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Abstract: The new series of single-crystalline chromium selenides, Ta-doped ZnCr2Se4, was synthe-
sised by a chemical vapour transport method to determine the impact of a dopant on the structural
and thermodynamic properties of the parent compound. We present comprehensive investigations
of structural, electrical transport, magnetic, and specific heat properties. It was expected that a partial
replacement of Cr ions by a more significant Ta one would lead to a change in direct magnetic interac-
tions between Cr magnetic moments and result in a change in the magnetic ground state and electric
transport properties of the ZnCr2−xTaxSe4 (x = 0.05, 0.06, 0.07, 0.08, 0.1, 0.12) system. We found that
all the elements of the cubic system had a cubic spinel structure; however, the doping gain linearly
increased the ZnCr2−xTaxSe4 unit cell volume. Doping with tantalum did not significantly change
the semiconductor and magnetic properties of ZnCr2Se4. For all studied samples (0 ≤ x ≤ 0.12),
an antiferromagnetic order (AFM) below TN~22 K was observed. However, a small amount of Ta
significantly reduced the second critical field (Hc2) from 65 kOe for x = 0.0 (ZnCr2Se4 matrix) up to
42.2 kOe for x = 0.12, above which the spin helical system changed to ferromagnetic (FM). The Hc2

reduction can lead to strong competition among AFM and FM interactions and spin frustration, as
the specific heat under magnetic fields H < Hc2 shows a strong field decrease in TN.

Keywords: single crystals; semiconductors; antiferromagnetic; specific heat

1. Introduction

Single crystals are required in many fields of modern technology and the electronic in-
dustry. They are used for lasers, as an optical component for spectroscopy, in oscillators, in
light-emitting diodes and in innumerable other devices. Among seleno-spinel crystals such
as AB2Se4 matrices, where A and B are the metallic ions occupying tetra- and octahedral
sites, respectively, and matrices diluted with non-magnetic ions, due to the large cubic unit
cell (about 10 Å), the effects of site disorder, lattice frustration and random distribution of
spin interactions [1–5] create new potential applications.

The ZnCr2Se4 belongs to the group of seleno-spinels and crystallises in a cubic system
(SG: Fd3m, No. 27), a = 10.4891 Å [6]. This compound is a p-type semiconductor with a
helical magnetic structure. Magnetic interactions are the result of the existence of exchange-
able Cr–Cr interactions competing with each other. The Cr–Se–Cr interaction causes the
ferromagnetic (FM) ordering of the magnetic moments of chromium ions. In contrast, the
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Cr–Se–Se–Cr and Cr–Se–Zn–Se–Cr interactions lead to antiferromagnetic (AFM) ordering.
The FM interactions are evidenced by the positive value of paramagnetic Curie–Weiss
temperature θCW = 115 K and AFM interactions are present below TN ≈ 21 K [7–10]. An
increasing dc magnetic field shifts TN to lower temperatures during a susceptibility peak in
the paramagnetic region—to higher ones. Next, the first critical field Hc1 values connected
with a metamagnetic transition decrease slightly with temperature. The values of the
second critical field, Hc2, connected with the breakdown of the conical spin structure, drop
rapidly with temperature, suggesting a spin frustration of the re-entrant type [2]. Low-
angle neutron scattering (SANS) measurements showed the absence of any long-range
magnetic order in the high-field (spin-nematic) phase, as well as the fact that all observed
phase transitions were surprisingly isotropic concerning the field direction [11].

The introduction of the third cation to the ZnCr2Se4 crystal lattice, depending on
many factors, may have a strong influence on changes in physicochemical properties. The
most important factors are: (a) the size of the ion radius, (b) the position of the ion in the
spinel structure (tetra- or octahedral), (c) the coordination number (CN), (d) the type of
chemical bond [12]. Substitution of an additional cation into the ZnCr2Se4 matrix resulted
in such phenomena as the appearance of spin glass [13–15], polaron conductivity [16],
ferrimagnetism [17] and the enhancement of both FM [18,19] and AFM interactions [20,21].

This article describes the family of ZnCr2Se4 single crystals, doped with Ta, obtained
by chemical vapour transport (CVT method), as well as their physicochemical properties.
The purpose of the present study was to investigate the effect of the Ta ion admixture on the
stability of the cubic symmetry and the physical (magnetic, electrical, thermal) properties of
a ZnCr2Se4-based spinel. This work continues our previous works focusing on modifying
ZnCr2Se4 properties by incorporating the additional d-electronic elements into the crystal
lattice. In this study, we used a computer simulation of the mechanism of chemical vapour
transport. To the best of our knowledge, this is the first demonstration of the synthesis of
ZnCr2Se4 single crystals containing tantalum ions and their properties.

