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Background: Bacillus Calmette-Guerin (BCG) instillation is recommended postoperatively
after transurethral resection of bladder cancer (TURBT) in patients with high-risk non-
muscle-invasive bladder cancer (NMIBC). An accurate prediction model for the BCG
response can help identify patients with NMIBC who may benefit from alternative therapy.

Objective: To investigate the value of computed tomography (CT) radiomics features in
predicting the response to BCG instillation among patients with primary high-risk NMIBC.

Methods: Patients with pathologically confirmed high-risk NMIBC were retrospectively
reviewed. Patients who underwent contrast-enhanced CT examination within one to
2weeks before TURBT and received ≥5 BCG instillation treatments in two independent
hospitals were enrolled. Patients with a routine follow-up of at least 1 year at the outpatient
department were included in the final cohort. Radiomics features based on CT images were
extracted from the tumor and its periphery in the training cohort, and a radiomics signature
was built with recursive feature elimination. Selected features further underwent an
unsupervised radiomics analysis using the newly introduced method, non-negative matrix
factorization (NMF), to compute factor factorization decompositions of the radiomics matrix.
Finally, a robust component, which was most associated with BCG failure in 1 year, was
selected. The performance of the selected component was assessed and tested in an
external validation cohort.

Results: Overall, 128 patients (training cohort, n = 104; external validation cohort, n = 24)
were included, including 12 BCG failures in the training cohort and 11 failures in the
validation cohort each. NMF revealed five components, of which component 3 was
selected for the best discrimination of BCG failure; it had an area under the curve
(AUC) of .79, sensitivity of .79, and specificity of .65 in the training set. In the external
validation cohort, it achieved an AUC of .68, sensitivity of .73, and specificity of .69. Survival
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analysis showed that patients with higher component scores had poor recurrence-free
survival (RFS) in both cohorts (C-index: training cohort, .69; validation cohort, .68).

Conclusion: The study suggested that radiomics components based on NMF might be a
potential biomarker to predict BCG response and RFS after BCG treatment in patients with
high-risk NMIBC.

Keywords: BCG immunotherapy, NMF (nonnegative matrix factorization), NMIBC (non-muscle-invasive bladder
cancer), CECT images, radiomics analysis

INTRODUCTION

Bladder cancer (BCa) is one of the most common cancers
worldwide (Siegel et al., 2020). Based on the presence of
muscular-invasiveness, BCa is pathologically categorized into
muscular invasive BCa (MIBC) and non-muscular invasive BCa
(NMIBC). Currently, the standard care for patients with NMIBC
with a high-risk of recurrence is Bacillus Calmette-Guérin (BCG)
instillation along with transurethral resection of bladder tumor
(TURBT) (Babjuk et al., 2019). This therapy is effective in reducing
recurrence and progression and increasing the survival of patients
with high risk (Babjuk et al., 2019). However, approximately
40–60% of patients experience tumor recurrence within 2 years
(Kamat and Sylvester, 2016). The earlier the tumor recurrence or
BCG response is predicted, the better the patients’ chances of
recieving new or alternative therapies because of the high
recurrence rate after BCG treatment (Lotan et al., 2017).

However, no standard method has been established for
predicting responses to BCG instillation. As the outcome of
BCG instillation tends to vary across molecular characteristics,
how to make a quantitative pretreatment prediction on the
recurrence or progression after BCG treatment for better
treatment planning is still a great challenge (Tran et al., 2020).
Various biochemical indicators have been proposed to predict the
responses to BCG in patients with high-risk NMIBC, including
urinary and serum cytokine/chemokine profiles, and peripheral
blood counts, such as eosinophils, neutrophils, lymphocytes, Th1,
and Th2. However, these studies had small sample sizes and were
not externally validated (Kamat et al., 2018; Martínez et al., 2019;
Temiz et al., 2021). No studies have applied medical imaging tests,
such as ultrasound, computed tomography (CT), and magnetic
resonance imaging (MRI), for predicting BCG treatment response,
while they have been widely used for pretreatment prediction of
other cancers, such as breast (Liu et al., 2020; Xiong et al., 2021),
lung (Liu et al., 2021), and renal cancers (Rallis et al., 2021). Since
diagnostic images can depict the phenotypes of bladder cancer in a
non-invasive way, recent studies have illustrated that the utilization
of imaging biomarkers to predict the response of MIBC with
different chemotherapies is feasible (Cha et al., 2017; Hadjiiski
et al., 2020; Necchi et al., 2020). Among these non-invasive
imaging-based radiomics prediction or classification models,
various dimensionality reduction and matrix decomposition
methods have been introduced, such as vector quantization and
principal component analysis. However, these methods have
limited ability to capture the full message of radiomics data
from a small region of interest (ROI) in patients with NMIBC,

whichmight account for the fact that no radiomics model has been
developed for predicting BCG response in such patients.

