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Abstract: Au clusters with the precise numbers of gold atoms, a novel nanogold material, have
recently attracted increasing interest in the nanoscience because of very unique and unexpected
properties. The unique interaction and electron transfer between gold clusters and reactants make
the clusters promising catalysts during organic transformations. The AunLm nanoclusters (where L
represents organic ligands and n and m mean the number of gold atoms and ligands, respectively)
have been well investigated and developed for selective oxidation, hydrogenation, photo-catalysis,
and so on. These gold clusters possess unique frameworks, providing insights into the catalytic
processes and an excellent arena to correlate the atomic frameworks with their intrinsic catalytic
properties and to further investigate the tentative reaction mechanisms. This review comprehensively
summarizes the very latest advances in the catalytic applications of the Au nanoclusters for the
C−C cross-coupling reactions, e.g., Ullmann, Sonogashira, Suzuki cross-couplings, and A3

−coupling
reactions. It is found that the proposed catalytically active sites are associated with the exposure of gold
atoms on the surface of the metal core when partial capping organic ligands are selectively detached
under the reaction conditions. Finally, the tentative catalytic mechanisms over the ligand-capped Au
nanoclusters and the relationship of structure and catalytic performances at the atomic level using
computational methods are explored in detail.

Keywords: gold nanocluster; cross-coupling; Ullmann hetero-coupling; Sonogashira coupling;
Suzuki coupling; A3

−coupling; catalytic mechanism; ligand removal

1. Introduction

Since the work of Haruta’s group in the late 1980s [1], supported gold nanoparticles with a
particle size in the range of 3–20 nm have played a central role in a variety of reactions such as
selective oxidation [2–5], hydrogenation [6–8], and photocatalysis [9,10]. These conventional gold
catalysts have been realized via deposition–precipitation and co-precipitation impregnation with
oxides by controlling the pH of the synthetic system. These obtained gold nanoparticles are usually
polydisperse, which is a major issue in fundamental catalysis and investigations [11]. For example,
the size-hierarchy of Au nanoparticles are often averaged out in polydispersion. It is difficult to
correlate the relationship between the catalytic properties and the structure of the nanoparticles.
Therefore, developing nanostructured catalysts with specific morphology (e.g., nanosheet, nanocube,
and nanorod) is highly desirable to overcome this issue, further promoting the development of
crystal-identified model catalysts [12,13].

On the other hand, the remarkable developments in the synthesis of atomically precise
gold nanoclusters have been achieved in recent decades, which opens a new burgeoning area
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in nanoscience [14,15]. These gold nanoclusters are comprised of a few dozen to a few hundred gold
atoms and protecting organic ligands (e.g., thiolate, phosphine, and alkyne), and the size is ultra-small,
usually ca. 0.6–2 nm. Some gold nanoclusters are identifiable by X-ray crystallography technology.
It offers a big opportunity for in-depth understanding of the relationship of the catalytic properties and
the active-site structure at the atomic level [16].

It is observed that these gold nanoclusters exhibit good catalytic performance in heterogeneous
catalysis (e.g., selective oxidation and hydrogenation) [16–18]. Sometime, the gold clusters show better
catalytic behavior (e.g., activity and product selectivity) than the corresponding Au nanoparticles,
because of their high surface-to-volume ratio (reaches up to ~100%), surface geometric effect
(e.g., low-coordinated Auδ+ atoms, 0 < δ < 1), and the unique electronic properties and the quantum
size effect. Furthermore, the protecting organic ligands can improve the product selectivity due to their
electronic factors and steric hindrance and weak interaction (e.g., π-π interaction) between the reactants
and cluster surface ligands during the catalysis process. In the recent decade, these gold nanoclusters
exhibited good catalytic activity in the cross C–C couplings, e.g., Ullmann hetero-coupling, Suzuki and
Sonogashira coupling, and A3-coupling [19,20]. Traditionally, these catalyzed C–C coupling reactions
are over the Cu, Pd, and Pt complexes and particles in the previous literatures [21–23].

In this review, we aim to provide an overview focused on the Au nanocluster-catalyzed coupling
reactions, e.g., Ullmann hetero-coupling of Ar-I, Suzuki cross-coupling of PhB(OH)2 and Ph-I (IB),
Sonogashira cross-coupling of IB and Ph–C≡C–H (PA), and A3-coupling (Scheme 1). The pathway of
the selective detachment of the surface protecting ligands (under the reaction conditions), giving the
catalytically active sites, is well discussed. Moreover, the proposed reaction pathway and mechanisms of
these carbon–carbon coupling reactions were thoroughly summarized based on the precise framework
of gold nanoclusters (e.g., two Au25) as the mode theoretical calculations.
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2. Activation of Ph–B(OH)2, Ph–I, and C≡C–H Bonds over Au: Theoretical Simulation

The activation of the Ph–B(OH)2, Ph–I, and C≡C–H bonds over the gold clusters plays an important
role and step in the cross-coupling reactions, e.g., Ullmann hetero-coupling, Sonogashira coupling,
Suzuki coupling, and A3

−coupling. The adsorption and activation process of the reactants over the
different well-defined gold facets and sites are distinct [24–27]. The density functional theory (DFT)
calculations should be a feasible and fast method to explore the activation of Ph–B(OH)2, C–I, and
C≡C–H bond by gold nanoclusters.