2. Materials and Methods

Commercially available high-purity elements Zn, Ta, Cr, Se (5N, Sigma Aldrich,
Poznań, Poland) and anhydrous CrCl3 (Sigma Aldrich, Poznań, Poland) were used in the
present study. Synthesis of ZnCr2Se4: Ta single crystals was carried out using a chemical
transport reaction method. Chemical vapour transport is a method in which a solid
substance is transferred using the reversible gaseous reaction from the T1 temperature
(dissolution zone) to the T2 temperature (crystallisation zone). The partial equilibrium
pressures of the components pi depend on the value of the equilibrium constant Ka of the
reaction, which can occur at a given temperature. The most significant changes in pi occur
when Ka reaches a value close to 1 (logKa ≈ 0).

For this purpose, a thermodynamic model of ZnCr2Se4: Ta single-crystal growth was
prepared. To determine the ability and conditions of transport reaction, a set of all the
hypothetical reactions that may appear in the ZnSe-Ta-Se-CrCl3 system was created. These
reactions, which were used to determine the dependence of logKa values on the temperature,
were calculated using the HSC Chemistry computer programme (HSC Chemistry ver. 6.01,
Release 2009, Metso Outotec Corporation, Helsinki, Finland) [22]. In this case, the modified
chemical vapour transport method was used. The single crystals of ZnCr2Se4: Ta were
grown from the binary selenide ZnSe, pure Ta and Se, and with CrCl3 as a transport
carrier. Therefore, the hypothetical reaction set included the reactions of binary ZnSe,
pure tantalum and selenium with CrCl3 and the dissociation products of CrCl3 (CrCl4 and
Cl2). The ZnSe was obtained by the ceramic method [14,18]. Mixtures of the ZnSe, Ta, Se
and CrCl3 were placed in quartz ampoules (length—200 mm, inner diameter—20 mm)
evacuated to 10−5 mbarr. The ampoules were placed in a two-zone tubular furnace. The
furnace was cooled for 24 h, after around 500 h of heating. The chemical composition of the
obtained single crystals and their surfaces were studied by scanning electron microscopy
(SEM) Jeol 6480 (JEOL USA, INC., Peabody, MA, USA), with a propertied energy-dispersive
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X-ray spectrometer (SEM/EDS). Four single crystals with differing tantalum content were
chosen for X-ray diffraction (XRD) measurements (Table 1). The structural parameters
were determined using a SuperNova X-ray diffractometer (Agilent, Oxfordshire, UK). The
technical details and the computer programmes used are described in [21,23].

Table 1. Conditions of growth and chemical composition of ZnCr2Se4: Ta single crystals. Td is the temperature of the
dissolution zone, Tc is the temperature of the crystallisation zone and ∆T is the difference in temperature between the
dissolution and the crystallisation zones.

No. Nominal
Formula

Td
(K)

Tc
(K)

∆T
(K)

% Weight Real Chemical
FormulaZn Cr Ta Se

(1) Zn0.9Ho0.1Cr2Se4 1223 1153 70 13.29 ± 0.09 20.66 ± 0.06 1.99 ± 0.01 64.06 ± 0.04 Zn1.05Cr1.95Ta0.05Se4
(2) Zn0.9Ho0.1Cr2Se4 1133 1083 50 13.22 ± 0.08 20.53 ± 0.07 2.14 ± 0.02 64.11 ± 0.05 Zn0.99Cr1.94Ta0.06Se4
(3) Zn0.8Ho0.2Cr2Se4 1203 1143 60 13.08 ± 0.06 20.37 ± 0.06 2.45 ± 0.05 64.10 ± 0.03 Zn0.99Cr1.93Ta0.07Se4
(4) Zn0.8Ho0.2Cr2Se4 1203 1153 50 13.12 ± 0.02 20.12 ± 0.04 2.68 ± 0.06 64.18 ± 0.03 Zn0.99Cr1.82Ta0.08Se4
(5) Zn0.7Ho0.3Cr2Se4 1203 1133 70 13.13 ± 0.03 19.75 ± 0.05 3.25 ± 0.03 63.87 ± 0.03 Zn0.99Cr1.89Ta0.10Se4
(6) Zn0.7Ho0.3Cr2Se4 1203 1143 60 13.21 ± 0.02 19.53 ± 0.04 3.92 ± 0.04 63.34 ± 0.02 Zn1.00Cr1.87Ta0.12Se4