Non-negative matrix factorization (NMF), an algorithm based
on decomposition by parts (Lee and Sebastian, 1999), has been
introduced to identify distinct molecular patterns, while
recovering meaningful biological information from tumor-
related microarray data (Brunet et al., 2004; Motzer et al.,
2020). In this study, we used NMF to decompose the radiomic
features from small lesions on contrast-enhanced CT images,
which can then be analyzed by combining different features; thus,
generating all variabilities of components to represent samples,
analogous to gene expression patterns in terms of the metagenes
(Brunet et al., 2004). Subsequently, the most relevant component
of BCG failures could be selected, which might be a potential
biomarker for BCG response.

In this study, we applied NMF and our model selection
criterion by factorizing the radiomic features extracted from
the pretreatment contrast-enhanced CT images in NMIBC and
generated different feature components representing different
NMIBC subtypes. We were able to investigate whether
radiomics feature components are associated with BCG failure
and whether this substaging method can be used to improve
patient stratification at diagnosis of NMIBC.

MATERIALS AND METHODS

Study Design
This was a two-center retrospective observational study. An
unsupervised factorization algorithm named NMF, which
iteratively selects the most robust pattern within pretreatment
contrast-enhanced CT images, was proposed to predict the
response to BCG in patients with high-risk NMIBC.
Histopathological examination after TURBT was performed as per
the reference standard. This study was approved by the institutional
review boards of West China Hospital and Shang Jin Nan Fu
Hospital, and was conducted in accordance with the Declaration
of Helsinki, and the requirement for informed consent was waived.

Patients
Patients who 1) were pathologically diagnosed with HR-NMIBC
(Tis or Ta/T1HG urothelial carcinoma) by TURBT; 2) received≥5/
6 BCG induction instillations after TURBT; 3) underwent TURBT
or radical cystectomywhen a new lesion was found during follow-up
cystoscopy; and 4) underwent pretreatment contrast-enhanced CT
scanning before TURBT within one to 2 weeks were included in the
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study. Patients who 1) did not have pre-TURBT pathological results;
2) did not complete BCG induction or had a nonstandard instillation
regimen (i.e., the number of BCG instillation less than 5); 3) had
confirmative surgery at an external institution, or did not have their
recurrence assessed, or had follow-up less than 12mon; 4) did not
undergo pretreatment contrast-enhanced CT scanning; and 5) had
insufficient CT quality to obtain measurements (e.g., due to metal
artifacts) were excluded from the study.

The primary endpoint of this study was the response status to
BCG instillation therapy (BCG failure/BCG response) within 1 year.
Specifically, BCG failure was defined according to the European
Urology Association guidelines (Babjuk et al., 2019). The secondary
endpoint was recurrence-free survival (RFS), defined as the time
interval from the beginning of BCG therapy to the first high-grade
disease recurrence (BCG failure) during follow-up.

Image Recognition and Feature Extraction
Contrast-enhanced CT examination of each patient was
performed within 1–2 weeks before surgery. CT scanning was
performed using a 128-MDCT scanner (SOMATOM Definition
Flash, syngo CT 2012B medical system, Siemens, Germany) or a
160-revolution APAX MDCT scanner (Quantix 160 mm × ray
cube, GEmedical system, United States). All CT examinations
were performed under the following conditions: 120 KVp;
210mA; 14.17 ctdIVOL (mGy); 778.7 DLP (mGy*cm); pitch,
1.0; rotation time, .5 s; section thickness, 2.0 and 5.0 mm.

