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Abstract
Over the last decade, the Bayesian estimation of evidence-accumulation models has gained popularity, largely due to
the advantages afforded by the Bayesian hierarchical framework. Despite recent advances in the Bayesian estimation of
evidence-accumulation models, model comparison continues to rely on suboptimal procedures, such as posterior parameter
inference and model selection criteria known to favor overly complex models. In this paper, we advocate model comparison
for evidence-accumulation models based on the Bayes factor obtained via Warp-III bridge sampling. We demonstrate, using
the linear ballistic accumulator (LBA), that Warp-III sampling provides a powerful and flexible approach that can be applied
to both nested and non-nested model comparisons, even in complex and high-dimensional hierarchical instantiations of the
LBA. We provide an easy-to-use software implementation of the Warp-III sampler and outline a series of recommendations
aimed at facilitating the use of Warp-III sampling in practical applications.

Keywords Bayesian model comparison · Differential evolution Markov chain Monte Carlo · Dynamic models of choice ·
Linear ballistic accumulator · Marginal likelihood · Response time models

Introduction

Cognitive models of response times and accuracy canon-
ically assume an accumulation process, where evidence
favoring different options is summed over time until a
threshold is reached that triggers an associated response.
The two most prominent types of evidence-accumulation
models, the diffusion decision model (DDM; Ratcliff, 1978;
Ratcliff & McKoon, 2008) and the linear ballistic accumu-
lator (LBA; Brown & Heathcote, 2008) have been widely
applied across animal and human research in biology,
psychology, economics, and the neurosciences to topics
including vision, attention, language, memory, cognition,
emotion, development, aging, and clinical disorders (for
reviews, see Mulder, Van Maanen, & Forstmann, 2014; Rat-
cliff, Smith, Brown, & McKoon, 2016; Donkin & Brown,
2018). Evidence-accumulation models are popular because
they provide a comprehensive account of the probability
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of choices and the associated distribution of times to make
them, and because they provide parameter estimates that
directly quantify important psychological quantities, such as
the quality of the evidence provided by a choice stimulus
and the amount of evidence required to trigger the response.

Parameter estimation and statistical inference in the con-
text of evidence-accumulation models can be challenging
because they belong to the class of “sloppy” models with
highly correlated parameters (Apgar, Witmer, White, &
Tidor, 2010; Gutenkunst et al., 2007), examples of which
occur widely in biology and psychology (Apgar et al., 2010;
Gutenkunst et al., 2007; Heathcote et al., 2018). However,
with appropriate experimental designs—critically includ-
ing sufficiently high error rates and experimental trials per
participant (Ratcliff & Childers, 2015)—the model parame-
ters can be estimated reliably using error minimization and
Bayesian methods.

Recently, the Bayesian estimation of evidence-
accumulation models has gained popularity, largely due
to the advantages afforded by the Bayesian hierarchical
framework (e.g., Heathcote et al., 2018; Vandekerckhove,
Tuerlinckx, & Lee, 2011; Wiecki, Sofer, & Frank, 2013).
In fact, our recent literature review indicated that 19% and
21% of the 262 and 53 papers that used the DDM and the
LBA, respectively, relied on Bayesian methods to estimate
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the model parameters.1 Bayesian hierarchical methods
simultaneously estimate model parameters for a group of
participants assuming that the participant-level parameters
are drawn from a common group-level distribution. From
a statistical point of view, the group-level distribution
acts as a prior that pulls (“shrinks”) the participant-level
parameters to the group mean, which can result in less
variable and, on average, more accurate estimates than non-
hierarchical methods (Farrell & Ludwig, 2008; Gelman
& Hill, 2007; Lee & Wagenmakers, 2013; Shiffrin, Lee,
Kim, & Wagenmakers, 2008). From a psychological point
of view, the group-level distribution provides a model of
individual differences. From this perspective, it is apparent
that introducing a group-level distribution improves the
model theoretically only if the group-level distribution pro-
vides a good model for the individual variation (Farrell &
Lewandowsky, 2018, section 9.5).

As a result of the strong parameter correlations in
evidence-accumulation models, standard Markov chain
Monte Carlo samplers (MCMC; e.g., Gilks, Richardson, &
Spiegelhalter, 1996) typically used for Bayesian parameter
estimation can be inefficient. Rather, samplers designed
to handle high posterior correlations must be used, such
as differential evolution MCMC (DE-MCMC; Turner,
Sederberg, Brown, & Steyvers, 2013). This approach to
Bayesian estimation is now readily available for the DDM,
LBA, and other evidence-accumulation models in the
“Dynamic Models of Choice” software (DMC; Heathcote
et al., 2018) along with extensive tutorials and supporting
functions that facilitate model diagnostics and the analysis
of results.2 In this article, we focus on the Bayesian
approach because of the advantages it offers, such as a
coherent inferential framework, the use of prior information,
the possibility of straightforward hierarchical extensions,
and the natural quantification of uncertainty in both
parameter estimates and model predictions.

In typical applications of evidence-accumulation models,
researchers are not only interested in parameter estimation
but often wish to assess the effects of experimental mani-
pulations on the model parameters. For example, Strick-
land, Loft, Remington, and Heathcote (2018) compared
non-nested LBA models that either allowed the effect of
maintaining a prospective memory load (i.e., in the context
of a routine ongoing task, the intent to make an alterna-
tive response to a rarely occurring stimulus) to influence
only the rate of evidence accumulation or only the threshold
amount of evidence required to make a response. The former

1The numbers are based on a systematic literature review of published
articles that fit the DDM and LBA to empirical data (Tran, 2018). A
summary of the results is available at https://osf.io/ynwpa/.
2A file that describes the content of the DMC tutorials and the different
DMC functions is available from https://osf.io/kygr3/.

model corresponds to competition for limited information-
processing capacity, whereas the latter model corresponds to
strategic slowing in order to avoid the ongoing task response
pre-empting the prospective memory response (Heathcote,
Loft, & Remington, 2015). Nested comparisons are also
common in the context of evidence-accumulation models to
determine which of a set of candidate experimental manipu-
lations had an effect on a particular parameter. For example,
Rae, Heathcote, Donkin, Averell, and Brown (2014) exam-
ined whether or not an emphasis on the speed vs. accuracy
of responding influences evidence accumulation rates.

Despite recent advances in the Bayesian estimation of
evidence-accumulation models, model comparison contin-
ues to rely on suboptimal procedures, such as posterior
parameter inference based on complex models where sepa-
rate model parameters are estimated for each experimental
condition. In this approach, differences between param-
eters are often evaluated using posterior p values (e.g.,
Klauer, 2010; Matzke, Dolan, Batchelder, & Wagenmak-
ers, 2015; Matzke, Hughes, Badcock, Michie, & Heathcote,
2017; Matzke, Boehm, & Vandekerckhove, 2018; Smith &
Batchelder, 2010; Strickland et al., 2018; Tilman, Osth, van
Ravenzwaaij, & Heathcote, 2017; Tilman, Strayer, Eidels,
& Heathcote, 2017; Osth, Jansson, Dennis, & Heathcote,
2018). Posterior parameter inference has at least three
limitations. First, it can only be used for nested model
comparison. Second, it cannot provide evidence for the
absence of an effect (i.e., it cannot “prove the null”), simi-
lar to classical p values (e.g., Wagenmakers, 2007). Third,
it can result in fitting an overly complex model, which is
particularly problematic in the presence of strong param-
eter correlations, because a real effect in one parameter
can spread to create a spurious effect on other parameters
(Heathcote et al., 2015).

These shortcomings can be addressed using formal
model selection. This approach critically depends on the
availability of a model selection criterion that properly
penalizes the greater flexibility of more complex models.
The deviance information criterion (DIC) is one of the
most commonly used model selection measures, and has
the advantage that it can be easily computed from the
posterior samples obtained during parameter estimation.
However, the DIC is known to prefer overly complex
models (Spiegelhalter, Best, Carlin, & van der Linde,
2002). The more recent widely applicable information
criterion (WAIC; Vehtari, Gelman, & Gabry, 2017), which
is also based on posterior samples, is an approximation to
(leave-one-out) cross-validation and suffers from the same
shortcoming (Browne, 2000). It should be noted that even
as the number of observations goes to infinity, methods
that approximate (leave-one-out) cross-validation will not
choose the data-generating model with certainty (Shao,
1993).
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Here we advocate model selection for evidence-
accumulation models based on the Bayes factor (e.g., Etz
& Wagenmakers, 2017; Kass & Raftery, 1995; Ly, Ver-
hagen, & Wagenmakers, 2016; Jeffreys, 1961). The Bayes
factor is the principled method of performing model selec-
tion from a Bayesian perspective and follows immediately
from applying Bayes’ rule to models instead of parameters
(e.g., Kass & Raftery, 1995). In contrast to model selection
methods that approximate (leave-one-out) cross-validation,
in general, the Bayes factor will choose the data-generating
model with certainty when the number of observations goes
to infinity (Bayarri, Berger, Forte, & Garcı́a-Donato, 2012).
Although the desirability of Bayes factors has long been
recognized (e.g., Jeffreys, 1939), their use has only become
increasingly widespread with general linear models (e.g.,
ANOVA and regression; see Rouder, Morey, Speckman,
& Province, 2012 and Rouder & Morey, 2012) due to the
availability of efficient and user-friendly software imple-
mentations in packages such as BayesFactor (Morey &
Rouder, 2018) in R (R Core Team, 2019) and the GUI-based
JASP (JASP Team, 2018). With this article, we aim to bring
these advantages to the domain of evidence-accumulation
models by providing an easy-to-use software implementa-
tion that uses a state-of-the-art method for computing Bayes
factors.