The electrical resistivity ρ(T) was measured by the four-point DC method with an
accuracy of around ±0.6% using a KEITHLEY 6517B Electrometer/High Resistance Meter
(Keithley Instruments, LLC, Solon, OH, USA) in the temperature range of 77–400 K. A
Quantum Design SQUID-based MPMSXL-5-type magnetometer (Quantum Design, San
Diego, CA, USA) to determine the specific heat and magnetic parameters in the temperature
range 10–300 K was used. Measurements were carried out at a magnetic field of 100 Oe for
both in the ZFC (zero-field cooling) and FC (field cooling) mode. The Néel temperature
and the critical fields were determined as the temperature corresponding to dχ/dT vs. T
and dM/dH vs. H. The effective magnetic moment was determined using the following
equation [24,25]:

µe f f =

√
3kBC
NAµ2

B

∼= 2.828
√

C (1)

where kB is the Boltzmann constant, NA is the Avogadro number, µB is the Bohr magneton,
and C is the molar Curie constant. The magnetic superexchange integrals for the first two
coordination spheres J1 and J2 were calculated using the Holland and Brown equations [26].

TN = −5J1 + 10J2, θ = 15J1 + 90J2 (2)

The methods used to determine the electrical properties and specific heat are described
in detail in [17,18,20]. Thermogravimetry and differential scanning calorimetry (TG/DSC)
were carried out using a Labsys Evo system, with a heating rate of 5 ◦C/min and in an
inert gas atmosphere (Ar).

3. Results and Discussion
3.1. Growth of Single Crystals and Chemical Composition

Synthesis of the single crystals of ZnCr2Se4: Sn was carried out according to the reaction:

4xZnSe + 4yHo + 4ySe + 2CrCl3→ZnxHoyCr2Se4 + 3xZnCl2 + 3yHoCl2,

where: y = 0.1, 0.2, 0.3 and x = 1 − y.
We synthesised the samples with an amount of Ta ions higher than 0.3. For the samples

with y = 0.4, 0.5, we did not observe single crystals in ampoules. One of the main reasons
is that one end member of the ZnxTayCr2Se4 series, i.e., TaCr2Se4, does not exist. Based
on the reactions presented in Figure 1, it can be assumed that volatile zinc and selenium
compounds are formed in the ZnSe-Ta-Se-CrCl3 system, e.g., ZnCl2, Zn2Cl4, SeCl2, SeCl4
and Se2. Thermodynamic calculations showed that in the ZnSe-Ta-Se-CrCl3 system, ZnSe
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and Se are mainly transported by gaseous CrCl3 and CrCl4 (values of logKa are close to
zero in the selected temperature range: 1000–1400 K; Figures 1 and 2).
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Figure 1. The dependence of the logKa vs. temperature T for the ZnSe and pure Se transporting reactions.

The transport reactions presented in Figure 2 show that volatile tantalum compounds
can be formed in the ZnSe-Ta-Se-CrCl3 system, e.g., TaCl, TaCl2, TaCl3, TaCl4 and TaCl5.
For CrCl4, logKa reaches values close to zero at lower temperatures than for CrCl3. It
can therefore be assumed that the chemical transport for Ta occurs mainly with CrCl4.
The logKa of the transport reactions with CrCl3 and CrCl4 for tantalum has values and
shapes similar to the corresponding Zn and Se transport reactions (Figure 1). Thus, the
conditions for the simultaneous transport of ZnSe, Ta and Se, and spinel crystallisation,
are met. Calculated logKa values for transport reactions with chlorine are close to zero at
higher temperatures. This indicates that chlorine is not involved in the transport process
in the selected temperature range. Based on these calculations, the reaction conditions
were chosen (temperatures of the dissolution and crystallisation zones and their difference).
The crystallisation zone temperature was between 1070 and 1180 K. The melting zone
temperature was in the range 1175–1233 K. Their difference was 50–70 K. Smaller differences
in temperature (∆T) are more favourable for the crystallisation process. The choice of
reaction conditions was based on our experience with the growth of ZnCr2Se4 single
crystals. The best results have been achieved using temperatures of the dissolution zone
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in the range 1123–1223 K. The choice of the reaction temperature is also limited by the
thermal endurance of silica glass (~1500 K). These reaction conditions allowed us to obtain
single crystals of good quality (Figure 3).
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To determine the average chemical composition, measurements were carried out at
20 different locations of the single crystal. Each of the measuring areas was approximately
50 × 30 µm. Then, the average chemical composition was calculated. The error bar
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represents standard deviation. Relatively low values of standard deviation indicate good
homogeneity of the chemical composition. Details of the reaction conditions and results of
SEM measurements are presented in Table 1.