Three-dimensional region of interest (3D-ROI) was manually
delineated on the CT images using ITK-SNAP software (http://
www.itksnap.org), and the largest tumor was targeted for patients
with multiple lesions in this study. To accurately match the targeted
ROI and the pathological result, we had a coordinator to carefully
review the surgery records and record the final pathological grades
of targeted tumors. Radiologist 1 (4 years’ experience) manually
drew the 3D-ROIs along the tumormargin, and then the radiologist
2 (10 years’ experience) validated these ROIs. To ensure
reproducibility of ROIs, intra-class correlation (ICCs) was used
for evaluating intra-observer agreement. We randomly selected 30
patients and re-delineated ROIs by radiologists 1 one month later
after the initial ROI segmentation. An ICC greater than 0.75 were
considered ROIs of satisfactory reproducibility. All images were
resampled to a spacing of 1.0*1.0*2.0 cm.We used the image feature
extraction software Python package (pyradiomics) to obtain
107 CT-based radiomic features, all of which were based on
original images, including 14 shape features, 18 histogram
features, and 68 texture features (Supplementary Table S1). All
of these features have been previously reported (Aerts et al., 2014;
Zhang et al., 2020; Fiz et al., 2021).

Feature Decomposition and NMF
Component Construction
Radiomic features with high collinearity were excluded.
Subclasses were then computed by reducing the dimensionality
of the expression data from reserved radiomics features to a few
meta-features using NMF (Python pakage Nimfa) (Kamat et al.,
2018). This method computes multiple k-factor factorization
decompositions of the feature matrix, which is the first value

where the residual sum of squares curve presents an inflection
point (Hutchins et al., 2008).

In traditional matrix decomposition technologies, such as
feature decomposition, the decomposed matrix will have
negative values, but negative values are meaningless in the
actual scene. For example, in the field of image processing,
radiomics features are a matrix composed of non-negative
numbers, which have no practical significance for the negative
values obtained by decomposition processing. Our goal is to find a
small number of meta-features, each defined as a positive linear
combination of the M radiomics features. Mathematically, this
corresponds to factoring matrix V into two matrices with positive
entries, V ~WH. The shape of V isM ×N,M equals to the number
of features and N equals to the number of samples, as shown in
Figure 2A. Matrix W has size M × k, with each of the k columns
defining a meta-feature; entry Wij is the coefficient of feature i in
metafeature j. Matrix H has size k × N, with each of theM columns
representing the metafeature pattern of the corresponding sample;
entry Hij represents the level of metafeature i in sample j. For more
convenient expression, we depict the level of the metafeature as the
score of this component. As the NMF finds different solutions for
different initial conditions, the factorizations were repeated 100
times. To select the metafeature with the most predictive ability for
disease relapse, we built single-factor Cox models for each
metafeature to find the metafeature with the highest C-index.

Performance Assessment
The predictive values of the NMF components were evaluated
using the receiver operator characteristic and area under curve
(AUC). The cutoff values for estimating sensitivity and specificity
were determined using the Youden’s index. The prognostic
performance of the proposed components was assessed using
Harrell’s concordance index (C-index) and Kaplan–Meier log-
rank analysis, which was also tested in the validation cohort.
Furthermore, confusionmatrices were constructed to evaluate the
agreement between the observed outcomes and the NMF-
predicted outcomes, and a calibration curve was plotted for
the evaluation of predicted survival.

Statistical Analysis Workflow
Descriptive data were summarized as frequencies and percentages.
Continuous parametric variables are presented as mean ± standard
deviation. Nonparametric variables are shown asmean (interquartile
range). Pearson’s chi-square test or Fisher’s exact test was used for
categorical variables. Comparisons of continuous variables were
conducted using Mann-Whitney U tests or Student’s t-tests.
Statistical significance was set at p < .05 was considered to be
statistically different. Statistical analyses were performed using R
software (version 3.8).

RESULTS

Clinical Characteristics
As shown in Figure 1, 413 potentially eligible patients were
consecutively retrieved from the databases of two hospitals,
and 128 patients were finally included in this study according
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to the inclusion and exclusion criteria. The dataset from West
China Hospital had 108 eligible patients and was used to develop
the model. The clinical characteristics of the patients are
summarized in Table 1.