The Bayes factor is the predictive updating factor that
changes prior model odds for two models M1 and M2 into
posterior model odds based on observed data y:

p(M1 | y)

p(M2 | y)
︸ ︷︷ ︸

posterior odds

= p(y | M1)

p(y | M2)
︸ ︷︷ ︸

Bayes factor BF12

× p(M1)

p(M2)
︸ ︷︷ ︸

prior odds

. (1)

Continuing the example from Strickland et al. (2018),
suppose that M1 refers to the model in which only
rates are affected by prospective-memory load and M2

refers to the model in which only thresholds are affected.
Different researchers may start with different prior beliefs
about the relative plausibility of the two competing
psychological explanations of the prospective-memory load
effect. However, the change in beliefs brought about by
the data (i.e., the change from prior to posterior odds
which is the Bayes factor) is the same, regardless of
the prior beliefs. Therefore, reporting the Bayes factor
enables researchers to update their personal prior odds to
posterior odds. Commonly, only the Bayes factor is reported
and interpreted, since strength of evidence for the two
competing models is naturally expressed as the degree to
which one should update prior beliefs about the models
based on observed data. A Bayes factor of, say, BF12 = 10
would indicate that the data are ten times more likely under
M1 than M2, whereas a Bayes factor of BF12 = 0.1 would
indicate that the data are ten times more likely under M2

than M1.

As shown in Eq. 1, the Bayes factor is the ratio of the
marginal likelihoods of the models. The marginal likelihood
is the probability of the data given a model and is obtained
by integrating out the model parameters with respect to the
parameters’ prior distribution:

p(y | M) =
∫

�

p(y | θ ,M) p(θ | M) dθ , (2)

where θ denotes the parameter vector for model M. The
marginal likelihood quantifies average predictive adequacy
as follows: The likelihood p(y | θ ,M) corresponds to
the predictive adequacy of a particular parameter setting θ

under model M. The average predictive adequacy (i.e., the
marginal likelihood) is obtained as the weighted average
of the predictive adequacies across the entire parameter
space, where the weights are given by the parameters’ prior
probabilities. Complex models may have certain parameter
settings that yield high likelihood values, however, the
large parameter space may also contain many parameter
settings which result in small likelihood values, lowering the
weighted average. Consequently, the marginal likelihood—
and the Bayes factor, which contrasts the average predictive
adequacy of two models—incorporates a natural penalty for
undue complexity. Interpreting the marginal likelihood as a
weighted average highlights the crucial importance of the
prior distribution for Bayesian model comparison.

For evidence-accumulation models, the integral in
Eq. 2—and hence the Bayes factor—cannot be computed
analytically. In these cases, four major approaches are
available for computing Bayes factors: (1) approximate
methods such as the Laplace approximation (e.g., Kass and
Vaidyanathan, 1992); (2) the Savage–Dickey density ratio
approximation of the Bayes factor (Dickey & Lientz, 1970;
Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010);
(3) transdimensional methods such as reversible jump
MCMC (Green, 1995); and (4) simulation-based methods
that estimate the integrals involved in the computation of
the Bayes factor directly (e.g., Evans & Brown, 2018; Evans
& Annis, 2019; Meng & Wong, 1996; Meng & Schilling,
2002). Approximate methods have the disadvantage that
it is typically difficult to assess the approximation error,
which could be particularly substantial for hierarchical
evidence-accumulation models. The Savage–Dickey density
ratio can only be applied to nested model comparisons.
Transdimensional methods are challenging to implement,
especially in hierarchical settings and for non-nested model
comparisons, as explained in more detail later.

Therefore, here we advocate Warp-III bridge sampling
(Meng & Schilling, 2002) for obtaining the Bayes factor for
evidence-accumulation models. Warp-III bridge sampling
is a simulation-based method that can be applied to both
nested and non-nested comparisons and—once posterior
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samples from the competing models have been obtained—
it is straightforward to implement even in hierarchical
settings. As non-nested hierarchical comparisons are
integral to many applications of cognitive models, we
believe that Warp-III bridge sampling provides an excellent
computational tool that will greatly facilitate the use of
Bayesian model comparison for evidence-accumulation
models.

The article is organized as follows. First, we review
simple Monte Carlo sampling, another simulation-based
method that has been proposed for computing the Bayes
factor for evidence-accumulation models. We then outline
the details of Warp-III bridge sampling and illustrate its use
for the single-participant as well as the hierarchical case.
We focus on the LBA, but elaborate on the applicability
of our approach to other evidence-accumulation models,
for instance the DDM, in the Discussion. The Discussion
also provides recommendations aimed at facilitating the use
of Warp-III bridge sampling in practical applications. The
implementation of the Warp-III bridge sampler is available
at https://osf.io/ynwpa/ and has also been incorporated into
the latest DMC release.3

Simple Monte Carlo sampling

A simple Monte Carlo estimator of the marginal likelihood
is obtained by interpreting the integral in Eq. 2 as an
expected value with respect to the parameters’ prior
distribution:

p(y | M) = Ep(θ |M) [p(y | θ ,M)]

≈ 1

N

N
∑

i=1

p(y | θ̃ i ,M), where θ̃ i∼p(θ | M). (3)

Thus, an estimate of the marginal likelihood can be obtained
by sampling from the prior distribution and averaging the
likelihood values based on the samples.

Recently, Evans and Brown (2018) proposed the use
of simple Monte Carlo sampling for the computation
of the Bayes factor for the LBA. This simple approach
can work well if the posterior distribution is similar
to the prior distribution; however, when the posterior is
substantially different from the prior—as is often the case—
simple Monte Carlo sampling becomes very inefficient.
The reason is that only a few prior samples (i.e., those in
the region where most posterior mass is located) result in
substantial likelihood values so that the average in Eq. 3
will be dominated by a small number of samples. The
result is an unstable estimator, even in non-hierarchical

3This release is available at https://osf.io/5yeh4/. It also contains a
new tutorial that explicitly explains how to use the bridge sampling
functionality in DMC (i.e., dmc 5 7 BayesFactors.R).

applications. Naturally, the problem becomes more severe
in hierarchical settings where the parameter space is
substantially larger. Although increasing the number of
prior samples may remedy the problem to a certain extent,
reliable estimation of the marginal likelihood of hierarchical
evidence-accumulation models using simple Monte Carlo
sampling remains challenging, even with Evans & Brown’s
powerful GPU implementation. Given the many advantages
of the Bayesian hierarchical framework for cognitive
modeling (e.g., Heathcote et al., 2018; Shiffrin et al., 2008;
Matzke et al., 2015; Lee, 2011; Matzke, Dolan, Logan,
Brown, & Wagenmakers, 2013; Lee & Wagenmakers, 2013;
Vandekerckhove et al., 2011; Wiecki et al., 2013), we
believe that an alternative approach is needed.

Warp-III bridge sampling

We propose the use of Warp-III bridge sampling (Meng &
Schilling, 2002, henceforth referred to as Warp-III) for esti-
mating the marginal likelihood for evidence-accumulation
models. Warp-III is an advanced version of bridge sampling
(Meng & Wong, 1996; Gronau et al., 2017), which is based
on the following identity:

p(y | M) = Eg(θ) [h(θ) p(y | θ ,M) p(θ | M)]

Ep(θ |y,M) [h(θ) g(θ)]
, (4)

where g is a proposal distribution and h a bridge function.
The efficiency of the bridge sampling estimator is

governed by the overlap between the proposal and the
posterior distribution. A simple approach for obtaining
the bridge sampling estimator relies on a multivariate
normal proposal distribution that matches the first two
moments, the mean vector and covariance matrix, of the
posterior distribution (e.g., Gronau et al., 2017; Overstall &
Forster, 2010). However, this method becomes inefficient
when the posterior distribution is skewed. To remedy this
problem, Warp-III aims to maximize the overlap by fixing
the proposal distribution to a standard multivariate normal
distribution4 and then “warping” (i.e., manipulating) the
posterior so that it matches not only the first two, but also the
third moment of the proposal distribution (for details, see
Meng & Schilling, 2002, and Gronau, Wagenmakers, Heck,
& Matzke, 2019).

Figure 1 illustrates the warping procedure for the
univariate case using hypothetical posterior samples. The
solid black line in the top-left panel displays the standard
normal proposal distribution and the skewed histogram
displays samples from the posterior distribution. Since
none of the moments of the two distributions match,
applying bridge sampling to these distributions can be called

4Other proposal distributions, such as a multivariate t-distribution, are
also conceivable.
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Fig. 1 Illustration of the warping procedure. The solid black line shows the standard normal proposal distribution and the gray histogram shows
the posterior samples. Available at https://tinyurl.com/y7owvsz3 under CC license https://creativecommons.org/licenses/by/2.0/

Warp-0 (i.e., the number indicates how many moments
have been matched). The histogram in the top-right panel
displays the same posterior samples after subtracting
their mean from each sample. This manipulation matches
the first moment of the two distributions; the posterior
samples are now zero-centered, just like the proposal
distribution. This is called Warp-I. In the bottom-right
panel, the posterior samples are additionally divided by
their standard deviation. This manipulation matches the first
two moments of the distributions; the posterior samples are
now zero-centered with variance 1, just like the proposal
distribution. This is called Warp-II. Finally, the bottom-
left panel displays the posterior samples after assigning
a minus sign with probability 0.5 to each sample. This
manipulation achieves symmetry and matches the first
three moments of the distributions; the posterior samples
are now symmetric and zero-centered with variance 1,
just like the proposal distribution. This is called Warp-
III. Note how successively matching the moments of the
two distributions has increased the overlap between the
posterior and the proposal distribution.5 We have found
that the improvement afforded by Warp-III can be crucial
for efficient application of bridge sampling to evidence-
accumulation models, particularly in situations where the

5The warping procedure assumes that all parameters are allowed to
range across the entire real line; if this is not the case, appropriate
transformations can be applied to fulfill this requirement. Note that the
resulting expressions need to be adjusted by the relevant Jacobian term.

posteriors are skewed, as is often the case with only a small
number of observations per participant.