As shown in Table 1, the determined real chemical composition showed a lower
amount of incorporated tantalum than the nominal composition. On the one hand, this
may be due to the lower amount of tantalum transported to the crystallisation zone. On
the other hand, the separation of tantalum from the system during the dissolution and
crystallisation processes is likely.

3.2. Structural Study

The origin of the unit cell is agreed with the point 3m of the space group Fd3m
(No. 227). In a normal spinel, the Zn2+ ions occupy the tetrahedral position 8a: 1/8, 1/8,
1/8 (A site), and the Cr3+ ions occupy the position 16d: 1

2 , 1
2 , 1

2 (B site). To determine the
cation distribution, two models were taken into account for each composition.

The first model of the structure refinement was considering the Ta ions’ presence
in the A sites (tetrahedral) with coupled site occupancy factors (SOF) and constrained
atomic displacements. Due to the strong correlation, the SOFs for Zn and Ta were refined
separately in alternative calculations. The convergence caused the rejection of Ta ions from
the tetrahedral sites.

The same procedure was applied to Ta ions occupied by the B sites (octahedral).
This approach led to acceptable atomic displacement parameters and SOFs, which al-
lowed for description of the general chemical formula for obtained single crystals as
presented in Tables 2 and 3. On the other hand, a slightly increased thermal shift at
the B site may indicate a static disturbance in the position of the Cr3+/Ta3+ pseudo-
ion, which is mainly caused by the difference in ionic charges and in ionic and cova-
lent radii (ri(Zn2+) = 0.60 Å, ri(Cr3+) = 0.62 Å, ri(Ta3+) = 0.72 Å and Rc(Zn2+) = 0.74 Å,
Rc(Cr3+) = 0.76 Å, Rc(Ta3+) = 0.86 Å, respectively) [27]. Based on the structural study, the
formula describing cation distribution in the system is: ZnCr2-xTaxSe4, where x = 0.05, 0.06,
0.07, 0.08, 0.10 and 0.12, which is shown in Tables 2 and 3. In these chemical compositions,
the region of the solubility limit of tantalum in the ZnCr2-xTaxSe4 system was found to
be equal to 0.12. The structural study showed the obtained ZnCr2-xTaxSe4 single crystals
crystallise in a cubic system with space group Fd3m (No.227, Z = 8). The lattice parameters
of the obtained single crystals were larger than the lattice parameter of non-substituted
ZnCr2Se4 (a = 10.489 Å) and increased with the rising amount of tantalum (Table 2).

Table 2. Structural parameters of the ZnCr2-xTaxSe4 single crystals.

Chemical
Formula

Lattice Parameter
(Å)

Volume
(Å3)

Density Calc.
(Mg/m3)

Absorption Coeff.
(mm−1)

Goodness of
Fit on F2

R Parameters

R1 wR2

ZnCr1.95Ta0.05Se4 10.4786(12) 1150.56(4) 5.679 33.717 1.128 0.0122 0.0335
ZnCr1.94Ta0.06Se4 10.4794(3) 1150.82(2) 5.693 33.801 1.123 0.0145 0.0423
ZnCr1.93Ta0.07Se4 10.4832(9) 1152.08(9) 5.701 33.827 1.156 0.0195 0.0500
ZnCr1.92Ta0.08Se4 10.4938(12) 1155.56(2) 5.700 33.834 1.156 0.0179 0.0534
ZnCr1.90Ta0.10Se4 10.5003(15) 1157.73(3) 5.712 33.852 1.213 0.0155 0.0451
ZnCr1.88Ta0.12Se4 10.5069(18) 1159.90(3) 5.737 33.880 1.234 0.0164 0.0423