Firstly, the shape controlled Au nanoparticles (e.g., Au nanorod) with well-defined surfaces and
morphologies are well investigated [28,29], providing a platform to establish site–activity relationships
and to pursue the understanding of heterogeneous processes. Therefore, the gold nanorod is chosen
for the theoretical simulation of the activation of Ph–I and C≡C–H bonds. DFT studies showed that
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the Ph-I reactant adsorbs onto the Au(100) and Au(111) with Au–I distance 2.95 and 2.86 Å. The C–I
bond is more elongated on the Au(111) compared to Au(100) (2.17 Å vs. 2.13 Å) [26]; the C–I length
of the free IB is 2.09 Å. Furthermore, the phenyl group is located on an Au atom. The iodine atom is
strongly chemisorbed on the bridging and hollow sites. Regard to the activation of alkyne, the Ph–C≡C–
fragment is also adsorbed on bridging and 3-fold hollow sites of Au(100) and Au(111). The coordination
number of one Ph–C≡C– unit is 3 and 4 for Au(100) and Au(111) facets during the cross-coupling
reaction, respectively, Figure 1, and the activation energy of cross-coupling is comparable [26].
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Figure 1. Proposed pathway for the cross-coupling on the (A) Au(100) and (B) Au(111). Reproduced
with permission from [26]. Elsevier, 2015.

Next, the activation of Ph−B(OH)2, Ph−I, and C≡C−H also was explored on a model cluster (Au38

and partially oxidized Au38O2) [30–32]. It is worthy to note that the model clusters of the Au38 and
Au38O2 are somewhat different from the real catalyst in terms of the real structure. The Au38O2 cluster
contains metallic Au0 and cationic Auδ+ species, and each O atom bonds to three Au atoms. In the
activation process of phenylboronate, DFT showed that the phenylboronate reactant is preferentially
adsorbed on the Au0 species rather than on the Auδ+ sites [30], leading to formation of the final
product- biphenyl (Figure 2B). Meanwhile, DFT simulation also found that the interaction between
the Auδ+ sites and Ph−I is weaker and the adsorption of C≡C−H on Auδ+ sites is relatively strong.
Further, the proton of alkyne was detached with aid of O atom in the deprotonation step (Figure 2A).
Therefore, a very low activation energy is required when the cross-coupling reactions occurred over
the Au38O2 cluster. Of note, the cross-coupling step of the activated PA and –Ph on the Au38O2 should
be the rate-determining step [32].
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3. Physical Property of Au Nanoclusters

3.1. Framework

The gold clusters with crystal structure can be employed as the practical simulation models for
mechanism study. In this Review, we only focus on the two cluster structures of the nanorod-shaped
[Au25(PPh3)10L5Cl2]2+ (L = −SR and PA) and the nanosphere [Au25(SR)18]x (x = −1, 0, +1, etc.), used
as the real model for DFT studies (vide infra). The Au25(SR)18 cluster comprises an Au13 core [33] and
six staples of Au2(SR)3 [34]. [Au25(PPh3)10L5Cl2]2+ is composed of two Au13 cores by sharing one
common vertex to form the waist sites [35], connected by thiolate or alkyne ligands [36] (Figure 3).

Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 17 

 

3. Physical Property of Au Nanoclusters 

3.1. Framework 

The gold clusters with crystal structure can be employed as the practical simulation models for 
mechanism study. In this Review, we only focus on the two cluster structures of the nanorod-shaped 
[Au25(PPh3)10L5Cl2]2+ (L = −SR and PA) and the nanosphere [Au25(SR)18]x (x = −1, 0, +1, etc.), used as the 
real model for DFT studies (vide infra). The Au25(SR)18 cluster comprises an Au13 core [33] and six 
staples of Au2(SR)3 [34]. [Au25(PPh3)10L5Cl2]2+ is composed of two Au13 cores by sharing one common 
vertex to form the waist sites [35], connected by thiolate or alkyne ligands [36] (Figure 3). 

 

Figure 3. Framework of Au25(SR)18 (A) and Au25(PPh3)10L5Cl2 (B). The orange areas in are the Au3 and 
the waist active sites during the catalysis. Reproduced with permission from [36]. American Chemical 
Society, 2008 and Springer, 2019. 

3.2. Redox Property of Au cluster 

Au38S2(SAdm)20 (SAdm = adamantanethiolate) nanoclusters exerted photosensitizing properties 
to give singlet oxygen (1O2) under visible light irradiation (e.g., 532 and 650 nm) [37]. The 
Au38S2(SAdm)20 is intact during the whole photocatalysis process, evidenced by UV-vis tracing and 
mass spectroscopy analysis. The cyclic voltammetry analysis showed that the Au38S2(SAdm)20 cluster 
had good charge transfer capacity to the redox K3Fe(CN)6 probe, Figure 4 [38]. However, the redox 
property of the cluster disappeared when β-cyclodextrins (β-CDs) was introduced in the THF 
solution. After detailed analysis, the huge β-CDs “umbrella” can trap the adamantane groups and 
then completely cover windows of the Au38S2(SAdm)20 nanoclusters, thereby blocking direct 
interaction with foreign molecules and then quenching the charge transfer process (Figure 4B). It 
indicated that these gold nanoclusters have good redox properties and electron transfer (ET) capacity 
during the catalytic reactions [39]. 