The bridge function h is chosen such that it minimizes the
relative mean-square error of the resulting estimator (Meng
& Wong, 1996). Using this “optimal” bridge function,6 the
estimator of the marginal likelihood is obtained by updating
an initial guess of the marginal likelihood until convergence.
The estimate at iteration t + 1 is given by:7

p̂(y | M)(t+1) =
1

N2

N2∑

i=1

l2,i

s1 l2,i+s2 p̂(y|M)(t)

1
N1

N1∑

j=1

1
s1 l1,j +s2 p̂(y|M)(t)

, (5)

where sk = Nk

N1+N2
for k ∈ {1, 2},

l1,j =
|R|
2

[

q(2μ−θ∗
j )+q(θ∗

j )
]

g
(

R−1
(

θ∗
j −μ

)) , (6)

6Note that this choice is only optimal if the samples from the posterior
distribution are independent, which is not the case when using MCMC
methods. To account for this fact, we replace N1 when computing s1
and s2 by an effective sample size—the median effective sample size
across all posterior components—obtained using the coda R package
(Plummer, Best, Cowles, & Vines, 2006).
7Note that in practice, we always run the iterative scheme in a more
numerically stable way with respect to r̂ (t) = const × p̂(y | M)(t)

(for details, see Gronau et al., 2017, Appendix B).
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and

l2,i =
|R|
2

[

q(μ−Rθ̃ i )+q(μ+Rθ̃ i )
]

g(θ̃ i )
. (7)

{θ∗
1, θ

∗
2, . . . , θ

∗
N1

} are N1 draws from the posterior distribu-

tion, {θ̃1, θ̃2, . . . , θ̃N2} are N2 draws from the standard nor-
mal proposal distribution, and q(θ) = p(y | θ ,M) p(θ |
M) denotes the un-normalized posterior density function.
Furthermore, μ corresponds to the posterior mean vector
and � = RR� corresponds to the posterior covariance
matrix (R is obtained via a Cholesky decomposition of the
posterior covariance matrix). The posterior mean vector and
covariance matrix can be estimated using the posterior sam-
ples. In practice, we split the posterior samples into two
halves; the first half is used to estimate μ and R and the
second half is used in the iterative scheme in Eq. 5.

Computing l1,j and l2,i is the computationally most
expensive part of the method; fortunately, these quantities
can be computed completely in parallel. Note also that
l1,j and l2,i only need to be computed once before the
updating scheme is started. Hence, with these quantities in
hand, running the updating scheme is quick and typically
converges in fewer than 20 or 30 iterations. Although our
implementation relies on a fixed starting value, it is also
possible to start the updating scheme from an informed
guess of the marginal likelihood, for instance, based on
a normal approximation to the posterior distribution. We
have found that the value of the initial guess usually
does not influence the resulting estimator substantially,
but a good starting value may reduce the number of
iterations needed to reach convergence. Moreover, as we
show later, an appropriately chosen starting value is crucial
in rare cases when the iterative scheme seemingly does not
converge.8

It can be shown that the simple Monte Carlo estimator
described in the previous section is a special case of Eq. 4
obtained by using a bridge function other than the optimal
one (e.g., Gronau et al., 2017, Appendix A). Therefore,
Warp-III that relies on the optimal bridge function must
perform better in terms of the relative mean-square error
of the estimator than the simple Monte Carlo approach.
This will be illustrated in the next section, where we apply
Warp-III sampling to a nested model comparison problem

8In principle, convergence is guaranteed (Meng & Wong, 1996),
however, convergence may be so slow that it is infeasible to wait in
practice.

and compare its performance to three alternative methods,
including simple Monte Carlo sampling.

Simulation study I: nestedmodel
comparison for the single-participant case

As a first example, we computed the Bayes factor for
a nested model comparison problem in the LBA by
approximating the marginal likelihood of the two models
using Warp-III sampling. To verify the correctness of our
Warp-III implementation, we also computed the Bayes
factor using three alternative methods: (1) simple Monte
Carlo sampling; (2) the Savage–Dickey density ratio;
and (3) a simple version of reversible jump MCMC
(RJMCMC; Green, 1995) as described in Barker and Link
(2013). We included the latter two approaches because
they provide conceptually different methods for Bayes
factor computations than the simulation-based Warp-III and
simple Monte Carlo. The details of the Savage–Dickey and
the RJMCMC methods are provided in the Appendix.

Models and data

We considered a data set generated from the LBA for a
single participant performing a simple choice task with
two stimuli and two corresponding responses. As shown
in Fig. 2, the LBA assumes a race among a set of
deterministic evidence-accumulation processes, with one
runner per response option. The choice is determined by the
winner of the race.

On each trial, accumulation begins at a starting
point drawn—independently for each accumulator—from
a uniform distribution with width A. A may vary
between accumulators, but here we assume it is the same.
The evidence total increases linearly at rate v that is
drawn independently for each accumulator from a normal
distribution, which we assume here is truncated below
at zero (Heathcote & Love, 2012). The accumulator that
matches the stimulus has mean rate vtrue and standard
deviation strue, and the mismatching accumulator vfalse

and sfalse. In principle, there could be different vtrue and
vfalse values for each stimulus, but here we assume they
are the same. The first accumulator to reach its threshold
(b)—again potentially differing between accumulators but
assumed to be the same here—triggers the corresponding
response. We estimate threshold in terms of a positive
quantity, B, which quantifies the gap between the threshold
and the upper bound of the start-point noise (i.e., B =
b − A). Response time (RT) is equal to the time taken to
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Fig. 2 Graphical representation of the linear ballistic accumulator for
two possible responses (r1 and r2) corresponding to two stimuli (s1
and s2). The figure illustrates a case where s2 is presented and the
sampled rate for the r2 accumulator is greater than the sampled rate for
the r1 accumulator, i.e., the accumulation path (dashed line) is steeper
for r2 than for r1. However, as the sampled starting point for r1 is
higher than for r2, the r1 accumulator has a sufficient head start to get
to its threshold first after time td . The resulting response is an error,
with RT = t0 + td . Available at https://tinyurl.com/yc4n8lpm under
CC license https://creativecommons.org/licenses/by/2.0/

reach threshold plus non-decision time, t0, which is the sum
of the time to initially encode the stimulus and the time to
produce a motor response.

We estimated the Bayes factor to compare two nested
LBA models. The first, which we refer to as the full
model, featured a starting point parameter A, a threshold
parameter B, mean drift rate parameters for the matching
and mismatching accumulators, vtrue and vfalse, and a non-
decision time parameter t0. In order to identify the model,
one accumulator parameter must be fixed (Donkin, Brown,
& Heathcote, 2009); here we assumed that the standard
deviations of the drift rate distributions were fixed to 1.
In later simulations, we make only the minimum required
assumption of fixing one parameter, in particular assuming
strue = 1. We generated a data set with 250 trials per
stimulus (i.e., a total of 500 trials) from the full model using
the following parameter values: A = 0.5, B = 1, vtrue = 4,
vfalse = 3, and t0 = 0.2.

The full model was compared to a restricted model in
which vtrue was fixed to 3.55. The value 3.55 yields a Bayes
factor close to one (equivalently, log Bayes factor of zero)
and was chosen for two reasons. First, this value facilitates
the implementation of the Savage–Dickey density ratio. The
Savage–Dickey method relies on estimating the posterior
density at the test value, which can be unreliable when
the test value falls in the tail of the posterior distribution.
We circumvented this problem by using a test value in
the restricted model (vtrue = 3.55) relatively close to the
generating parameter in the full model (vtrue = 4).

Second, this value makes discriminating between the
models difficult, and allows us to point out the difference
between inference and model inversion (Lee, 2018).
Although the data have been generated from the full model,
a Bayes factor close to 1 indicates that the data are just as
likely under the restricted model as under the full model.
This may at first appear as an undesirable property of the
Bayes factor. This reasoning, however, confuses inference
and model inversion. Model inversion means that if the
data are generated from model M1 and one fits the data-
generating model M1 and an alternative model M2, one is
able to identify the data-generating model M1 based on a
model selection measure of interest. Consider, however, the
following example. Suppose we are interested in comparing
a null model which assumes that there is no difference in
non-decision time t0 between two groups to an alternative
model which allows the effect size to be different from
zero. Suppose further that the alternative model is the data-
generating model and we simulate data for a small number
of synthetic participants assuming a small non-zero effect
size, resulting in an observed effect size that, for this
sample of participants, happens to be approximately zero.
As a result, the simpler null model can account for the
observed data almost equally well as the more complex
data-generating model and may be favored on the ground
of parsimony. As more observations are generated from the
alternative model, however, it will become clear that the
effect size is non-zero, and the support for the simpler null
model will decrease—equivalently, the support for the more
complex alternative model will increase. Hence, with a large
enough number of observations, model inversion may be
fulfilled.