The cutoff date of the primary training cohort was June 19,
2021, and the median follow-up time was 24 months (IQR,
16–37 months). Twelve patients (11.1%) had BCG failure. The

median RFS was 9 months (IQR, 8–10 months). The cutoff date
of the validation cohort was September 30, 2021, and the median
follow-up time was 12 months (IQR, 7–21 months). Eleven
patients (45.8%) experienced BCG failure. The median RFS
was 7 months (IQR, 5–10 months). No significant differences
were detected between these two cohorts in terms of age, rate of
concomitant carcinoma in situ, tumor focality, and size, while the

TABLE 1 | Baseline characteristics of the patients in this study.

Primary
cohort (N = 104)

Validation
cohort (N = 24)

p

Age (years, mean ± SD) 66.0 ± 11.2 69.2 ± 10.8 .196
Gender
Male 82 (78.8) 21 (20.2) 0.256
Female 22 (21.2) 3 (79.8)

Concomitant CIS .327
No 70 (67.3) 18 (75)
Yes 34 (32.7) 6 (25)

Tumor focality 0.522
Unifocal 51 (49.2) 12 (50)
Multifocal 53 (50.8) 12 (50)

Tumor size (cm) 0.418
<3 74 (71.2) 16 (66.7)
≥3 30 (28.8) 8 (33.3)

Stage <.001
Ta 58 (55.8) 4 (16.7)
T1 49 (44.2) 20 (83.3)

BCG failure <.001
No 96 (88.9) 13 (54.2)
Yes 12 (11.1) 11 (45.8)

Median total BCG instillations (IQR) 19 (19–23) 14 (9—16)
Median total mos follow-up (IQR) 24 (16–37) 12 (7–21)
Median mos time to BCG failure (IQR) 9 (8—10) 7 (5–10)

BCG, Bacillus Calmette-Guerin; CIS, carcinoma in situ; IQR, inter-quartile range; SD, standard deviation.

FIGURE 1 | Patient recruitment and study design.
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validation cohort had significantly higher proportions of BCG
failure (p < .001) and T1 stage (p < .001).

Construction of NMF Components
We excluded 53 radiomic features with high collinearity. To
expand our understanding of the radiomics of bladder cancer,
we utilized NMF to leverage the CT radiomics dataset in high-
risk NMIBC and further identify predictive radiomics
biomarkers of BCG failure. The most robust NMF of 108
patients selected and testing k = 2 to k = 10 was identified
as k = 5 (Figure 2B). That is, NMF identified five components
of radiomics features in the primary training cohort (as shown
in the Supplementary Table S2). The W matrix reflects the
composition of each component (Figure 3A), and the H
matrix reflects the scores of five components for each

sample (Figure 3B), from which we can conclude that
component 3 is most associated with the failure of BCG
treatment, as the level of this component is higher in the
samples with the failure of BCG treatment.

Predictive and Prognostic Performance of
NMF Components
The scores of NMF component 3 yielded a good prediction
performance, with an AUC of .79 in the developing cohort
(Figure 4A), and accurately predicted 9/12 BCG failures and
60/92 patients without BCG failure (Figure 4B). The optimal
cutoff value was the component z-score of .2 with sensitivity and
specificity of .75 and .65, respectively. Component 3 showed
moderate performance in recurrence-free survival (RFS)

FIGURE 2 |Workflow of non-negativematrix factorization (NMF). (A) V represents the original datamatrix as the combination of twomatrices, V ~WH. The shape of
V is M × N, M equals to the number of features and N equals to the number of samples. W is a matrix which contains the reduced number of k components derive from
NMF, and the sub-classified features for each component (M). Matrix H has size k × N, with each of the M columns representing the metafeature pattern of the
corresponding sample. (B) The most robust NMF of training cohort selected and tested k = 2 to k = 10, and the turning point was identified as k = 5. That is, NMF
identified five components of radiomics features in the primary training cohort.

FIGURE 3 | Illustration of component selection with NMF. (A) Patients were aggregated by NMF component using the mean across patients for each component,
and the mean Z score for each feature was calculated, resulting in one Z score per feature per NMF component. (B) Heatmap of radiomics features. Z scores were
calculated for each features. Samples are grouped by NMF components.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8143885

Ye et al. Radionomics of CECT in NMIBC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


estimation in the training cohort, with a C-index of .69. Patients
were divided into high-risk and low-risk groups, with a
component z-score of .2 as the cutoff. Compared with patients
with a z-score of less than .2, patients in the group with z-score
larger than .2 had a significantly shorter RFS (Figure 4C, p <
.005). The associations between the top five features in NMF
component 3 and RFS were separately examined, as shown in
Supplementary Figure S1.

