topology of LipS (FIGURE 6B, C).

Recently, the topology of an inserted subdomain similar to the one

from Est1E was recognised in the cinnamoyl esterase LJ0536 from

Lactobacillus johnsonii [84], which is apparently not deposited in the

DALI database and thus, it was not detected as a structural

homologue of LipS. The core structure of the a/b-fold of LJ0536

Figure 3. HPLC-MS measurement of LipS catalyzing (R)-selectively the hydrolysis of ibuprofen phenyl ester. The products of the
reaction were converted to the corresponding methyl esters for measurement.
doi:10.1371/journal.pone.0047665.g003

Figure 4. Esterification reactions between 1-propanol and
lauric acid (20 mmol each) as well as 1-tetradecanol and
myristic acid (15 mmol each). Synthesis reactions were catalyzed
by LipS and CalB (purchased from Sigma-Aldrich, Buchs, Switzerland)
under solvent-free conditions at 70uC. Specific activities of LipS and
CalB refer to the dry-weights of the lyophilisates. Data are mean values
of at least three independent measurements and bars indicate the
standard deviation.
doi:10.1371/journal.pone.0047665.g004
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resembles the structure of LipS like the other above mentioned

cores of the LipS homologues.

Superimposition of LipS with its homologues and inspection of

inserted domains revealed similarity of LipS with Est1E, LJ0536

but also with evolutionarily distant human MGL. Based on the

presence of b-strands (b6, b7) in the inserted domain of LipS,

which are indeed structurally equivalent with b9, b10 of LJ0536

and b9, b10 of Est1E (FIGURE 6A), it seems that the inserted

domains of these three enzymes are structurally related. It is

noteworthy, that shifting of this b9/b10 hairpin of Est1E was

proposed to lead to the formation of a substrate binding

hydrophobic pocket [84]. However, notable differences between

inserted domains of these three enzymes were observed. Thus, the

loop connecting b6 and b7 in LipS is 17 amino acids long

compared to 3 and 4 in Est1E and LJ0536, respectively.

Furthermore, the short helix aD19 of LipS did not superimpose

with any of the a-helices in Est1E and LJ0536. Additionally, the

second short b-hairpins of Est1E (b7/b8) and LJ0536 (b7/b8) are

absent in LipS. Although the secondary structure topology of the

inserted domain of human MGL (a/a/a-fold) is diverse to the one

of LipS (b/b/a-fold), it resembles its eukaryotic counterpart in

MGL more closely than in Est1E and LJ0536 (FIGURE 6B). The

aD19 of LipS superimposed well with a4 of human MGL,

although a4 is 10 residues longer than aD19. Interestingly, an

important biological function of the hydrophobic a4 for docking of

human MGL onto membranes in order to gain access to the lipid

substrates was suggested [85]. The part of LipSs inserted domain

containing two b-strands b6 and b7 and a loop connecting them

superimposed well with the region in human MGL ranging from

174 to 206, made by loops and the a5 and 3/10-helix, which is

identical in its size to the LipS motif. Our results indicate that

biologically important structural features of both prokaryotic and

eukaryotic lipases are unified in the inserted subdomain of LipS

and thus, LipS might represent an enzyme which is on

evolutionary scale placed between eukaryotic and prokaryotic

lipases.

Insertions of different lengths and conformations in other a/b-

hydrolases at that location [86] suggest their evolutionarily

importance for distinct biological functions of the enzymes. These

inserted subdomains have dual biological function, a) as a lid

which, in dynamic process, opens and closes the active site for

exposure to the solvents and substrates and b) as a motif that

Figure 5. Protein structure of LipS. A) Ribbon representation of the LipS monomer colored according to secondary structure elements. The
inserted lid-domain is indicated in red. The catalytic triad residues Ser126, His257 and Asp227 are shown as stick representation. B) Surface
representation of the LipS monomer with the lid-domain (b6, b7, aD19) shown as a cartoon representation in red. The active site S126 (in yellow) is
completely occluded from the bulk solvent and only accessible through a narrow tunnel. The active site pocket identified by CASTp server is colored
in green. Amino acids building a pocket as part of the inserted domain are shown in orange. C) The catalytic triad residues of LipS are properly placed
to establish hydrogen bonds.
doi:10.1371/journal.pone.0047665.g005