Tantalum ions accommodated the octahedral sites, substituting Cr3+ ions. The en-
hancement of the lattice parameters was linear (Figure 4) and confirmed the presence of
tantalum ions as Ta3+ in the crystal lattice of ZnCr2Se4. This phenomenon is consistent with
the differences between the ionic radii of Zn2+, Ta3+ (in octahedral coordination) and Cr3+.
The positional parameter of Se (u), which is a measure of the anion sublattice distortion
from the cubic close packing, did not change significantly from the ideal value of x = 0.250.
The tantalum amount did not influence the u parameter. The slight differences between the
tested single crystals were in the range of the standard deviation (Table 3). The same was
observed in the metal–metal and metal–selenium distances (Table 4), where the differences
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were insignificant. The structure refinement parameters are presented in Table 3, while the
selected bond distances and angles are shown in Table 4.

Table 3. Atomic coordinates and equivalent isotropic displacement parameters of the ZnCr2−xTaxSe4 (x = 0.05, 0.06, 0.07,
0.08, 0.10 and 0.12) single crystals. The Wyckoff positions of the atoms in the spinel structure are: Zn in 8 b (3/8, 3/8, 3/8);
Cr/Ta in 16c ( 1

2 , 1
2 , 1

2 ) and Se in 32 e (x, x, x).

Spinel Anion
Parameter u

SOF in A Site SOF in B Site Uiso (Å × 103)

Zn Cr/Ta Zn Cr/Ta Se

ZnCr1.95Ta0.05Se4 0.2594(1) 1.0 1.951:0.049(9) 8.73(15) 5.77(15) 6.13(12)
ZnCr1.96Ta0.04Se4 0.2594(1) 1.0 1.961:0.039(9) 8.83(15) 5.65(15) 6.24(12)
ZnCr1.93Ta0.07Se4 0.2594(1) 1.0 1.929:0.071(9) 8.83(15) 5.65(15) 6.24(12)
ZnCr1.92Ta0.08Se4 0.2594(2) 1.0 1.919:0.081(1) 8.24(18) 7.14(17) 7.57(12)
ZnCr1.90Ta0.10Se4 0.2594(2) 1.0 1.902:0.098(2) 8.80(17) 6.15(16) 6.27(12)
ZnCr1.88Ta0.12Se4 0.2594(1) 1.0 1.879:0.121(3) 8.67(12) 5.98(14) 6.54(12)
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Figure 4. Dependence of the lattice parameters of ZnCr2-xTaxSe4 single crystals on the amount of 
tantalum. 
Figure 4. Dependence of the lattice parameters of ZnCr2-xTaxSe4 single crystals on the amount
of tantalum.

Table 4. Selected interatomic distances (Å) and bond angles (deg) of the ZnCr2-xTaxSe4 spinel
single crystals.

Spinel
Bond Distances Bond Angles

Zn-Se Cr/Ta-Se Se-Zn-Se Se-Cr/Ta-Se

ZnCr1.95Ta0.05Se4 2.4388(3) 2.5252(2) 109.5(0) × 6
180.0(0) × 3
94.543(7) × 6
85.457(9) × 6

ZnCr1.94Ta0.06Se4 2.4401(3) 2.5248(2) 109.5(0) × 6
180.0(0) × 3
94.574(7) × 6

85.4426(9) × 6

ZnCr1.93Ta0.07Se4 2.4407(4) 2.5253(2) 109.5(0) × 6
180.0(0) × 3
94.575(9) × 6
85.425(9) × 6

ZnCr1.92Ta0.08Se4 2.4450(4) 2.5299(2) 109.5(0) × 6
180.0(0) × 3
94.575(8) × 6
82.425(8) × 6

ZnCr1.90Ta0.10Se4 2.4454(4) 2.55137(2) 109.5(0) × 6
180.0(0) × 3
94.555(8) × 6
85.445(8) × 6

ZnCr1.88Ta0.12Se4 2.4482(4) 2.55543(2) 109.5(0) × 6
180.0(0) × 3
94.575(8) × 6
85.425(8) × 6
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3.3. Electrical and Magnetic Properties

The electrical measurements of ZnCr2-xTaxSe4 (x = 0.5, 0.6, 0.7, 0.8, 0.10 and 0.12)
showed the semiconducting properties and thermally activated conduction in the intrin-
sic region (200–400 K) with the activation energy of Ea~0.22 eV. In the extrinsic region
(77–125 K), the activation of electrical conductivity was not observed (Figure 5). The influ-
ence of anisotropy on the value of electrical resistivity in the studied spinel single crystals
was not observed, as in the CuCr1.6V0.4Se4 spinel single crystal, in which the resistance
was measured in the direction of [001] and [111] [28].
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(where x = 0.05, 0.06, 0.07, 0.08, 0.10 and 0.12).