Figure 3. Framework of Au25(SR)18 (A) and Au25(PPh3)10L5Cl2 (B). The orange areas in are the Au3

and the waist active sites during the catalysis. Reproduced with permission from [36]. American
Chemical Society, 2008 and Springer, 2019.

3.2. Redox Property of Au cluster

Au38S2(SAdm)20 (SAdm = adamantanethiolate) nanoclusters exerted photosensitizing properties
to give singlet oxygen (1O2) under visible light irradiation (e.g., 532 and 650 nm) [37].
The Au38S2(SAdm)20 is intact during the whole photocatalysis process, evidenced by UV-vis tracing
and mass spectroscopy analysis. The cyclic voltammetry analysis showed that the Au38S2(SAdm)20

cluster had good charge transfer capacity to the redox K3Fe(CN)6 probe, Figure 4 [38]. However, the
redox property of the cluster disappeared when β-cyclodextrins (β-CDs) was introduced in the THF
solution. After detailed analysis, the huge β-CDs “umbrella” can trap the adamantane groups and then
completely cover windows of the Au38S2(SAdm)20 nanoclusters, thereby blocking direct interaction
with foreign molecules and then quenching the charge transfer process (Figure 4B). It indicated that
these gold nanoclusters have good redox properties and electron transfer (ET) capacity during the
catalytic reactions [39].

Further, Kumar and coworkers studied the Au25(SG)18 catalyst in an electrochemical oxidation [40].
The Au25(SG)18 on the electrode gave good electro-activity during the oxidation of ascorbic acid and
dopamine over a wide linear range from 0.71 to 44.4 µM. And pH dependent electrocatalytic activity
was observed, attributed to the consequence of pH-dependent electrostatic attraction/repulsion between
the charged Au25(SG)18 clusters and the charged analytes. Moreover, an amperometric sensing method
for other compounds was developed. Next, Kauffman et al. investigated the electron transfer between
CO2 and Au25(PET)18 in solution [41]. Upon the DMF solution (containing Au25(SR)18) was saturated
with CO2 gas, the optical absorbance features showed the oxidized state of Au25(SR)18. Meanwhile, the
photoluminescence increases and blue-shift. The CO2

− induced optical changes can be simply reversed
by purging the solution with N2 gas to remove the CO2, indicating an interaction between Au25(SR)18

and CO2. DFT calculations revealed that the CO2 molecule interacts with three S atoms of the Au3

site of the Au25(SR)18 cluster, prompting the CO2 electrochemical reduction. These observed unique
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interactions and electron transfers between gold clusters and reactants make the clusters promising
catalysts during the organic transformations.Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 17 
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4. Catalytic Properties

4.1. Ullmann Coupling

At the beginning, the catalytic activity of the Au nanoclusters was examined in the Ullmann
homo-coupling reactions of aryl iodides, which are generally catalyzed by palladium, nickel, and
copper catalysts [42]. The supported gold cluster catalysts were simply prepared by a vortex-mixing of
supports and a solution containing gold clusters at room temperature, and an annealing at 150 ◦C.
The supported Au clusters were intact after the 150 ◦C annealing process (higher than the reaction
temperatures), evidenced by UV−vis and scanning transmission electron microscopy (STEM) [43].
The X-ray photoelectron spectroscopy (XPS) analysis shows the chemical state of Au species in the
oxide-supported cluster catalysts is positively charged (Auδ+) [44], where 0 < δ < 1, consistent with
the free gold nanoclusters. The catalytic processes were carried out at 130 ◦C in the presence of base,
which is similar with these catalyzed by Pd/Cu complexes or nanoparticles. The Au25(SR)18/CeO2

showed the best catalytic activity, and the test was then expanded to a serial of substituents with
functional side-groups (Table 1) [45]. Of note, the efficiency of gold nanoclusters was not as good as
the palladium, nickel, and copper nanocomposites in the Ullmann homo-coupling reactions of aryl
chlorides and aryl bromides.
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Table 1. The catalytic results over the Au25(PET)18/CeO2 catalysts in Ullmann homo-coupling. Reaction
conditions: 0.2 mmol iodobenzene, 0.6 mmol K2CO3, 100 mg Au25(PET)18/CeO2 (1 wt% cluster loading),
1 mL DMF, 130 ◦C, 2 day.
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NO2C6H4I [46]. Intriguingly, the aromatic thiolate ligated Au25 clusters gave much better catalytic 
performance (both the conversion of NO2C6H4I and selectivity for the hetero-coupling product (4-
methyl-4′-nitrobiphenyl) than these protected by alkyl thiolate ligands. The Au25(SNap)18 cluster gave 
an 82% selectivity toward the hetero-coupling product, which was much higher than the Cu, Pd, and 
Au complexes (the selectivity: <30%, Table 2). Unfortunately, both of the conversion and selectivity 
decreased in the 2nd and 3rd cycles, which was due to the removal of the capping surface ligands 
and hence the decomposition of Au clusters, evidenced by the TEM images. These large gold 
nanoparticles jeopardized the catalytic performance in this coupling reaction. Thus, the protecting 
ligands on the clusters’ surface play a key influence on their catalytic properties. 