Figure 6. Topology of the inserted domains of a/b-hydrolases. Superimposition of the inserted domain of LipS (in red) with A) Est1E (2WTM,
orange) and LJ0536 (3PF8, turquoise), B) human MGL (3PE6, purple) and C) EstD (3DKR, blue) and Est30 (1TQH, green). The core structure of LipS is
indicated in grey and catalytic S126 in yellow. The core structures of LipS homologues are not shown for simplicity.
doi:10.1371/journal.pone.0047665.g006
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shapes the active site for accommodation of appropriate substrates.

Indeed, the flexible inserted domains serving as a lid were

suggested for Est1E and human MGL but not for LJ0536, which

adopts the same conformation in absence and presence of a ligand

bound in the active site. The conformations of the inserted

domains in all four LipS molecules found in one asymmetric unit

were identical. Furthermore, data that the inserted domain

assumes the same conformation with and without bound

spermidine in structures of LipS suggests that this is rather a rigid

structure.

Analysis of the cavities on LipSs surface using the Computed

Atlas of Surface Topography of proteins (CASTp) server [87]

revealed only one pocket in vicinity of the catalytic S126

(FIGURE 5B). This pocket with an area of 546.1 Å2 was defined

as an active site pocket. 30 amino acids, 20 hydrophobic and 10

hydrophilic (TABLE S7), contribute in formation of the active site

pocket, thus providing amphipathic environment for substrate

binding. Similarly to human MGL, the binding pocket of LipS is

occluded with only narrow and restricted opening to the bulk

solvent (FIGURE 5B). Human MGL, Est1E and LJ0536, although

similar to LipS, have their active site much more exposed to the

solvent compared with LipS. Thirteen amino acids of the inserted

domain (TABLE S7) contribute at the same time in formation of

the active site pocket of LipS (FIGURE 5B). Similar with other

LipS homologues, the inserted domain of LipS shapes the catalytic

pocket of LipS. Not surprisingly, mutations of inserted domain of

Est1E have affected its substrate specificity [82]. Therefore, we

would like to propose that the novel fold of the inserted domain of

LipS, at the frontier between eukaryotic and prokaryotic lipases,

could be essential for its selectivity in hydrolysis of a range of

complex substrates listed in TABLE 2.

Figure 7. Phylogenetic tree illustrating the sorting of 40 metagenome derived lipase/esterase sequences into the eight known
lipase/esterase families [61]. The eight families are color coded and labeled with the respective family name (LipS, LipT) or number (I-VIII). The five
subfamilies containing the 11 unassignable metagenome lipase/esterase sequences are shown in white and are labeled with the respective family
name (UF1-UF5). For the reference sequences, the full organism name as well as the accession number is given at the respective clade. Metagenome
sequences are labeled with their protein name and accession number, respectively.
doi:10.1371/journal.pone.0047665.g007
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Classification of LipS and LipT
Using modern alignment methods, we tried to sort 40

metagenome derived lipase/esterase sequences into the 8 known

bacterial lipase/esterase families [61]. The sequences were

grouped by aligning them manually to a subset of sequences

representing the respective family. The quality of the indepen-

dently calculated alignments is reasonably good, as judged from

visual inspection, conservation of key amino acids [61] and T-

coffee alignment scores. Nevertheless, the low sequence conserva-

tion between the eight families did not directly allow the

construction of a meaningful alignment for the full dataset.

Therefore, the seed alignment had to be constructed by

assembling the sub-alignments in into a full dataset. Thus, the

presented tree (FIGURE 7) serves solely as an illustration for the

assignment of the metagenome derived sequences to the eight

known bacterial lipase/esterase families, but does not allow any

conclusions with respect to the relationship between the respective

families. Using this alignment strategy, 11 out of 40 metagenome

derived sequences could not be assigned to any of the eight known

and established families. Likewise, LipS and LipT together with

a set of homologous sequences could not be assigned un-

equivocally based on sequence similarity (FIGURE 7). This

sequence comparison thus suggests that they are both part of novel

lipase families without distinctive similarity to any of the known

eight bacterial lipase/esterase families [61].