A similar dependence of electrical resistance ρ(T) on temperature was observed by
Watanabe [29] in ZnCr2Se4 single crystals measured in different crystallographic directions.
No significant influence of the crystallographic orientation on the value of the specific
electrical resistance was observed. This may have been because the spinel structure had
a high cubic symmetry. The SANS measurements also confirmed the isotropic phase
transitions with respect to the field direction in the monocrystalline ZnCr2Se4 spinel [11].
The observed ρ(T) dependence in Figure 5 means that doping of the ZnCr2Se4 single crystals
under study with tantalum did not affect the thermal activation of electrical conductivity.

The results of magnetic measurements of ZnCr2-xTaxSe4 spinels are shown in Figures 6–8
and Table 5. The dependence of the dc (in both ZFC and FC mode) showed an AFM order
below the Néel temperature TN ~22 K and FM short-range interactions, evidenced by the
positive Curie–Weiss temperature θCW < 100 K. The TN temperature essentially does not
depend on the concentration of Ta ion. On the other hand, these ions strongly influence the
short-range magnetic interactions visible for different values of θCW (Table 5).

The results mentioned above were confirmed by the negative values of the superex-
change integral for the first coordination sphere (J1) and the positive values of the superex-
change integral for the second coordination sphere (J2) (Table 5). The effective magnetic
moment calculated from the magnetic susceptibility expansion at high temperature cor-
responded to the effective number of Bohr magnetons estimated for the corresponding
content of x chromium ions, as the tantalum ion was in the +III oxidation state of the
octahedral site in the spinel structure. However, an additional magnetic ion may appear
when tantalum is in the +II or +IV oxidation state. Then, its magnetic susceptibility is in the
order of 154× 10−6 emu/mol at 293 K. No split of the ZFC–FC susceptibility was observed,
which suggests a lack of spin frustration in the studied single crystals (Figure 6).
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Figure 8. Magnetisation M vs. temperature T of ZnCr2−xTaxSe4 single crystals (where x = 0.05, 0.06,
0.07, 0.08, 0.10 and 0.12) recorded at 10 K. Critical fields Hc1 and Hc2 are indicated by arrows.

Table 5. Magnetic parameters of ZnCr2-xTaxSe4 spinels—C is the Curie constant, TN is the Néel temperature, θCW is the Curie–Weiss
temperature, µeff is the effective magnetic moment, peff is the effective number of Bohr magnetons, J1 and J2 are the superexchange
integrals for the first two coordination spheres, Hc1 and Hc2 are the critical fields. Experimental data for ZnCr2Se4 were taken from
Ref. [30] for comparison.

Spinel C
(emu × K/mol)

TN
(K)

θCW
(K)

µeff
(µB/f.u.)

M(10K)
(µB/f.u.) peff

J1
(K)

J2
(K)

Hc1
(kOe)

Hc2
(kOe)

ZnCr2Se4 4.08 21 90 5.71 6.0 5.477 −1.65 1.28 10.0 65.0
ZnCr1.95Ta0.05Se4 4.563 22.7 50.3 6.041 4.85 5.408 −2.57 0.99 10.0 43.5
ZnCr1.94Ta0.06Se4 4.944 22.6 41.5 6.288 5.13 5.394 −2.70 0.91 10.4 43.9
ZnCr1.93Ta0.07Se4 4.278 22.4 58.8 5.849 5.30 5.381 −2.38 1.05 10.7 42.7
ZnCr1.92Ta0.08Se4 2.971 22.3 96.1 4.875 5.54 5.367 −1.74 1.36 10.7 45.6
ZnCr1.90Ta0.10Se4 3.630 22.5 79.1 5.388 5.61 5.339 −2.06 1.22 10.2 43.3
ZnCr1.88Ta0.12Se4 3.696 21.9 78.4 5.437 5.71 5.310 −1.98 1.20 10.4 42.2

The magnetisation isotherms depicted in Figure 7 at 10, 20, 30, 40 and 60 K show
characteristic behaviour for the AFM order of magnetic moments and a lack of saturation
in the magnetic field of 70 kOe, below the Néel temperature. Magnetisation isotherms
plotted at 10 K for all samples show two critical fields and an unexpected increase in the
magnetic moment with the rise in the tantalum content (Figure 8). Arrows indicate the
metamagnetic transition at the first critical field Hc1, and the breakdown of the helical
spin arrangement at the second critical field Hc2 in Figure 8. The values of both critical
fields weakly depend on the tantalum content in the sample. However, the tantalum ions
strongly reduce the second critical field by approximately 20 kOe to that for the ZnCr2Se4
matrix [30], without significantly affecting the content of the first critical field. The result is
a lack of magnetisation saturation above the second critical field due to weaker short-range
ferromagnetic interactions.