This discussion highlights why the Bayes factor for the
simulated LBA data set is indifferent: the number of trials
is relatively small and the misspecified simpler model fixes
vtrue to 3.55, which is close to the data-generating value
of 4. Therefore, the slight misspecification of the simpler
restricted model is almost perfectly balanced out by its
parsimony advantage compared to the more complex full
model. The example is meant as a reminder that Bayesian
inference conditions on the data at hand and that it may be
reasonable to obtain evidence in favor of a different model
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than the data-generating one for certain data sets. Therefore,
although one can assess the predictive adequacy of two
competing models for the observed data using the Bayes
factor (Wagenmakers et al., 2018), the Bayes factor should
not be expected to necessarily recover a data-generating
model in a simulation study. Nevertheless, as the number
of observations grows large, the Bayes factor should select
the correct model, a property known as model selection
consistency (Bayarri et al., 2012).

Prior distributions

We used the following prior distributions for the different
parameter types:

A ∼ N+(1, 1)

B ∼ N+(1, 1)

vtrue ∼ N (2, 32)

vfalse ∼ N (1, 32)

t0 ∼ N(0.1,∞)(0.3, 0.252), (8)

where N (μ, σ 2) denotes a normal distribution with mean μ

and variance σ 2, N+(μ, σ 2) denotes a normal distribution
truncated to allow only positive values, and N(x,y)(μ, σ 2)

denotes a normal distribution with lower truncation x and
upper truncation y. In the full model, we specified a
prior distribution for all parameters, including vtrue. In the
restricted model, we specified a prior distribution for all
parameters except vtrue, as vtrue was fixed to 3.55.

The priors in Eq. 8 were taken from Heathcote et al.
(2018). Although we believe that these priors provide a
reasonable setup based on our experience with the LBA
parameter ranges, they may be replaced by empirically
informed priors in future applications. We also acknowledge
that our prior choices are for many parameters wider than
the ones used by Evans and Brown (2018); this may make
the simple Monte Carlo method less efficient than when
used in combination with the Evans–Brown priors.

Parameter estimation andmodel comparison

We used the DE-MCMC algorithm, as implemented in the
DMC software (https://osf.io/pbwx8/) to estimate the model
parameters. We set the number of MCMC chains to three
times the number of model parameters; for the full model
we ran 15 and for the restricted model we ran 12 chains
with over-dispersed start values. In order to reduce auto-
correlation, we thinned each MCMC chain to retain only
every 10th posterior sample. During the burn-in period,
the probability of a migration step was set to 5%; after
burn-in, migration was turned off and only crossover steps
were performed. Convergence of the MCMC chains was
assessed by visual inspection and the R̂ statistic (Brooks &

Gelman, 1998), which was below 1.05 for all parameters.9

We obtained ten independent sets of posterior samples for
both the full and the restricted model, which were used to
assess the uncertainty of the Bayes factor estimates.

Once the posterior samples were obtained, we computed
the Bayes factor in favor of the full model using the
Warp-III, the simple Monte Carlo, the Savage–Dickey, and
the RJMCMC methods. The implementations of the four
approaches are available at https://osf.io/ynwpa/. To assess
the uncertainty of the Bayes factor estimates, we repeated
each procedure ten times for each model. For the Warp-III,
Savage–Dickey, and RJMCMC methods, we used a fresh set
of posterior samples for each repetition.

Results

The left panel of Fig. 3 displays estimates of the log Bayes
factor as a function of the number of samples. Note that we
included an order of magnitude more samples for the simple
Monte Carlo method in order to produce results that are
comparable to estimates provided by the other methods. The
right panel of Fig. 3 zooms in on the results obtained with
the Warp-III, Savage–Dickey, and RJMCMC methods and
omits the simple Monte Carlo estimates; this panel shows
the Bayes factor and not the log Bayes factor to facilitate
interpretation.

All four methods eventually converged to a log Bayes
factor estimate close to zero (equivalently, a Bayes factor
estimate close to one). As the number of samples increased,
the uncertainty of the estimates decreased. For this example,
Warp-III resulted in the smallest uncertainty intervals. The
Warp-III, Savage–Dickey, and RJMCMC methods resulted
in stable Bayes factor estimates already with 1000 samples.
Although the three methods numerically did not yield the
exact same Bayes factors, they all produced estimates close
to one with relatively small uncertainty. The simple Monte
Carlo method was clearly the least efficient; it produced
wide uncertainty intervals and took approximately 50,000-
100,000 samples to converge to the estimates from the other
methods. Note that the number of samples required by the
different methods for the stable and reliable estimation of
the Bayes factor may vary depending on the characteristics
of the specific example and should not be interpreted as a
guideline.

Although in this particular example we were able to
obtain stable and accurate Bayes factor estimates with
all four methods, this is not necessarily the case for
more complicated—non-nested and hierarchical—model
selection problems. The Savage–Dickey method cannot

9It has been pointed out that R̂ is not a perfect indicator of convergence
in certain scenarios (e.g., Vehtari, Gelman, Simpson, Carpenter, &
Bürkner, 2019). For a recent proposal of an improved R̂, see Vehtari
et al. (2019).
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Fig. 3 Bayes factor estimates for the single-participant case as a func-
tion of the number of samples. The left panel displays the log Bayes
factor estimates computed using the Warp-III (black crosses), sim-
ple Monte Carlo (green circles), Savage–Dickey (blue triangles), and
RJMCMC (brown squares) methods. The right panel displays the
Bayes factor estimates computed using the Warp-III (black crosses),
Savage–Dickey (blue triangles), and RJMCMC (brown squares)
methods (i.e., omitting the simple Monte Carlo estimates and dis-
playing the results on the Bayes factor and not log Bayes factor
scale). For Warp-III, the x-axis corresponds to the number of pos-
terior samples (collapsed across all chains) used for computing the

marginal likelihood for each model. For simple Monte Carlo, it corre-
sponds to the number of prior samples used for computing the marginal
likelihoods. For Savage–Dickey, it corresponds to the number of pos-
terior samples used to estimate the density of the posterior distribution
at the test value (i.e., 3.55). For RJMCMC, it corresponds to the num-
ber of posterior samples used from each model (for details, see the
Appendix). The symbols (i.e., crosses, circles, triangles, squares) indi-
cate the median (log) Bayes factor estimates and bars indicate the
range of the estimates across the ten repetitions. Available at https://
tinyurl.com/y5brs44a under CC license https://creativecommons.org/
licenses/by/2.0/

be used for non-nested model comparison. Moreover,
the Savage–Dickey estimate of the Bayes factor becomes
very unstable if the test value falls in the tail of
the posterior distribution because density estimates in
the tails of the posterior are highly variable. Similarly,
the RJMCMC approach cannot be easily generalized to
situations involving non-nested comparisons. RJMCMC
exploits the relations between the parameters of the
models; however, if the models are non-nested, it might
be impossible to relate the two sets of parameters. Even
generalizing RJMCMC to nested hierarchical comparisons
is challenging because it involves linking a large number
of parameters, especially if the vector of participant-
level parameters differs between the two models for
each participant. Furthermore, as a result of the strong
parameter correlations in evidence-accumulation models,
fixing one parameter in nested model comparisons can lead
to substantial changes in the other parameters, making it
even more difficult to efficiently link the competing models.
Because of these challenges associated with non-nested
and hierarchical model comparisons, we believe that the
Savage–Dickey density ratio and RJMCMC methods are
not suited as general model selection tools for evidence-
accumulation models and will not be considered further.

The simple Monte Carlo and the Warp-III method can
be used for both nested and non-nested model comparisons
because they consider one model at a time.10 In Warp-III,

10In its original form, bridge sampling has been proposed to estimate
the Bayes factor directly. In line with, for instance, Overstall and

this also allows us to use a convenient proposal distribution
chosen to maximize the overlap between the proposal and
the posterior, which leads to a substantial gain in efficiency
relative to simple Monte Carlo sampling. The inefficiency
of simple Monte Carlo in our straightforward single-
participant example suggests that this method is infeasible
in many practical applications of hierarchical evidence-
accumulation models. First, as also acknowledged by Evans
and Brown (2018), simple Monte Carlo can result in highly
variable Bayes factor estimates in hierarchical settings.
Second, the number of samples needed to obtain stable
estimates with simple Monte Carlo sampling can quickly
become unmanageable. This was indeed the case when
we tried to apply it to the hierarchical model comparison
problems outlined in the next section.11

Simulation study II: nested and non-nested
model comparison for the hierarchical case

As a second example, we considered eight LBA data
sets that featured observations from multiple participants
generated and fit using the hierarchical approach. We
investigated the performance of Warp-III for two nested and
two non-nested model comparison problems.

Forster (2010), here we advocate a version that estimates one marginal
likelihood at a time (see also, Meng & Schilling, 2002, section 1.3).
11We thank Nathan Evans for attempting to apply simple Monte Carlo
sampling to one of our hierarchical model comparison examples.

Behav Res (2020) 52:918–937926

https://tinyurl.com/y5brs44a
https://tinyurl.com/y5brs44a
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/


Models and data

We simulated a design with four cells, two conditions
that differed in a particular parameter crossed with two
stimuli, and two possible responses. In the nested case,
we compared a model that allowed only mean drift rate
vtrue to be different across conditions (i.e., V -model) to
a null model that featured one common vtrue parameter
for both conditions (i.e., 0-model). In the non-nested case,
we compared the V -model to a model that allowed only
threshold B to be different across conditions (i.e., B-model).
Note that we made these comparisons in both directions, for
example, we computed the Bayes factor for the V -model
vs. B-model comparison when the V -model generated the
data, and computed the Bayes factor for the B-model vs.
V -model comparison when the B-model generated the data.