DFT simulations were applied to explain the catalytic results. It is worthy to note that the 
reactants of both 4-MeC6H4I and 4-NO2C6H4I cannot interact well with the intact Au25(SR)18 clusters, 
because of the steric effect of the protecting thiolate ligands on the clusters’ surface. In the first step, 
one “-SR” unit on the Au25(SR)18 cluster was surmised to be detached under the reaction conditions 
in the presence of a K2CO3 base. Then the gold atoms on the motif were exposed to reactants and 
were associated with the catalytic sites [44]. Further, the activation energy for the homo- and hetero-
couplings over the Au25 protected by “-SCH3” thiolate were compared by the nudged elastic band 
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Later, these Au cluster were studied in the Ullmann hetero-coupling reactions. The catalytic 
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1 vs. Table 2). The aromatic and aliphatic thiolate-capped Au25 nanoclusters (e.g., naphthalenethiolate 
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methyl-4′-nitrobiphenyl) than these protected by alkyl thiolate ligands. The Au25(SNap)18 cluster gave 
an 82% selectivity toward the hetero-coupling product, which was much higher than the Cu, Pd, and 
Au complexes (the selectivity: <30%, Table 2). Unfortunately, both of the conversion and selectivity 
decreased in the 2nd and 3rd cycles, which was due to the removal of the capping surface ligands 
and hence the decomposition of Au clusters, evidenced by the TEM images. These large gold 
nanoparticles jeopardized the catalytic performance in this coupling reaction. Thus, the protecting 
ligands on the clusters’ surface play a key influence on their catalytic properties. 

DFT simulations were applied to explain the catalytic results. It is worthy to note that the 
reactants of both 4-MeC6H4I and 4-NO2C6H4I cannot interact well with the intact Au25(SR)18 clusters, 
because of the steric effect of the protecting thiolate ligands on the clusters’ surface. In the first step, 
one “-SR” unit on the Au25(SR)18 cluster was surmised to be detached under the reaction conditions 
in the presence of a K2CO3 base. Then the gold atoms on the motif were exposed to reactants and 
were associated with the catalytic sites [44]. Further, the activation energy for the homo- and hetero-
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Later, these Au cluster were studied in the Ullmann hetero-coupling reactions. The catalytic 
conditions over the Au25(SR)18/CeO2 catalysts were the same with the homo-coupling reactions (Table 
1 vs. Table 2). The aromatic and aliphatic thiolate-capped Au25 nanoclusters (e.g., naphthalenethiolate 
(-SNap), benzenethiolate (-SPh), hexanethiolate (-SC6H13), and 2-phenylethanethiolate (PET)) were 
chosen for comparison and exploration in the Ullmann hetero-coupling of 4-MeC6H4I and 4-
NO2C6H4I [46]. Intriguingly, the aromatic thiolate ligated Au25 clusters gave much better catalytic 
performance (both the conversion of NO2C6H4I and selectivity for the hetero-coupling product (4-
methyl-4′-nitrobiphenyl) than these protected by alkyl thiolate ligands. The Au25(SNap)18 cluster gave 
an 82% selectivity toward the hetero-coupling product, which was much higher than the Cu, Pd, and 
Au complexes (the selectivity: <30%, Table 2). Unfortunately, both of the conversion and selectivity 
decreased in the 2nd and 3rd cycles, which was due to the removal of the capping surface ligands 
and hence the decomposition of Au clusters, evidenced by the TEM images. These large gold 
nanoparticles jeopardized the catalytic performance in this coupling reaction. Thus, the protecting 
ligands on the clusters’ surface play a key influence on their catalytic properties. 