Discussion

We have isolated two novel lipase genes from metagenomic

samples by a combined enrichment and direct cloning approach.

Two different enrichment cultures were set up and 65 as well as

75uC were chosen as incubation temperatures in order to cover

a broader spectrum of thermophilic organisms. Although the

combined enrichment and metagenome technology applied

significantly reduces the overall biodiversity in the environmental

sample, it has been successfully applied by our lab and others to

identify numerous useful biocatalyst genes from metagenomic

samples [88–91]. In one such study, even a moderately thermo-

stable metagenomic lipase was identified [92].

The two lipase genes identified in this work shared high

similarities with already known genes in the databases. LipS was

similar to a predicted but not characterized esterase from the

compost bacterium Symbiobacterium thermophilum and LipT was

similar to a predicted esterase from Thermus scotoductus. Interest-

ingly, Symbiobacterium thermophilum is supposed to have the highest

content of horizontally acquired genes among all bacteria known

so far [93]. Of its protein coding genes, 17.7% originate from

Bacilli and 36.9% from Clostridia. S. thermophilum can be isolated

from enrichment cultures using compost or soil as inoculum [94].

It grows at an optimum temperature ranging from 45 to 65uC.

However, it is uncultivable as a single species and it relies on

commensalism [94]. Up to date only a single genome has been

published having a size of 3.6 Mb [95].

While more than 100 strains of Thermus have been reported [96]

only very few T. scotoductus isolates are known. T. scotoductus has

been isolated from thermal springs but it can also be found in

man-made sources such as gold mines [97,98]. Only recently, the

first genome of a T. scotoductus strain, i.e. SA-01, was established

and revealed a genome size of 2.4 Mb [99]. T. scotoductus usually

grows at temperatures between 65 and 70uC [100,101], while

other Thermus species have their optimal growth temperature

between 62uC and 75uC [96]. Interestingly, the isolation of T.

thermophilus from heating water systems has been reported [102].

Within this context it is notable that heating water systems harbor

obviously rather diverse microbial communities [103,104].

The classification of LipS and LipT into one of the lipase and

carboxylesterase families according to Arpigny and Jaeger [61]

was not possible. Both enzymes are thus most likely members of

novel lipase families (FIGURE 7) which presumably contain other

lipase-members derived from cultivated thermophilic microbes as

well.

It is noteworthy, that LipS and LipT represent the first

metagenome-derived lipases that reveal a temperature optimum

of $70uC. Since both enzymes, however, were derived from

metagenomes, we can only speculate about their native substrates

and functions within the cells.

We have characterized the substrate spectra of both enzymes in

great detail using a range of industry-relevant substrates. Both

LipT and LipS showed a clear preference for pNP-esters with long

chained fatty acid residues (.C8), their temperature optima were

at 70 and 75uC and both enzymes showed a high thermal stability

at 70 as well as at 90uC. Both LipS and LipT do not require

cofactors and are stable against most detergents, solvents and even

enzyme inhibitors. Especially the substrate range of LipS is not

limited to pNP-esters with simple fatty acid residues. It is also able

to hydrolyze sterically more complex substrates with phenolic or

cyclohexanoic residues. LipS showed a high (R)-selectivity for

ibuprofen, naproxen, methyl decanoic acid and indancarboxylic

acid ester, which can be useful for the production of chiral

pharmaceuticals. Ibuprofen, for example, is physiologically active

as (S)-enantiomer [105]. LipS could be applied in the dynamic

kinetic resolution of the racemate by hydrolyzing remaining (R)-

enantiomers in order to obtain an enantiopure product [106].

With respect to the catalytic activities of both enzymes, they

showed comparable or better activities than activities published for

other thermostable bacterial lipases [[15,24,107], TABLE 3].