Good performance was also observed for BCG failure
prediction in the validation cohort. As shown in Figure 5B,
NMF component 3 accurately predicted 8/11 BCG failures and 9/
13 patients without BCG failure. Although he AUC of NMF
dropped marginally in the validation cohort, the AUC
approximated .70 (Figure 5A), and the sensitivity and
specificity were .73 and .69, respectively. For prognostic
performance, component 3 achieved a moderate performance
in the estimation of RFS (C-index, 0.68) in the validation cohort.
Compared with patients with a z-score of less than .2, patients in
the group with z-score larger than .2 had a significantly shorter
RFS (Figure 5C, p = .04). The calibration curve and decision
curve analysis of the NMF components are shown in Figures
5D,E, which indicate its potential clinical usefulness.

DISCUSSION

In this two-center study, we investigated the ability of
pretreatment contrast-enhanced radiomics analysis so as to
predict BCG failure in patients with high-risk NMIBC. An
unsupervised strategy named NMF was proposed with better
performance in the primary training cohort and performed well
in the external validation cohort. The outperformance of NMF
indicated that the NMF-decomposed components from CT
radiomics features could serve as potential biomarkers for
pretreatment predicting BCG failure in patients with high-risk
NMIBC.

It is of great guiding significance for the selection of treatment
options and clinical decision support of patients with high-risk
NMIBC to identify predictive biomarkers related to the BCG
response and subsequent recurrence time (Kamat et al., 2018;
Ilijazi et al., 2020; Shiota et al., 2020). Currently, most studies have
focused on biomarkers in biological specimens, such as peripheral
blood, urine, and tumor tissue from surgery. High levels of urine
Treg cells and tumor-infiltrating dendritic cells in the
pathological examination were associated with rapid
recurrence following BCG therapy (Chevalier et al., 2018;

FIGURE 4 | Association between NMF component 3 and clinical outcomes in primary cohort. (A) ROC curve and the AUC for the predictive accuracy of NMF
component 3 in predicting BCG failure in 1 year. (B) Confusion matrix presenting the predictive outcomes using NMF component 3 and true outcomes of BCG failure in
1 year. (C)With the component Z score of .2 as the cutoff, patients with scores <.2 (0) had significantly prolonged recurrence free survival (RFS) than those with scores
>.2 (1), p < .005.
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Ayari et al., 2009). For prognostic outcome after BCG treatment,
Martinez et al. found that patients with a lower T-bet+/
lymphocyte ratio and higher GTR/NLR had significantly
longer recurrence-free survival (Martínez et al., 2019). As to
the pathological results, De Jong et al. found that T1 patients
with extensive invasion of the lamina propria had a higher risk for
BCG failure and an improved progression-free survival (de Jong
et al., 2021). However, there are some inherent limitations for
these biomarker-finding studies, such as poor specificity of
biochemical factors for reacting to both inflammation and
tumor, lack of external validation, and high interobserver
variability in invasion extension (Babjuk et al., 2019; Del
Giudice et al., 2020). The presentation of tumors on
radiological images tends to be more stable than biochemistry
factors, and image biomarkers extracted from medical images
retain excellent stability (Zwanenburg et al., 2020) and are more
easily available than pathological substaging. In our study, a non-
invasive CT-based NMF component was developed and
performed well in an external validation cohort.

Various imaging-based radiomics models have been proposed
to predict treatment responses in different cancers (Liu et al.,
2021; Rallis et al., 2021;. Zhong et al., 2021) with the hypothesis
that these selected imaging features reflect specific tumor
phenotypes (Lambin et al., 2012; Aerts et al., 2014). In
addition, many other studies have reported the effects of
imaging features on survival outcomes, but no studies have