We generated new data sets from both models in each
comparison. We used two different combinations of the
number of participants (n) and the number of trials per
cell (k), both with 4000 data points in total. Thus, overall,
there were eight different data sets: one for each of the four
comparisons at each group size. In the first combination, we
simulated data using n = 20 with k = 200, corresponding
to a smaller group of participants each measured fairly
well. In the second combination, we simulated data using
n = 80 with k = 50, corresponding to a larger group
of participants each measured at or below the lower bound
of k required for acceptable individual estimation. These
two cases exemplified either an emphasis on individual
or group estimation. In the former case, the number of
participants was at the lower bound of n required for
acceptable estimation of the group-level parameters. In the
latter case, estimation of the participant-specific parameters
relied heavily on the additional constraint provided by the
hierarchical structure.

To generate the data sets, we used normal group-
level distributions for each parameter (truncated below
to allow only positive values), specified the location
(μ) and scale (σ ) of the group-level distributions, and
then simulated participant-specific parameters from these
normal distributions. Subsequently, the participant-specific
parameters were used to generate trials for each participant.
To ensure identifiability, the standard deviation of the
drift rate corresponding to the accumulator for the correct
response, strue, was fixed to one for every participant.

To generate data from the V -model, we used the
following μ parameters (where bracketed superscripts
indicate experimental condition): μA = 1, μB = 0.4,
μ

v
(1)
true

= 4, μ
v

(2)
true

= 3, μvfalse = 1, μsfalse = 1, and μt0 = 0.3.

For the 0-model, we used μA = 1, μB = 0.4, μvtrue = 3,
μvfalse = 1, μsfalse = 1, and μt0 = 0.3. For the B-model,
we used μA = 1, μB(1) = 0.3, μB(2) = 0.7, μvtrue = 3.5,
μvfalse = 1, μsfalse = 1, and μt0 = 0.3. The data-generating

σ parameters were obtained by dividing the μ parameters
by ten, resulting in appreciable but not excessive individual
differences in the participant-specific parameters.

Prior distributions

We used zero-bounded truncated normal group-level distri-
butions to model individual differences in the parameters.
We used the following prior distributions for the group-level
parameters:

μA, σA ∼ N+(1, 1)

μB, σB ∼ N+(0.4, 0.42)

μvtrue , σvtrue ∼ N+(3, 32)

μvfalse , σvfalse ∼ N+(1, 1)

μsfalse , σsfalse ∼ N+(1, 1)

μt0 , σt0 ∼ N+(0.3, 0.32). (9)

As for the single-participant case, we believe that the priors
provide a reasonable setup but they may be replaced by
empirically informed priors in future applications.

Parameter estimation andmodel comparison

We used the DE-MCMC algorithm, as implemented in
the DMC software to estimate the model parameters. We
first estimated parameters separately for each synthetic
participant, similar to our previous single-participant
example. The result of this phase provided the starting
values for the hierarchical analysis. For each model, we
set the number of MCMC chains to three times the
number of participant-specific parameters. We thinned each
MCMC chain to retain only every 10th posterior sample.
Burn-in was accomplished by DMC’s h.run.unstuck.dmc
function with a 5% migration probability. We then used the
h.run.converge.dmc function with no migration until 250
iterations were obtained that appeared to be converged to
the stationary distribution (R̂ < 1.1). Further iterations were
then added using the h.run.dmc function until we obtained
approximately 100,000 posterior samples per parameter (the
exact number of samples varied because the number of
MCMC chains varied among the different models). With
this very large number of samples, R̂ was very close to 1
for all parameters at both the group and participant levels.
We obtained ten independent sets of posterior samples for
each model, which were used to assess the uncertainty of
the Bayes factor estimates.

Once the posterior samples were obtained, we computed
the Bayes factor in favor of the data-generating models
using Warp-III.12 For each model, we assessed the

12We provide R code for an exemplary hierarchical model (i.e., code
for the B-model with data generated from the B-model using n = 20,
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uncertainty of the estimates by running the Warp-III sampler
ten times using a fresh set of posterior samples for each
repetition.

Results

Figure 4 shows the log Bayes factor estimates obtained with
Warp-III sampling as a function of the number of samples
for the nested comparisons and Fig. 5 shows the results for
the non-nested comparisons.13 The log Bayes factors are
expressed in favor of the data-generating models.

The figures illustrate that Warp-III resulted in stable
Bayes factor estimates in favor of the data-generating model
with narrow uncertainty intervals in all but one case, the
non-nested B-model vs. V -model comparison for the n =
80 with k = 50 data set. For this data set, the iterative
scheme from Eq. 5 initially did not seem to converge, but
instead oscillated between two different values, say x1 and
x2. We were able to achieve convergence by stopping the
iterative scheme and re-starting it with the initial guess of
the marginal likelihood set to the geometric mean of the two
values between which the estimate initially oscillated (i.e.,
the square root of the product of x1 and x2). Although this
approach enabled us to obtain an estimate of the marginal
likelihood, the uncertainty of this estimate was noticeably
larger than for the other cases. Nevertheless, this estimate
was sufficiently certain to conclude that the Bayes factor
clearly favored the B-model.14

The results show that the hierarchical model comparisons
required substantially more samples than the single-
participant case. Note also that more samples were needed
for the n = 80 with k = 50 data sets than for the
n = 20 with k = 200 data sets to obtain comparable
uncertainty intervals. The reason is that the number of
participants, n, determines how many participant-specific
parameters need to be integrated out, whereas the number
of trials per cell, k, does not affect the number of
model parameters. Therefore, increasing the number of
participants increases the dimensionality of the integral

k = 200) at https://osf.io/ynwpa/. The reason why we only provide
code for one of the hierarchical examples is that (1) the data sets are
simulated and one example is sufficient to show how to apply the
method (the other examples are obtained via trivial changes to the
code), (2) the corresponding files are very large. Files for the other
examples are available upon request.
13More fine-grained versions of Figs. 4 and 5 are available at https://
osf.io/ynwpa/.
14Note that in practice, very large log Bayes factor estimates as in
this case (e.g., 880 − 920) yield the same conclusion independent
of the exact number: overwhelming evidence for the favored model.
However, when the estimated Bayes factor is closer to 1 (equivalently,
log Bayes factor closer to 0), it is more important that the Bayes factor
is estimated precisely as this may influence which model is favored
(see, e.g., the single-participant example and the following example).

in Eq. 2 that is estimated via Warp-III. It is likely that
the greater difficulty in obtaining well-behaved participant-
specific parameter estimates with k = 50 has also
contributed to the larger uncertainty intervals.

All Bayes factors yielded overwhelming evidence for
the data-generating model, including the ones computed for
the data sets generated from the nested 0-model (i.e., right
panel of Fig. 4). Note, however, that the magnitude of the
Bayes factors for these nested examples is smaller than for
the other examples. This result is not unexpected: the V -
model can account for all data sets that the 0-model can
account for and, additionally, also for data sets that show a
difference in vtrue between conditions. Therefore, the Bayes
factor can only favor the 0-model due to parsimony and
not because it describes the data better than the V -model.
Note also that although the Bayes factors clearly favored the
data-generating models, this may not necessarily be the case
in other examples. As outlined in our earlier discussion of
model inversion, Bayesian inference conditions on the data
at hand and it may be reasonable to obtain evidence in favor
of a different model than the data-generating one for certain
data sets.

Simulation study III: estimating equivocal
Bayes factors for the hierarchical case

In the previous section, it was demonstrated that Warp-III
yields stable and precise Bayes factor estimates for different
hierarchical examples. Many of these Bayes factor estimates
were very large and it could be argued that for large Bayes
factors, obtaining very precise estimates is not crucial since
the qualitative conclusion (“overwhelming evidence”) will
not change unless the estimation uncertainty is extremely
large. In this section, we demonstrate that Warp-III is also
able to provide precise estimates of a Bayes factor close
to 1 for the hierarchical case. Estimating Bayes factors in
this range precisely is important since a large estimation
uncertainty would make it difficult to judge which model is
favored.

Models and data

For this example, we reused the data set generated from the
B-model with n = 20 and k = 200 described in the previous
section. We compared the data-generating B-model to a
restricted Bres-model. The Bres-model was identical to the
B-model except that the group-level parameter μvfalse was
fixed to 1.24. This value was chosen to yield a Bayes factor
close to 1.15

15This model comparison may be regarded as artificial, however,
the main goal of the example is to demonstrate that, even in the
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Fig. 4 Log Bayes factor estimates obtained with Warp-III sampling for
the nested hierarchical model comparisons as a function of the number
of posterior samples (collapsed across all chains) used for computing
the marginal likelihood for each model. Crosses indicate the median
log Bayes factor estimates and bars indicate the range of the estimates
across the ten repetitions. The left panel shows results for the data sets

generated from the V -model; the right panel shows results for the data
sets generated from the 0-model. Results for n = 20 with k = 200
are displayed in black; results for n = 80 with k = 50 are displayed
in gray with dotted lines. The log Bayes factor is expressed in favor of
the data-generating model. Available at https://tinyurl.com/yxgsgjaw
under CC license https://creativecommons.org/licenses/by/2.0/

Prior distributions

The prior distributions were identical to the ones used in the
previous hierarchical example. Note that for the Bres-model,
the group-level parameter μvfalse was fixed to 1.24 and was
not assigned a prior distribution.