3.4. Heat Capacity

Figures 9 and 10 show the change in the temperature TN with the increasing magnetic
field B.
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Figure 10. Specific heat C vs. temperature T measured for ZnCr1.90Ta0.10Se4 at zero and external
magnetic fields.

The specific heat experimental data obtained for the series of various Zn1Cr2-xTaxSe4
(x = 0.05 − 0.12) compounds show very similar behaviour in the CB(T) characteristics
obtained at different magnetic fields, which suggests that either the off-stoichiometry in
Zn and/or Cr sites or Ta doping do not change the magnetic properties of the pristine
ZnCr2Se4 compound. The magnetic field strongly decreases the temperature TN char-
acteristic of the magnetic transitions and decreases the intensity of the C peak at TN.
Figure 11 plots [TN(B) − TN(B = 0)]/TN(0) versus magnetic field B. It should be noted
that [TN(B) − TN(B = 0)]/TN(0) ~B2, which is characteristic behaviour of the antiferromag-
netic materials.
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ZnCr2Se4 compound. The magnetic field strongly decreases the temperature TN character-
istic of the magnetic transitions and decreases the intensity of the C peak at TN. Figure 11 
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Figure 11. Entropy S per one Cr ion vs. temperature at the magnetic fields B = 0 and 5 T obtained for
ZnCr1.92Ta0.08Se4.

Figure 12 displays entropy S(T) =
∫ T

0
C(T)

T dT calculated at the magnetic fields B = 0 and
5 T, respectively. For all investigated samples, the value of the magnetic and phonon contri-
bution to the entropy at the ordering temperature TN and B = 0 is around 50% of the entropy
expected, considering the magnetic contribution Sm = R × ln(2S + 1) = 11.52 J/KmolCr.
The field dependence of C shown in Figure 12 is associated with the metamagnetic transition
at the first critical field Hc1. A very similar CB(T) behaviour was experimentally docu-
mented recently for a series of spinels, which did not show a change in the magnetic struc-
ture at Hc2. Figure 12 also indicates magnetic contribution ∆S(T) = S(T, B = 0) − S(T, B = 5T)
for temperatures T > TN, which seems to be characteristic of the family of doped ZnCr2Se4
and recently was discussed as an effect of spin fluctuations in the paramagnetic regime [14].

Materials 2021, 14, 2749 13 of 16 
 

 

Figure 12 displays entropy S(T) = 𝑑𝑇 calculated at the magnetic fields B = 0 and 
5 T, respectively. For all investigated samples, the value of the magnetic and phonon con-
tribution to the entropy at the ordering temperature TN and B = 0 is around 50% of the 
entropy expected, considering the magnetic contribution Sm = R × ln(2S + 1) = 11.52 
J/KmolCr. The field dependence of C shown in Figure 12 is associated with the metamag-
netic transition at the first critical field Hc1. A very similar CB(T) behaviour was experimen-
tally documented recently for a series of spinels, which did not show a change in the mag-
netic structure at Hc2. Figure 12 also indicates magnetic contribution ΔS(T) = S(T, B = 0) − 
S(T, B = 5T) for temperatures T > TN, which seems to be characteristic of the family of 
doped ZnCr2Se4 and recently was discussed as an effect of spin fluctuations in the para-
magnetic regime [14]. 

 
Figure 12. The expression [TN(B) − TN(B = 0)]/TN(0) vs. magnetic field for the series of ZnCr2-xTaxSe4 

samples (x = 0.05, 0.06, 0.07, 0.08, 0.1 and 0.12). The [TN(B) − TN(B = 0)]/TN(0) data are well approxi-
mated by the function f(B) = −aB2. 