DFT simulations were applied to explain the catalytic results. It is worthy to note that the 
reactants of both 4-MeC6H4I and 4-NO2C6H4I cannot interact well with the intact Au25(SR)18 clusters, 
because of the steric effect of the protecting thiolate ligands on the clusters’ surface. In the first step, 
one “-SR” unit on the Au25(SR)18 cluster was surmised to be detached under the reaction conditions 
in the presence of a K2CO3 base. Then the gold atoms on the motif were exposed to reactants and 
were associated with the catalytic sites [44]. Further, the activation energy for the homo- and hetero-
couplings over the Au25 protected by “-SCH3” thiolate were compared by the nudged elastic band 
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Later, these Au cluster were studied in the Ullmann hetero-coupling reactions. The catalytic 
conditions over the Au25(SR)18/CeO2 catalysts were the same with the homo-coupling reactions (Table 
1 vs. Table 2). The aromatic and aliphatic thiolate-capped Au25 nanoclusters (e.g., naphthalenethiolate 
(-SNap), benzenethiolate (-SPh), hexanethiolate (-SC6H13), and 2-phenylethanethiolate (PET)) were 
chosen for comparison and exploration in the Ullmann hetero-coupling of 4-MeC6H4I and 4-
NO2C6H4I [46]. Intriguingly, the aromatic thiolate ligated Au25 clusters gave much better catalytic 
performance (both the conversion of NO2C6H4I and selectivity for the hetero-coupling product (4-
methyl-4′-nitrobiphenyl) than these protected by alkyl thiolate ligands. The Au25(SNap)18 cluster gave 
an 82% selectivity toward the hetero-coupling product, which was much higher than the Cu, Pd, and 
Au complexes (the selectivity: <30%, Table 2). Unfortunately, both of the conversion and selectivity 
decreased in the 2nd and 3rd cycles, which was due to the removal of the capping surface ligands 
and hence the decomposition of Au clusters, evidenced by the TEM images. These large gold 
nanoparticles jeopardized the catalytic performance in this coupling reaction. Thus, the protecting 
ligands on the clusters’ surface play a key influence on their catalytic properties. 

DFT simulations were applied to explain the catalytic results. It is worthy to note that the 
reactants of both 4-MeC6H4I and 4-NO2C6H4I cannot interact well with the intact Au25(SR)18 clusters, 
because of the steric effect of the protecting thiolate ligands on the clusters’ surface. In the first step, 
one “-SR” unit on the Au25(SR)18 cluster was surmised to be detached under the reaction conditions 
in the presence of a K2CO3 base. Then the gold atoms on the motif were exposed to reactants and 
were associated with the catalytic sites [44]. Further, the activation energy for the homo- and hetero-
couplings over the Au25 protected by “-SCH3” thiolate were compared by the nudged elastic band 
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NO2C6H4I [46]. Intriguingly, the aromatic thiolate ligated Au25 clusters gave much better catalytic 
performance (both the conversion of NO2C6H4I and selectivity for the hetero-coupling product (4-
methyl-4′-nitrobiphenyl) than these protected by alkyl thiolate ligands. The Au25(SNap)18 cluster gave 
an 82% selectivity toward the hetero-coupling product, which was much higher than the Cu, Pd, and 
Au complexes (the selectivity: <30%, Table 2). Unfortunately, both of the conversion and selectivity 
decreased in the 2nd and 3rd cycles, which was due to the removal of the capping surface ligands 
and hence the decomposition of Au clusters, evidenced by the TEM images. These large gold 
nanoparticles jeopardized the catalytic performance in this coupling reaction. Thus, the protecting 
ligands on the clusters’ surface play a key influence on their catalytic properties. 

DFT simulations were applied to explain the catalytic results. It is worthy to note that the 
reactants of both 4-MeC6H4I and 4-NO2C6H4I cannot interact well with the intact Au25(SR)18 clusters, 
because of the steric effect of the protecting thiolate ligands on the clusters’ surface. In the first step, 
one “-SR” unit on the Au25(SR)18 cluster was surmised to be detached under the reaction conditions 
in the presence of a K2CO3 base. Then the gold atoms on the motif were exposed to reactants and 
were associated with the catalytic sites [44]. Further, the activation energy for the homo- and hetero-
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Later, these Au cluster were studied in the Ullmann hetero-coupling reactions. The catalytic 
conditions over the Au25(SR)18/CeO2 catalysts were the same with the homo-coupling reactions (Table 
1 vs. Table 2). The aromatic and aliphatic thiolate-capped Au25 nanoclusters (e.g., naphthalenethiolate 
(-SNap), benzenethiolate (-SPh), hexanethiolate (-SC6H13), and 2-phenylethanethiolate (PET)) were 
chosen for comparison and exploration in the Ullmann hetero-coupling of 4-MeC6H4I and 4-
NO2C6H4I [46]. Intriguingly, the aromatic thiolate ligated Au25 clusters gave much better catalytic 
performance (both the conversion of NO2C6H4I and selectivity for the hetero-coupling product (4-
methyl-4′-nitrobiphenyl) than these protected by alkyl thiolate ligands. The Au25(SNap)18 cluster gave 
an 82% selectivity toward the hetero-coupling product, which was much higher than the Cu, Pd, and 
Au complexes (the selectivity: <30%, Table 2). Unfortunately, both of the conversion and selectivity 
decreased in the 2nd and 3rd cycles, which was due to the removal of the capping surface ligands 
and hence the decomposition of Au clusters, evidenced by the TEM images. These large gold 
nanoparticles jeopardized the catalytic performance in this coupling reaction. Thus, the protecting 
ligands on the clusters’ surface play a key influence on their catalytic properties. 