been reported regarding BCG instillation on patients
diagnosed with high-risk NMIBC. In this study, the
proportion of BCG failure in 1 year was too low to construct a
traditional radiomics model, which we had tried on, and of which
the accuracy was similar to that of flipping a coin. The main
reasons for the unexpected low discrimination of traditional
radiomics models might be the low proportion of BCG failure
and relatively greater amount of radiomic features, which
increased the difficulty of traditional machine learning
methods to discover patterns of BCG failure cases (van der
Ploeg et al., 2014; Gillies, Kinahan, and Hricak 2016; Moons
et al., 2019). The goal of our research is similar to gene expression
studies, of which a handful metagenes are selected from
thousands of genes in limited samples. This can be achieved
with NMF, which is an unsupervised algorithm based on
decomposition by parts and a model selection mechanism.
NMF has been used to iteratively select the most robust
biomarkers from thousands of genes (Zhong et al., 2018; Zeng
et al., 2019; Motzer et al., 2020) and to find structural covariance
patterns in neuroimaging content (Nassar et al., 2019; Patel et al.,
2020). In our application of NMF to radiomic features, the parts
were the components of a reduced representation of the original
hidden features, which may enable the recovery of biologically
similar phenotypes. Considering that the molecular mode of BCG
actions remains partially understood, NMF components might be
a hint for potential pathways for BCG treatment failure based on

FIGURE 5 | External validation of NMF component 3. (A) ROC curve and the AUC for the predictive accuracy of NMF component 3 in predicting BCG failure in
1 year. (B)Confusionmatrix presenting the predictive outcomes using NMF component 3 and true outcomes of BCG failure in 1 year. (C)With the component Z score of
.2 as the cutoff, patients with scores <.2 (0) had significantly prolonged recurrence free survival (RFS) than those with scores >.2 (1), p = .04. (D) Calibration curve of the
component 3. (E) Decision curve of component 3. The X-axis shows the cutoff value, while the Y-axis shows the net benefit.
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previous reports about the cellular geography associated with the
poor response to BCG (Ilijazi et al., 2020; Shiota et al., 2020; Tran
et al., 2020).

Compared with CT, the superiority of MRI has been
documented with respect to the diagnostic performance and
evaluation of treatment response of BCa, but there have been
no studies on their performance in radiomics analysis (Wong
et al., 2021). For MRI-based radiomics, it is quite difficult to
standardize image acquisitions for numerous parameters and
many variations among manufacturers with different magnetic
fields (Wakabayashi et al., 2019). In addition, MRI is susceptible
to many artifacts, such as image and signal distortion
consequences due to contiguous gas-filled bowls and gas
bubbles within the bladder (Lin and Chen, 2015) which could
complicate the reproducibility of measurements. In studies on CT
radiomics, automatic acquisition protocol and test-retest analysis
have proven to be useful in overcoming the bias of acquisition
protocols (Caruso et al., 2021). In light of the above limitations,
radiomic models based on MRI are more difficult to reproduce
across institutions than those based on CT images (Harding-
Theobald et al., 2021). CT is recommended prior to TURBT
according to the NCCN guidelines, and is still the most
commonly used imaging method worldwide in diagnosing and
staging BCa, mainly because CT is fast and inexpensive (Babjuk
et al., 2019; Flaig et al., 2020). Considering the easily acquired CT
images across hospitals, the CT radiomics model can be clinically
validated on a larger sample. As expected, the NMF components
from CT radiomics demonstrated a stable performance in this
double-center study, and further large-scale studies are needed to
determine the reproducibility and clinical utility of NMF
components.

Despite these remarkable results, our study has several
inherent limitations. First, although we found a robust
component, which was strongly related to the risk of BCG
failure in 1 year and associated with the recurrence survival
after BCG instillation, we failed to uncover the underlying
molecular mechanisms of these nested radiomic features.
Further investigation could focus on the comparison of gene/
molecular expression patterns among different subtypes defined
by radiomic features. Second, owing to the retrospective design of
this study, some inherent limitations were inevitable, such as the
high proportion of excluded cases for missing data and those with
poor quality in CT images. Besides, the retrospective designmight
be the main cause of inconsistent recurrence rates in the two
cohorts. Given the fact that our NMF strategy performed well in
both cohorts with extremely different BCG failure rates, we still
have confidence in the further predictive validation of NMF

strategy. Future studies should enroll more patients with
standard BCG instillation with regular follow-up, so that the
NMF strategy could be better validated.

In conclusion, the present preliminary study suggests that
NMF could provide a potential tool for predicting BCG response
and survival outcomes in patients with high-risk NMIBC. With
further molecular research, NMF-based components may be
useful as molecular biomarkers of treatment response.
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