Parameter estimation andmodel comparison

Parameter estimation and model comparison was conducted
in an analogous manner to the previous hierarchical
example. Note that we reused the log marginal likelihood
estimates for the B-model from the previous example which
was based on the exact same data set.

Results

Figure 6 shows the Bayes factor (not log Bayes factor)
estimates obtained with Warp-III sampling as a function of
the number of samples. The Bayes factor is expressed in
favor of the data-generating B-model. The figure illustrates
that Warp-III resulted in stable Bayes factor estimates with
narrow uncertainty intervals. The estimated Bayes factor
is slightly larger than 1 indicating that the data-generating
B-model is slightly favored. Nevertheless, a Bayes factor
close to 1 indicates that none of the models is favored in
a compelling fashion by the data at hand; the evidence is
ambiguous.

hierarchical setting, a Bayes factor of about 1 can be estimated
precisely using Warp-III.

Discussion

Over the last decade, the Bayesian estimation of evidence-
accumulation models has gained momentum (e.g., Heath-
cote et al., 2018; Vandekerckhove et al., 2011; Wiecki et al.,
2013). This increase in popularity is largely attributable to
the advantages afforded by the Bayesian hierarchical frame-
work that allows researchers to obtain well-constrained
parameter estimates even in situations with relatively few
observations per participant. Despite recent advances in
the Bayesian estimation of evidence-accumulation models,
model comparison continues to rely on suboptimal pro-
cedures, such as posterior parameter inference and model
selection criteria known to favor overly complex models.

In this paper, therefore, we advocated model selection for
evidence-accumulation models based on the Bayes factor
(e.g., Etz & Wagenmakers, 2017; Kass & Raftery, 1995; Ly
et al., 2016; Jeffreys, 1961). The Bayes factor is given by the
ratio of the marginal likelihoods of the competing models
and thus enables the quantification of relative evidence on
a continuous scale (e.g., Wagenmakers et al., 2018). The
Bayes factor implements a trade-off between parsimony and
goodness-of-fit (Jefferys & Berger, 1992; Myung & Pitt,
1997) and is considered as “the standard Bayesian solution
to the hypothesis testing and model selection problems”
(Lewis & Raftery, 1997, p. 648). Bayes factors enable
the computation of posterior model probabilities, which
provide an intuitive metric for comparison among models.
Bayes factors also enable Bayesian model averaging, which
avoids the need to make categorical decisions between
models and which produces better calibrated predictions
(e.g., Hoeting, Madigan, Raftery, & Volinsky, 1999). Bayes
factors are well suited for the type of model comparison
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Fig. 5 Log Bayes factor estimates obtained with Warp-III sampling
for the non-nested hierarchical model comparisons as a function of
the number of posterior samples (collapsed across all chains) used for
computing the marginal likelihood for each model. Crosses indicate
the median log Bayes factor estimates and bars indicate the range of
the estimates across the ten repetitions. The left panel shows results for

the data sets generated from the B-model; the right panel shows results
for the data sets generated from the V -model. Results for n = 20 with
k = 200 are displayed in black; results for n = 80 with k = 50 are dis-
played in gray with dotted lines. The log Bayes factor is expressed in
favor of the data-generating model. Available at https://tinyurl.com/
y3f7l263 under CC license https://creativecommons.org/licenses/by/2.0/

problems that are faced by cognitive modelers because they
do not favor overly complex models, and so guard against
the proliferation of “crud factors” that plague psychology
(Meehl, 1990).

Despite the advantages afforded by the Bayesian
framework, Bayes factors are rarely, if ever, used for
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Fig. 6 Bayes factor estimates obtained with Warp-III sampling for
the B-model vs. Bres-model example as a function of the number of
posterior samples (collapsed across all chains) used for computing the
marginal likelihood for each model. Crosses indicate the median Bayes
factor estimates and bars indicate the range of the estimates across
the ten repetitions. The data set was generated from the B-model with
n = 20 and k = 200 and is identical to the one used in the left
panel of Fig. 5. The Bayes factor is expressed in favor of the data-
generating model. Available at https://tinyurl.com/y599st45 under CC
license https://creativecommons.org/licenses/by/2.0/

evidence-accumulation models, largely because of the
computational challenges involved in the evaluation of
the marginal likelihood. Here we advocated Warp-III
bridge sampling (Meng & Schilling, 2002) for computing
the marginal likelihood—and hence the Bayes factor—
for evidence-accumulation models. We believe that Warp-
III is well suited for cognitive models in general and
evidence-accumulation models in particular because, as
we have shown, it can be straightforwardly applied to
hierarchical models and non-nested comparisons, unlike the
simple Monte Carlo and the Savage–Dickey approaches.
Moreover, Warp-III is relatively easy to implement, and
requires only the posterior samples routinely collected
during parameter estimation. In contrast to transdimensional
MCMC methods, such as RJMCMC, it does not require
changing the sampling algorithm or linking the competing
models, which can be problematic for hierarchical and
non-nested models. We have shown that Warp-III bridge
sampling is practically feasible even in complex and
high-dimensional hierarchical instantiations of the Linear
Ballistic Accumulator (LBA; Brown & Heathcote, 2008).
Although we encountered a challenging case with scarce
participant-level data (left panel of Fig. 5), even in that
case we were able to detect and ameliorate the convergence
problem.

Once the posterior samples are obtained, computing the
marginal likelihood for the single-participant case using
Warp-III is relatively fast. For each repetition, it took
approximately 13 min to run the Warp-III sampler with
100,000 posterior samples, using four CPU cores on our
servers. As these servers are old and the individual cores
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relatively slow given they are embedded in 16-core chips,
more modern quad-core laptops will achieve the task in a
much shorter time. Naturally, in the hierarchical setting, the
computational burden is higher and strongly depends on the
number of participants. For instance, for the V -model vs.
B-model comparison (right panel in Fig. 5) in combination
with n = 20 and k = 200, running the Warp-III sampler
with 95,000 posterior samples took approximately 7 hours,
using four CPU cores on our servers. In contrast, for the
n = 80 and k = 50 case, the computational time was
approximately 25 hours. However, it is important to note
that it was not necessary to collect such a high number of
posterior samples. For the individual case, the Bayes factor
estimate was precise and stable after only 1000 samples.
For most hierarchical comparisons, we obtained well-
behaved Bayes factor estimates with approximately 20,000–
30,000 samples. Note also that the computational time
strongly depends on the specific programming language
used for evaluating the likelihood and the prior. Our
implementation relies on R (R Core Team, 2019), but
integrating the Warp-III sampler with Lin & Heathcote’s
(2017) C++ implementation of the LBA and the DDM is
expected to speed up sampling by an order of magnitude.
In summary, although Warp-III is computationally more
intensive than using model selection criteria such as the
DIC (Spiegelhalter et al., 2002), in standard applications
of evidence-accumulation models, the computational costs
are manageable, even using personal computers. We believe
that the computational costs of Warp-III are a small
price to pay for the advantages afforded by the use of
principled Bayesian model selection techniques. Where
practical issues are faced due to the need to select among a
large number of models, researchers may consider an initial
triage using easy-to-compute alternatives, such as DIC, in
order to obtain a candidate set for model selection based
on Bayes factors (for related approaches, see Madigan &
Raftery, 1994, and Overstall & Forster, 2010).

As many evidence-accumulation models have analytic
likelihoods, and so are amenable to MCMC methods for
obtaining posterior distributions, Warp-III sampling is not
limited to the LBA, but may be readily applied to other mod-
els, such as the diffusion decision model (DDM; Ratcliff,
1978; Ratcliff & McKoon, 2008). Heathcote et al.’s (2018)
DMC software enables the hierarchical MCMC-based esti-
mation of not only the LBA and the DDM, but also a vari-
ety of other models including single-boundary and racing
diffusion models (Leite & Ratcliff, 2010; Tilman et al.,
2017; Logan, Van Zandt, Verbruggen, & Wagenmakers,
2014), lognormal race models (Heathcote & Love, 2012;
Rouder, Province, Morey, Gómez, & Heathcote, 2015), as
well as race models of the stop-signal paradigm (Matzke

et al., 2013; Matzke, Love, & Heathcote, 2017). Our easy-
to-use R-implementation of the Warp-III sampler enables
the computation of the marginal likelihood of any model
implemented in the DMC software. When analytic likeli-
hoods are not available, approximate Bayesian computation
may be used to enable MCMC sampling, opening up the
possibility to explore more complex and realistic cogni-
tive process models (Turner & Sederberg, 2014; Holmes,
Trueblood, & Heathcote, 2016), although this approach
remains challenging (e.g., Lin & Heathcote, 2018). Future
research should investigate the performance of simulation-
based methods, such as Warp-III, in the context of models
without analytic likelihood.

As illustrated in our single-participant example, the
Bayes factor will not necessarily select a data-generating
model. In contrast, as explained in detail before, it
might be the case that the Bayes factor favors a model
different than the data-generating one for certain data sets.
However, in the single-participant example and in the final
hierarchical example, the Bayes factor did not clearly favor
a model different than the data-generating one but was
approximately 1, meaning that both models were about
equally likely. Thus, another advantage of Bayes factors is
that they allow one to disentangle evidence of absence (i.e.,
the Bayes factor favors the simpler model) and absence of
evidence (i.e., the Bayes factor is approximately 1).