DFT simulations were applied to explain the catalytic results. It is worthy to note that the 
reactants of both 4-MeC6H4I and 4-NO2C6H4I cannot interact well with the intact Au25(SR)18 clusters, 
because of the steric effect of the protecting thiolate ligands on the clusters’ surface. In the first step, 
one “-SR” unit on the Au25(SR)18 cluster was surmised to be detached under the reaction conditions 
in the presence of a K2CO3 base. Then the gold atoms on the motif were exposed to reactants and 
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Later, these Au cluster were studied in the Ullmann hetero-coupling reactions. The catalytic
conditions over the Au25(SR)18/CeO2 catalysts were the same with the homo-coupling reactions (Table 1
vs. Table 2). The aromatic and aliphatic thiolate-capped Au25 nanoclusters (e.g., naphthalenethiolate
(-SNap), benzenethiolate (-SPh), hexanethiolate (-SC6H13), and 2-phenylethanethiolate (PET))
were chosen for comparison and exploration in the Ullmann hetero-coupling of 4-MeC6H4I and
4-NO2C6H4I [46]. Intriguingly, the aromatic thiolate ligated Au25 clusters gave much better catalytic
performance (both the conversion of NO2C6H4I and selectivity for the hetero-coupling product
(4-methyl-4′-nitrobiphenyl) than these protected by alkyl thiolate ligands. The Au25(SNap)18 cluster
gave an 82% selectivity toward the hetero-coupling product, which was much higher than the Cu,
Pd, and Au complexes (the selectivity: <30%, Table 2). Unfortunately, both of the conversion and
selectivity decreased in the 2nd and 3rd cycles, which was due to the removal of the capping surface
ligands and hence the decomposition of Au clusters, evidenced by the TEM images. These large gold
nanoparticles jeopardized the catalytic performance in this coupling reaction. Thus, the protecting
ligands on the clusters’ surface play a key influence on their catalytic properties.

Table 2. The catalytic results over the Au25(SR)18/CeO2 catalysts in Ullmann hetero-coupling. Reaction
conditions: 0.06 mmoL 4-methyl iodobenzene, 0.05 mmoL 4-nitroiodobenzene, 0.3 mmol K2CO3,
100 mg Au25(SR)18/CeO2 (~1 wt % cluster loading), 1 mL DMF, 130 ◦C, 24 h.
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DFT simulations were applied to explain the catalytic results. It is worthy to note that the reactants
of both 4-MeC6H4I and 4-NO2C6H4I cannot interact well with the intact Au25(SR)18 clusters, because of
the steric effect of the protecting thiolate ligands on the clusters’ surface. In the first step, one “-SR” unit
on the Au25(SR)18 cluster was surmised to be detached under the reaction conditions in the presence of
a K2CO3 base. Then the gold atoms on the motif were exposed to reactants and were associated with
the catalytic sites [44]. Further, the activation energy for the homo- and hetero-couplings over the Au25

protected by “-SCH3” thiolate were compared by the nudged elastic band (NEB) approach (Figure 5).
Intriguingly, the activation energy in the hetero-coupling was less than in the homo-coupling in the
case of Au25−SNap clusters, (Figure 4). It implied that the aromatic thiolate-capped gold cluster can
not only improve the conversion rate but can also favor the hetero-coupled process [46].
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DFT simulations were applied to explain the catalytic results. It is worthy to note that the reactants
of both 4-MeC6H4I and 4-NO2C6H4I cannot interact well with the intact Au25(SR)18 clusters, because of
the steric effect of the protecting thiolate ligands on the clusters’ surface. In the first step, one “-SR” unit
on the Au25(SR)18 cluster was surmised to be detached under the reaction conditions in the presence of
K2CO3 base. Then the gold atoms on the motif were exposed to reactants and were associated with the
catalytic sites [44]. Further, the activation energy for the homo- and hetero-couplings over the Au25

protected by “-SCH3” thiolate are comparable by the nudged elastic band (NEB) approach (Figure 5).
Intriguingly, the activation energy in the hetero-coupling less than in the homo-coupling in the case of
Au25−SNap clusters, (Figure 4). It implied that the aromatic thiolate-capped gold cluster not only can
improve the conversion rate but also can favor the hetero-coupled process [46].



Nanomaterials 2019, 9, 838 8 of 17

4.2. Suzuki Coupling

Further, the titania-supported Au25 clusters are studied in the Suzuki coupling in the presence
of ionic liquids (ILs), which are catalyzed over palladium catalysts [42]. The Suzuki cross-coupling
run at 90 ◦C using different solvents (e.g., ethanol, xylene, toluene, N,N′-dimethylformamide (DMF),
ILs, etc.). The imidazolium-based ILs exerted a large effect on the MeOC6H4I conversion to the
desire products. A very low conversion (<5%) is observed when using the ethanol, toluene,
o-xylene, and DMF as solvents in the Au25/TiO2 catalyzed coupling reactions (Table 3). Interestingly,
the iodoanisole conversion over Au25/TiO2 drastically increased to 89%–99% when BMIM·X (BMIM:
1-butyl-3-methylimidazolium, X = Br or Cl or BF4) solvents are introduced to the reaction system
(Table 3). The catalytic results indicate that the imidazolium-based ILs acts as a promoter for the
cross-coupling reactions [47]. Of note, only the BMIM cation (i.e., the acidic proton at position 2 of the
imidazolium ions) play an important role during the reactions, as no activity is found in the presence
of BDiMIM·BF4 (BDiMIM: 1-butyl-2,3-dimethylimidazolium) solvent, which is further supported by
the DFT calculations. It is worthy to note that the efficiency of gold nanoclusters was not as good as the
palladium nanocomposites, however, the gold nanoclusters exhibited much better selectivity toward
the target cross-coupling products.