3.5. Thermal Analysis 
For the thermal measurements, the single crystals with a more significant amount of 

Ta were chosen to show the changes in thermal properties under the influence of Ta. The 
thermogravimetric (TG) results and differential scanning calorimetry (DSC) measure-
ments vs. temperature are shown in Figure 13 for the ZnCr1.90Ta0.10Se4 single crystals. 

The TG curve shows a mass loss of 34%. This is a similar value to the pure ZnCr2Se4 
(Table 6). The differential scanning calorimetry (DSC) curve showed a small endothermic 
peak at 710 °C for ZnCr1.90Ta0.10Se4, which confirmed that the melting effect occurs at a 
high temperature. These peaks indicate that, for the investigated crystals, the melting ef-
fect appears at high temperatures. However, a shift in the peak towards lower tempera-
tures was observed. This was caused by additional cations (Ta3+), which caused stiffening 
of the crystal lattice. On the one hand, this effect could be caused by an increase in covalent 
binding. On the other hand, the presence of Ta3+ ions is a kind of “impurity”, which in-
duces a change in the endothermic peak position. Similar behaviour was observed in the 
(Zn1-xNdx) Cr2Se4 system [20]. 
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ZnCr2-xTaxSe4 samples (x = 0.05, 0.06, 0.07, 0.08, 0.1 and 0.12). The [TN(B) − TN(B = 0)]/TN(0)
data are well approximated by the function f(B) = −aB2.
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3.5. Thermal Analysis

For the thermal measurements, the single crystals with a more significant amount of
Ta were chosen to show the changes in thermal properties under the influence of Ta. The
thermogravimetric (TG) results and differential scanning calorimetry (DSC) measurements
vs. temperature are shown in Figure 13 for the ZnCr1.90Ta0.10Se4 single crystals.
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Figure 13. DSC/TG curves for ZnCr1.90Ta0.10Se4 single crystals.

The TG curve shows a mass loss of 34%. This is a similar value to the pure ZnCr2Se4
(Table 6). The differential scanning calorimetry (DSC) curve showed a small endothermic
peak at 710 ◦C for ZnCr1.90Ta0.10Se4, which confirmed that the melting effect occurs at a
high temperature. These peaks indicate that, for the investigated crystals, the melting effect
appears at high temperatures. However, a shift in the peak towards lower temperatures
was observed. This was caused by additional cations (Ta3+), which caused stiffening of
the crystal lattice. On the one hand, this effect could be caused by an increase in covalent
binding. On the other hand, the presence of Ta3+ ions is a kind of “impurity”, which
induces a change in the endothermic peak position. Similar behaviour was observed in the
(Zn1-xNdx) Cr2Se4 system [20].

Table 6. Parameters determined from TG and DSC analysis for ZnCr1.90Ta0.10Se4 single crystals. Data for pure ZnCr2Se4,
presented in [20], are shown for comparison.

Ta Content Weight Loss
(%)

Onset
(o)

Endset
(o)

Peak
Minimum

(o)

Peak Height
(mW)

Peak Area
(J)

Enthalpy
(J/g)

0.0 35 735 771 755 6.47 1.09 51.9
0.10 34 693 725 710 4.42 1.83 117.3

4. Conclusions

In summary, we have presented new ZnCr2Se4 single crystals doped with tantalum.
The single crystals ZnCr2-xTaxSe4 (where x = 0.05, 06, 07, 08, 010 and 0.12) were obtained
by chemical vapour transport (CVT method), examined and analysed with XRD, SEM,
DSC/TG, SQUID and QD-PPMS. Structural, electrical, magnetic, specific heat and thermal
measurements showed the spinel structure with the presence of tantalum ions as Ta3+ in
the octahedral sites, semiconducting properties in the intrinsic region, AFM order below
the Néel temperature of 22 K with the FM short-range interactions as well as a strong shift
in the specific heat peak towards lower temperatures with an increase in the magnetic
field and a weaker than expected magnetic and phonon contribution to entropy. Generally,



Materials 2021, 14, 2749 14 of 15

the shift in the specific heat peak and the Néel temperature towards lower temperatures
with increasing dc magnetic field is usually accompanied by a phase transition from a
cubic to a tetragonal structure. In other words, a strong dc magnetic field broadens the
temperature range of the paramagnetic state and the cubic structure of the spinel under
study. The upper critical field indicates that the sample reached the state of FM order below
the structural transition. The situation is similar in the case of the ZnCr2Se4 matrix. The
greatest influence of tantalum was observed in the increase in magnetisation and reduction
in the second critical field.
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