Table 3. Activities of LipS and LipT in comparison with other characterized and published bacterial thermostable lipases.

Source Topt [uC] pNP-substrate Specific activity [U/mg] Reference

LipS (metagenomic) 70 C8 12.03 This study

C10 6.04

LipT (metagenomic) 75 C10 0.6 This study

Est53, T. maritima 60 C12 13.0 [107]

LipA, T. lipolytica 96 C12 12.4 [24]

LipB, T. lipolytica 96 C12 13.3 [24]

LipTth, T. thermohydrosulfuricus 75 C16 12.15 [15]

Only lipases with temperature optima of $60uC and activity on pNP-substrates with $8 C atoms as acyl residue were considered.
doi:10.1371/journal.pone.0047665.t003
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Further, in small-scale experiments, esterification reactions were

catalyzed by LipS with the result that 1-propyl laurate as well as 1-

tetradecyl myristate were produced with non-immobilized en-

zyme. The observed activities were comparable to those observed

for Candida antarctica lipase CalB. Altogether, these data suggest

that LipS and LipT are very promising enzyme candidates for

biotechnological applications at elevated temperatures.

The structure of LipS was solved for two different constructs

which crystallized in two different space groups. In the higher

resolution SG P4, there is clear additional electron density

immediately adjacent to the catalytic S126 and H257 (FIGURE

S4A, B). In LipS in SG P42212, however, there is no such electron

density. This excludes the possibility that the observed density

results from expression in E. coli. We interpreted this residual

density with spermidine, which was added during crystallization of

LipS in SG P4 but not in SG P42212. At this point, there is no

indication that spermidine is part of any native substrate of LipS.

Identical conformations of the lid-domain, which covers the active

site, in the absence and presence of a ligand, indicate that this

domain may not undergo conformational rearrangements during

the catalytic cycle. Concerning Est1E and LJ0536, it was shown

that the lid is flexible [82,84]. The closed lid-conformation resulted

in an occluded binding pocket, which most likely only leaves

a narrow and restricted opening to the bulk solvent. Occlusion of

the binding pocket in human monoglyceride lipase MGL, together

with structural rearrangements of the hydrophobic lid in MGL,

are thought to support the extraction of its substrate 2-

arachidonoyl glycerol from the membrane by providing an

accommodating environment [83]. While the precise cellular

substrate of LipS is unknown, its surface does not indicate

increased hydrophobicity around the binding pocket. A closed,

water secluded active site may therefore provide a protective

environment to prevent spurious hydrolysis of its substrate at the

elevated level of its optimal temperature range.

In summary, LipS and LipT are both very interesting and

promising enzymes with a high potential for downstream bio-

technological applications. This was confirmed by their extensive

biochemical characterization and in the case of LipS this was

supported by the structural data. The sequence and structural

characterization clearly suggests that both enzymes increase the

diversity of known esterase and lipase families.

Supporting Information

Figure S1 15% SDS-PAGE of recombinant and purified
LipS and LipT. Asterisks indicate the corresponding protein

bands after His6-tag affinity chromatography. 15 mg of protein

from the crude cell extracts or from the purified proteins were

loaded and electrophoresed. A) 1, 4: crude cell extract; 2, 3

purified protein after extended heat treatment (30 min at 70uC
and 5 min 95uC). B) Purified LipT after incomplete heat-

denaturation (5 min 95uC).

(TIF)

Figure S2 Effect of metal ions applied in 1 and 10 mM
concentration on LipT and LipS. Residual activity of the

enzymes was measured with pNP- dodecanoate at 75uC (LipT)

and 70uC (LipS). Compared with the control without metal ions,

none of the cations showed positive effects significant enough for

being considered as cofactor. Data are mean values of at least

three independent measurements and bars indicate the standard

deviation.

(TIF)

Figure S3 Effects of 1 and 10 mM EDTA, DTT and
PMSF on the activity of LipS and LipT. The residual activity

was measured at 70uC (LipS) and 75uC (LipT) using pNP-

substrates.