Table 3. Catalytic results over the Au25/TiO2 catalysts in the Suzuki cross-coupling reactions of iodoanisole
and phenylboronic acid using the imidazolium-based ionic liquids. Reaction conditions: 0.1 mmol
iodoanisole, 0.12 mmol phenylboronic acid, 0.36 mmol K2CO3, 100 mg Au25(SR)18/TiO2 (~1 wt %
cluster loading), solvents (1 mL EtOH or EtOH:H2O (10:1, v/v), and 0.2 mL IL or other organic solvents),
90 ◦C, 18 h.
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BMIM·BF4 + EtOH 94
BMIM·BF4 + EtOH:H2O EtOH:H2O >99

BDiMIM·BF4 + EtOH <0.5

To explore the active species during the coupling reactions, the free Au25(PET)18 was mixed with
the BMIM·BF4 under the same reaction conditions [43]. Except the molecular peak of Au25(PET)18

cluster, four new mass peaks are clearly detected in the matrix-assisted laser desorption/ionization mass
spectrometry (MALDI-MS). These new appeared mass peaks belonged to the Au25−n(SR)18−n (where,
n = 1–4) species (Figure 6). Of note, these new species are not the fragments caused by laser of the
MALDI method. These species also were observed in the ESI-MS method [48]. The imidazolium-based
ILs indeed assist the yield of Au25−n(SR)18−n species under the reaction conditions, which may be the
active sites for the cross-coupling reactions. The other explanation is that the Au-NHC complex (NHC:
N-heterocyclic carbene) with the Au25−n(SR)18−n species could be responsible for the active sites during
the Suzuki cross-coupling reactions, although it needs further investigation. Of note, the Au-NHC
complex was the product of the reaction of BMIM cations with the gold nanoclusters.
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Au25(PET)18 clusters and samples treated with the ionic liquid (IL) of BMIM·BF4; the (n, m) presents
the number of the Aun(PET)m species. Reproduced with permission from [47]. American Chemical
Society, 2015.

4.3. Sonogashira Coupling

As the IB and alkyne can be activated over gold clusters, hence, the catalytic performance of
the gold nanoclusters may extend to Sonogashira cross-coupling reactions, often catalyzed over
palladium catalysts [42]. The catalytic performance of the Au25(PET)18 cluster (supported on oxides)
in the Sonogashira cross-coupling reaction was studied [49]. The supported catalyst was prepared by
impregnating oxide powders (such as TiO2, CeO2, SiO2, and MgO) in a CH2Cl2 solution of Au25(PET)18

(~1 wt % loading) with a 150 ◦C annealing. STEM and TG analyses showed that the protecting thiolate
ligands were intact on the surface of gold clusters after thermal treatment. Then these Au25/oxide
catalysts were applied to the Sonogashira cross-coupling reaction. The optimized reaction conditions
were using DMF as a solvent and K2CO3 as a base under an N2 atmosphere at 160 ◦C, which is
harsher than those for the above Suzuki and Ullmann couplings. The Au25/CeO2 catalyst showed
the best activity (96.1% iodoanisole conversion with 88.1% selectivity toward the target product)
(Table 4). The solvent and base can also influence the product selectivity. The size-dependent catalytic
performance also was studied.

Table 4. The catalytic performance of Au25(SR)18/oxides in the Sonogashira cross-coupling reaction
of p-iodoanisole and phenylacetylene. DMBP and MPEB stand for homo-coupling product of
4,4′-dimethoxy-1,1′-biphenyl and cross-coupling product of 1-methoxy-4-(2-phenylethynyl)benzene,
respectively. Reaction conditions: 100 mg catalyst (1 wt % Au25(SR)18 or AuNC 2–3 nm (SC6H13)
loading), 0.1 mmol p-iodoanisole, 0.15 mmol phenylacetylene, 0.3 mmol K2CO3, 1 mL DMF, 160 ◦C,
40 h. n.r. = no reaction. Conv. = conversion.

Entry Catalyst Conv. (%)
Selectivity (%)

MPEB DMBP

1 Au25(SR)18/CeO2 96.1 88.1 11.9
2 Au25(SR)18/TiO2 92.8 82.9 17.1
3 Au25(SR)18/SiO2 90.8 79.3 20.7
4 Au25(SR)18/MgO 93.3 80.6 19.4
5 AuNC 2–3 nm (SC6H13)/CeO2 65.5 57.2 42.8
6 CeO2 n.r.
7 TiO2 n.r.