It is crucial to acknowledge that the Bayes factor
critically depends on the prior distribution of the model
parameters. We emphasize that the priors we used in the
present article are not the gold standard for the LBA.
We are presently developing empirically informed prior
distributions for the LBA and the DDM based on archival
data sets. In the meantime, we recommend that researchers
develop their own empirically based priors (perhaps through
pilot work or analysis of related archival data sets) in LBA
applications. For the DDM, the distributions of parameter
values in Matzke and Wagenmakers (2009) already provide
reasonable priors. We see the development of theoretically
and empirically informed prior distributions as necessary
part of the maturation of any well-specified quantitative
model, consistent with the position of Lee and Vanpaemel
(2018).

Practical recommendations

In this final section, we provide recommendations about the
use of Warp-III sampling in practical applications. Our rec-
ommendations should not be interpreted as strict guidelines,
but rather as suggestions based on our experience of using
Warp-III in the context of cognitive models in general and
evidence-accumulation models in particular.
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How to assess the uncertainty and stability of the estimate

Once the data have been observed and the model (i.e., the
likelihood and the prior) have been specified, there is a
single true marginal likelihood corresponding to a partic-
ular data-model combination. However, for (hierarchical)
evidence-accumulation models, the true marginal likelihood
cannot be computed analytically and must be estimated.
As with all estimates, the marginal likelihood provided by
Warp-III is uncertain and may vary even for the same data-
model combination. Consequently, it is crucial to assess and
report the uncertainty of the estimate and investigate the
degree to which uncertainty affects conclusions.

Our recommendation is to assess the uncertainty directly
for the quantity of interest. For instance, when conclusions
are based on the Bayes factor, researchers should assess
the uncertainty of the Bayes factor; when conclusions are
based on posterior model probabilities, researchers should
assess the uncertainty of the posterior model probabilities.
To do so, we recommend researchers to compute the
quantity of interest repeatedly based on independent runs
of Warp-III. For example, when one is interested in
estimating the Bayes factor, one should repeatedly (1)
draw fresh posterior samples from the competing models;
(2) use Warp-III to estimate the marginal likelihood of
the models; and (3) compute the resulting Bayes factor.
The uncertainty of the estimate can then be assessed by
considering the empirical variability of the Bayes factor
estimates across the repetitions. The empirical assessment
of uncertainty is generally considered as the gold standard,
even when approximate errors are available such as for the
simple multivariate normal bridge sampling estimator (e.g.,
Frühwirth–Schnatter, 2006).16

We find it useful to not only assess the uncertainty, but
also to investigate whether the estimate of the quantity
of interest (e.g., Bayes factor) has stabilized. As our
simulations demonstrated, when successively increasing the
number of samples, the estimate becomes more precise
and—after some initial fluctuation—tends to stabilize. One
way to assess stability is to compute the quantity of interest
using batches of the available posterior samples, as we have
done in our simulations. However, we acknowledge that this
process can be time consuming. A crude alternative is to
compute the estimate with the corresponding uncertainty
based on (at least) three different samples sizes, for instance,
(a) 1

3 , (b) 2
3 , and (c) all of the posterior samples. Considering

the sequence of these three estimates allows one to get an
idea about whether the estimate has stabilized.

16Another complication with approximate errors for separate marginal
likelihood estimates is that it is not completely straightforward to
derive an approximate error for the resulting Bayes factor estimate.

Howmany samples are required for precise and stable
estimates

Assessing the uncertainty and stability of the estimate
is a natural and—in our opinion—the best approach to
determine the number of samples required for reliable
conclusions. Note that the required level of precision and
stability depends on the particular application. For instance,
for one of our non-nested hierarchical examples (left panel
in Fig. 5), the Bayes factor estimates were relatively
uncertain and fluctuated quite substantially even in the high-
sample region. However, given that all of the estimates
provided overwhelming evidence for the B-model, the
achieved accuracy and stability were sufficiently high to
conclude that the B-model was clearly favored over the
V -model. In contrast, in situations when the Bayes factor
estimates do not provide compelling evidence for either
model (for instance, when the Bayes factor estimates are
varying around 1), it is crucial to obtain more precise
and stable estimates to ensure that fluctuations do not
influence which of the two models is favored or whether
it is concluded that the evidence is equivocal. The single-
participant and the final hierarchical example indicate that
it is possible to obtain precise and stable Warp-III Bayes
factor estimates also for this Bayes factor range.

Given these considerations, combined with the fact that
the quality of the estimate depends on factors such as the
number of participants and the complexity of the models,
we are unable to provide general recommendations about
the number of samples necessary for the reliable application
of Warp-III sampling. Warp-III requires more posterior
samples than one would typically collect for the purpose
of parameter estimation. In our experience, a minimum
of 1000-2000 posterior samples (collapsed across chains)
typically provides a reasonable starting point in single-
participant applications. In hierarchical applications, we
recommend at least 10,000–20,000 samples. Nevertheless,
as with all simulation-based methods, the more samples,
the better. Note that our recommendations assume that the
posterior samples are not highly auto-correlated; the degree
of thinning in our simulations resulted in posterior samples
that were virtually uncorrelated. Although autocorrelation
is not itself necessarily a problem for parameter estimation,
it does reduce the effective number of samples, and when
large numbers of samples are required it is practically
efficient to thin the samples, at least to the degree that there
is little loss of effective sample size. Warp-III also benefits
from having posterior samples with low autocorrelation.
One reason is that the “optimal” bridge function is only
optimal in case the posterior samples are independent and
identically distributed which is not the case when using
MCMC methods. However, some autocorrelation may not
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Table 1 Overview of the transformations used in the Warp-III implementation. θi denotes a parameter and ωi denotes the corresponding new
parameter that is obtained after having transformed θi to the real line. l denotes a parameter lower bound and u denotes an upper bound. �(·)
denotes the cumulative distribution function and φ(·) the probability density function of the normal distribution. The table displays the parameter
type, the corresponding transformation, inverse-transformation, and the relevant Jacobian contribution

Type Transformation Inv.-Transformation Jacobian contribution

unbounded ωi = θi θi = ωi

∣

∣

∣

∂θi

∂ωi

∣

∣

∣ = 1

lower-bounded ωi = log (θi − l) θi = exp (ωi) + l

∣

∣

∣

∂θi

∂ωi

∣

∣

∣ = exp (ωi)

upper-bounded ωi = log (u − θi) θi = u − exp (ωi)

∣

∣

∣

∂θi

∂ωi

∣

∣

∣ = exp (ωi)

double-bounded ωi = �−1
(

θi−l
u−l

)

θi = (u − l)� (ωi) + l

∣

∣

∣

∂θi

∂ωi

∣

∣

∣ = (u − l) φ (ωi)

be too worrisome since, in our implementation, we use an
effective sample size in this bridge function.

When to use simple bridge sampling and when to use
Warp-III sampling

The Warp-III estimator is an advanced version of the
“simple” multivariate normal bridge sampling estimator
(e.g., Overstall & Forster, 2010). Warp-III matches the
first three moments of the posterior and the proposal
distribution; the multivariate normal approach—which is
equivalent to Warp-II—matches only the first two moments
of the distributions. As the precision of the estimate of
the marginal likelihood is governed by the overlap between
the posterior and the proposal distribution, the Warp-III
estimate is at least as precise as the estimate computed
using simple bridge sampling.17 With symmetric posterior
distributions, the advantage of Warp-III diminishes, but
nothing is lost in terms of precision relative to simple bridge
sampling. In contrast, with skewed posterior distributions,
Warp-III results in more precise estimates because it is able
to match the posterior and the proposal more closely. Note
that both Warp-III and simple bridge sampling assume that
the posterior samples are allowed to range across the entire
real line. Hence, the skew of the posterior distributions must
be assessed after the appropriate transformations. This does
not mean that sampling from the posterior distributions must
occur with all parameters transformed to the real line. In
fact, in our simulations, only the v parameters were sampled
on the real line; all other parameters were transformed to the
real line after the posterior samples have been obtained. Our
R-implementation of the Warp-III sampler automatically
applies the appropriate transformations to the posterior
samples obtained with the DMC software. Specifically, the
implementation assumes that each posterior component can

17For multi-modal posterior distributions, both simple bridge sampling
and Warp-III sampling may result in insufficient overlap between the
posterior and proposal distribution, and should be used with caution.

be transformed separately18 and distinguishes between four
different parameter types: (1) unbounded parameters, (2)
lower-bounded parameters, (3) upper-bounded parameters,
and (4) double-bounded parameters (i.e., parameters that
have a lower and an upper bound). Table 1 displays the
transformations that are used for the different parameter
types. After having detected the parameter type, an
appropriate transformation is applied and the expressions
are adjusted by the relevant Jacobian contribution (see
Table 1).

In general, Warp-III is a more powerful tool than simple
bridge sampling for estimating the marginal likelihood, but
the gain in precision depends on the particular application.
A potential advantage of simple bridge sampling is its
relative speed. Warp-III results in a mixture representation
which requires one to evaluate the un-normalized posterior
twice as often as in simple bridge sampling (e.g., Gronau
et al., 2019; Overstall, 2010). This implies a speed–accuracy
trade-off: simple bridge sampling may be less precise
but faster; Warp-III may be more precise but slower. Of
course, one may increase the precision of the simple bridge
sampling estimate by increasing the number of posterior
samples. However, this approach neglects the fact that—
in evidence-accumulator models in particular—obtaining
the posterior samples typically takes substantially longer
than computing the marginal likelihood using Warp-III.
Therefore, although simple bridge sampling is faster for a
given (initial) set of posterior samples, it is not necessarily
true that it is more efficient to run the simpler version based
on additional posterior samples than to run Warp-III on
the initial set of samples to obtain comparable precision.
Furthermore, we expect that the problem of seemingly non-
converging estimates may be more frequent when using
simple bridge sampling. Although this can be addressed by
restarting the iterative scheme from an appropriately chosen

18Consequently, the code would need to be adjusted to allow for
covariance matrix parameters or probability vector parameters where
constraints apply jointly to several components.
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start value, as shown in the left panel of Fig. 5, this solution
substantially increases the uncertainty of the estimate.