(TIF)

Figure S4 Effect of spermidine on the active site of LipS.
A) Electron density maps (blue) around S126, H257 and

spermidine. The additional density linking both residues and

extending further towards the active site cavity was interpreted as

spermidine. B) The spermidine moiety, shown as a space model

colored in grey, is located in the active site cavity of LipS in

vicinity of catalytic S126 and H257 indicated as sticks model. C)
Spermidine inhibits LipS activity at concentrations of 3 and 5 mM

compared to a control without added spermidine. Enzyme activity

was determined after 5 min preincubation with spermidine using

pNP-decanoate as substrate and incubation at 70uC for 10 min.

D) Spermidine displays similarity with LipSs substrate pNP-

decanoate.

(TIF)

Figure S5 Structure based sequence alignment of LipS
with its homologues. It revealed very low structural similarity

in the region of the inserted domain, which is indicated by bold

letters in LipS. 2WTM, Est1E form Butyrivibrio proteoclasticus [82];

3PF8, LJ0536 from Lactobacillus johnsonii [84]; 3PE6, mono-

glyceride lipase (MGL) from Homo sapiens [83]; 1TQH, Est30

from Geobacillus stearothermophilus [80]; 3DKR, esterase D from

Lactobacillus rhamnosus [81]. In the top line, secondary structure

elements of LipS are shown with the inserted domain (aD19, b6

and b7) colored in gray. Identical and similar amino acids

conserved in at least four structures were shaded in black and gray

respectively. Catalytic triad residues of LipS are indicated in bold

and yellow. Residues which are not seen in the structures are

shown as small letters.

(TIF)

Table S1 Bacterial strains and plasmids used in this
work.

(DOCX)

Table S2 Amino acid sequences of members from the
eight major lipase and esterase families [61] received
from GenBank together with members of the new LipS
and LipT groups.

(DOCX)

Table S3 Metagenomic esterases and lipases from
uncultured organisms grouped into existing families
[61]. The classification is based on alignment scores with

members of family I-VIII or unknown families (UF). UF1-5:
Unknown Families of metagenomic esterases/lipases:
Sequences were grouped together into one family if at least two

unclassified sequences shared significant similarity and sufficiently

high T-COFFEE alignment scores. All sequences considered here

as unclassified cannot be unequivocally grouped into any of the

known other eight lipase/esterase families. *:I/S/G: Identical/

Similar/Gapped amino acid positions in the respective alignment.

Sequence identity/similarity is given with respect to one of the

sequences of a known organism. Identity/similarity can be higher

to metagenomic sequences in the subfamily.

(DOCX)

Table S4 Refinement and quality statistics of the
crystallized constructs LipS-H6 and LipS-WT.

(DOCX)
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Table S5 Purification table of the proteins LipS and
LipT. (1) Crude cell extract; (2) heat denaturation at 70uC for

30 min; (3) immobilized metal ion affinity chromatography with

Ni-ions. In case of LipT, the elution fractions have been combined

and concentrated to a residual volume of 0.4 ml in a centrifuge

(Vivaspin20, MWCO 10,000; Sartorius Stedim Biotech GmbH,

Göttingen, Germany; Centrifuge 5804R, rotor A-4-44, Eppen-

dorf, Hamburg, Germany). Activity was measured using 0.5 mM

pNP-octanoate at 70uC (LipS) or 0.5 mM pNP-decanoate at 75uC
(LipT).

(DOCX)

Table S6 Residual activities of LipS and LipT in the
presence of organic solvents. The enzymes were incubated

for 1 h at room temperature with the solvents diluted in 0.1 M PB

pH 8.0 before pNP-dodecanoate was added as substrate. After

incubation for 10 min at 70uC (LipS) and 75uC (LipT), the

reaction was measured in a photometer at 405 nm against an

enzyme-free blank containing the respective solvent and concen-

tration. Data are mean values of at least three independent

measurements; 6 indicates the standard deviation.

(DOCX)

Table S7 Amino acids and atoms building the active site
pocket of LipS. Amino acids belonging to the inserted domain

are indicated in bold.

(DOCX)
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