In situations where the joint posterior is exactly multi-
variate normal,19 simple bridge sampling is clearly more
efficient than Warp-III. However, it is challenging to assess
multivariate normality in the high-dimensional spaces reg-
ularly encountered in hierarchical evidence-accumulation
models. Although evaluating the marginal posterior distri-
butions is feasible in most standard applications, normality
of the marginals—which is often not the case for evidence-
accumulation models applied to scarce data—does not nec-
essarily imply that the joint posterior is multivariate normal.
In sum, if one expects multivariate normal posterior distri-
butions, simple bridge sampling is more efficient and should
be preferred. Whenever this is not the case, we recommend
Warp-III sampling.

Conclusions

In this article, we advocated Warp-III bridge sampling as
a general method for estimating the marginal likelihood—
and hence the Bayes factor—for evidence-accumulation
models. We demonstrated that Warp-III sampling provides
a powerful and flexible approach that can be applied
to both nested and non-nested model comparisons and—
once posterior samples from the competing models have
been obtained—it is straightforward to implement even
in hierarchical settings. We believe that our easy-to-use
and freely available implementation of Warp-III sampling
will greatly facilitate the use of principled Bayesian model
selection in practical applications of evidence-accumulation
models.

Open Practice Statement

R scripts for reproducing the results presented in this
manuscript are available at https://osf.io/ynwpa/.

Author Note This research was supported by a Netherlands Organi-
sation for Scientific Research (NWO) grant to QFG (406.16.528), an
NWO Veni grant (451-15-010) to DM, and an Australian Research
Council discovery project DP160101891 to AH. Correspondence
should be sent to Quentin F. Gronau, University of Amsterdam,
Nieuwe Achtergracht 129 B, 1018 WT Amsterdam, The Netherlands.
E-mail may be sent to quentin.f.gronau@gmail.com. The authors
would like to thank Jackie Wong for valuable suggestions on how to
deal with seemingly non-converging bridge sampling estimates and
Ngoc-Han Tran for conducting the literature review.

19As before, multivariate normality should hold for the appropriately
transformed posterior distribution.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix A: Savage–Dickey density ratio

Suppose that the parameter vector θ can be partitioned into
a set of nuisance parameters ζ and test-relevant parameters
η so that θ = (ζ , η). The Savage–Dickey density ratio
(Dickey & Lientz, 1970; Wagenmakers et al., 2010) can then
be used to compute the Bayes factor for testing whether
η is equal to a constant η0 in the presence of nuisance
parameters ζ . Concretely, the Bayes factor compares model
M0, which assigns ζ the prior density p0(ζ ) and fixes η

to the constant η0 to model M1 which assigns ζ and η

the joint prior density p1(ζ , η). The Savage–Dickey density
ratio representation of the Bayes factor is then given by

BF01 = p1(η0 | y)

p1(η0)
, (10)

where p1(η0 | y) denotes the marginal posterior density
of η under M1 evaluated at η0 and p1(η0) denotes the
marginal prior density of η under M1 evaluated at η0.
Note that this representation is only valid in case p1(ζ |
η0) = p0(ζ ). Hence, conditional on η = η0, the prior
density for ζ under M1 must be identical to the prior
density of ζ under M0.20 In our single-participant example,
this assumption holds since the prior under M1 is given
by p1(ζ , η) = p0(ζ ) p1(η). We used a logspline density
estimator (Kooperberg, 2016) to estimate the marginal
posterior density at the point of interest.

Appendix B: Reversible jumpMarkov chain
Monte Carlo

Reversible jump Markov chain Monte Carlo (RJMCMC;
Green, 1995) refers to an MCMC sampler on an enlarged
state space, which incorporates a model indicator M as an
additional unknown. The posterior of the model indicator
M can be used to estimate posterior model probabilities
and posterior model odds. An estimate of the Bayes factor
can be obtained by dividing the estimated posterior model
odds by the known prior model odds. Barker and Link
(2013) described a version of RJMCMC that represents the
process intuitively as a Gibbs sampler where updates of the

20Verdinelli and Wasserman (1995) proposed a generalization of the
Savage–Dickey density ratio that relaxes this assumption.
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model indicator M are alternated with updates of a “palette”
parameter vector ψ . The palette vector ψ has dimension
d = max {dim(θk)} where θk denotes the parameter vector
for model Mk , k = 1, 2, . . . , K and K denotes the number
of models under consideration.21 Each model’s parameter
vector θk can be obtained from the palette vector ψ by a
known invertible mapping gk(ψ) = ξ k = (θk, uk), where
uk denotes a vector of auxiliary variables which is redundant
to model Mk but ensures that the dimensionality of ψ and
ξ k matches.

The full-conditional distributions for the Gibbs sampler
are determined by the joint model p(y, ψ, M) = p(y |
ψ,M)p(ψ | M)p(M). The model prior p(M) is set by
the researcher and evaluating the likelihood p(y | ψ, M)

for a specific model Mk is straightforward since the model-
specific parameter vector θk can be obtained from ψ using
the function gk . The prior p(ψ | M) is obtained by applying
the change of variables theorem. Recall that ψ = g−1

k (ξ k)

and ξ k = (θk, uk). Furthermore, note that the prior p(ξ k |
Mk) = p(θk, uk | Mk) factorizes as p(ξ k | Mk) =
p(θk | Mk)p(uk | θk, Mk).22 For clarity of what follows,
let fk(ξ k) = p(ξ k | Mk). The implied prior on ψ under
model Mk is then given by

p(ψ | Mk) = fk (gk(ψ))

∣

∣

∣

∣

∂gk(ψ)

∂ψ

∣

∣

∣

∣
, (11)

where
∣

∣

∣

∂gk(ψ)
∂ψ

∣

∣

∣ denotes the Jacobian determinant of

the transformation. The Gibbs sampler can then be
implemented by alternating between 1) drawing ψ from the
full-conditional distribution p(ψ | M, y) and 2) drawing M

from the full-conditional distribution p(M | ψ, y). Drawing
ψ from p(ψ | M, y) is accomplished as follows: one first
draws θk from the model-specific posterior p(θk | Mk, y),
then samples uk from p(uk | θk, Mk), sets ξ k = (θk, uk),
and then computes ψ = g−1

k (ξ k). This means that one
can conveniently post-process previously obtained model-
specific posterior samples since a sample from p(θk |
Mk, y) can be obtained by selecting randomly a draw from
stored model-specific MCMC output. The full-conditional
distribution for the model indicator M is a categorical
distribution, where Mk is sampled with probability

p(Mk | ψ, y) = p(y | ψ, Mk) p(ψ | Mk)p(Mk)
∑K

j=1 p(y | ψ, Mj ) p(ψ | Mj)p(Mj )
.

(12)

21Technically, d ≥ max {dim(θk)}, that is, the dimensionality of
ψ could be larger than the maximum dimensionality of the model
parameter vectors, however, this is uncommon in practice.
22Typically, the distribution of the auxiliary variable vector uk is
assumed to be conditionally independent of θk so that p(uk |
θk, Mk) = p(uk | Mk).

We used the marginalized version of the Gibbs sampler
described in section 2.3 of Barker and Link (2013). This
marginalized version estimates the transition matrix 	 =
({

φij

})

, where φij = p(M(b+1) = Mj | M(b) = Mi)

and M(b) denotes the sampled value for M at iteration b

of the Gibbs sampler. The marginalized version does not
require one to draw M; instead, one estimates 	 directly,
one row at a time. The ith row of 	 is estimated by
repeatedly 1) drawing ψ given model Mi from p(ψ | Mi, y)

and 2) using the drawn ψ to compute p(Mj | ψ, y),
j = 1, 2, . . . , K . A Rao-Blackwellized estimate of the
ith row of 	 is then given by the average of the vector
(p(M1 | ψ, y), p(M2 | ψ, y), . . . , p(MK | ψ, y)) across
draws from p(ψ | Mi, y). This process is repeated for all
models Mi , i = 1, 2, . . . , K to obtain an estimate of all
rows of the transition matrix 	. An estimate of the posterior
model probabilities is then obtained by normalizing the left
eigenvector of the estimated transition matrix corresponding
to the eigenvalue 1. An advantage of this marginalized
version is that instead of sampling models according to their
posterior model probabilities, one can fix the number of
samples for each model.

We applied this marginalized Gibbs sampler RJMCMC
version to our single-participant example. The dimension-
ality of ψ was equal to the number of parameters of the
full model. Under the full model, we simply set ψ = θ full.
Under the null model, there was one parameter less since
vtrue was fixed. Hence, the dimensionality of the auxiliary
variable vector uk = u was one for the null model and
we set ψ = (θnull, u). The auxiliary variable u was pro-
posed from a distribution constructed based on a logspline
fit (Kooperberg, 2016) to the posterior samples for vtrue

under the full model. Therefore, to relate the palette vector
ψ to the model parameters (and the auxiliary variable for the
null model), we used the identity mapping for both models
(i.e., gk was the identity function for both models); conse-
quently, the Jacobian determinants of the transformations
were equal to one.
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