The catalytic performance of small-sized Au25(PET)18 cluster catalysts was much better than
large-sized of gold clusters of 2–3 nm and Au/CeO2 (~20 nm). Support effects were studied in the
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cross-coupling, and no distinct effect of the oxide supports was observed (i.e., CeO2, SiO2, TiO2, and
MgO). The conversion was no obvious decrease, but the selectivity decreased from 88.1% to 64.5% after
5 cycles. It is noteworthy that TEM analysis shows that the gold clusters grow into larger nanoparticles
(>3 nm), meaning that the gold clusters capped by organic ligands cannot stay intact under harsh
reaction conditions (160 ◦C in the presence of a base). The gradual degradation of gold clusters leads
to a decrease in selectivity, as the larger Au clusters showed a much lower selectivity. It is worthy to
note that the efficiency of gold nanoclusters is much worse than the palladium-based catalysts, and the
selectivity for the cross-coupling products over Au clusters is also worse.

DFT calculation found that the reactants (i.e., IB and PA) prefer to adsorb on the open facet (Au3)
of the Au25 cluster with the phenyl ring facing a surface Au atom (Figure 7). A total adsorption energy
reaches −0.90 eV when the two reactants co-adsorb on the Au25(SR)18 catalyst. While, the IB/IB pair has
an adsorption energy of −1.05 eV, indicating that the IB/IB pair interacts strongly with the cluster and
the homocoupling of IBs is the dominant side-reaction competing with the cross-coupling between IB
and PA. DFT results suggested that the catalytic active sites is associated with the Au25(SR)18 clusters,
which is consistent with the experimental results.

C

Figure 7. (A) Top view of one of the two open facets of Au25(PET)18 clusters where three external Au
atoms are exposed; the other facet is on the back side. (B) Side view of the two facets which are at top
and bottom. (C) Top view and (D) side view of the co-adsorption of PA and IB on the surface of the
Au25(PET)18 clusters. Color code: Au, yellow; S, blue; C, gray; H, white; I, green. Reproduced with
permission from [49]. Elsevier, 2013.

The structure of the 25-atom cluster is similar [50], but the electronic property and the catalytic
activity of the bimetallic clusters can be largely regulated by the foreign dopants [50–55]. Recently,
Li et al. [56] studied the doping effects of the Au25(SR)18 nanoclusters in the Sonogashira cross-coupling
reaction base on the experiment and DFT simulations. The obtained results suggested that the Cu and
Ag atoms are preferentially occupied at the cluster’s kernel (Au13) rather than the Au2(SR)3 staple
motif, while a single Pt atom only can be doped individually and locates in the center of the cluster.
The overall performance of AgxAu25−x(SR)18 was similar to that of Au25(SR)18 and Pt1Au24(SR)18,
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which showed a decrease in catalytic activity (Table 5). The catalytic activity was from AgxAu25−x(SR)18

≈ Au25(SR)18 > CuxAu25−x(SR)18 > Pt1Au24(SR)18. Interestingly, the CuxAu25−x(SR)18 produced a
homo-coupling product base on the Ullmann homo-coupling pathway, which is contrary to the other
three cluster catalysts. However, DFT calculations showed that the adsorption energy of one PA
molecule on the Pt1Au24(SR)18, Cu1/2Au24/23(SR)18, and Au25(SR)18 nanoclusters was very similar
(−0.50 to −0.52 eV, Table 6). The adsorption energy of one IB molecule onto the Pt1Au24(SR)18,
Ag1/2Au24/23(SR)18 and Au25(SR)18 was also very similar (−0.59 to −0.61 eV, Table 6). These results
suggested that the adsorption process of the PA and IB onto the alloy clusters is not the key step during
the coupling reactions. Generally, the catalytic activity is largely affected by the electronic effect in
the core of bimetallic clusters (i.e., Pt1Au12, CuxAu13-x, AgxAu13-x, and Au13), and the selectivity of
product is primarily turned by the atomic type on the shell of MxAu12-x [51,57].

Table 5. Catalytic performance of TiO2-supported MxAu25−x(SR)18 catalysts in the C–C coupling
reaction between MeOC6H4I and PA. Reaction conditions: 100 mg catalyst, 1 wt % MxAu25−x(SR)18
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Table 6. Adsorption energy of the PA and IB on the Au3 site of the M1Au24(SR)18 (M: Pt, Ag, and Cu,
and noted as M1Au24) and M2Au23(SR)18 (M: Ag and Cu, M2Au23) cluster models, respectively.
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One PA −0.51 −0.50 −0.61 −0.60 −0.52 −0.52
One IB −0.60 −0.61 −0.59 −0.59 −0.54 −0.58

“PA + IB” pair −1.11 −1.11 −1.20 −1.19 −1.06 −1.10
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The structure of the 25-atom cluster was similar [50], but the electronic property and the catalytic
activity of the bimetallic clusters could be largely regulated by the foreign dopants [50–55]. Recently,
Li et al. [56] studied the doping effects of the Au25(SR)18 nanoclusters in a Sonogashira cross-coupling
reaction based on an experiment and DFT simulations. The obtained results suggested that the Cu and
Ag atoms were preferentially occupied at the cluster’s kernel (Au13) rather than the Au2(SR)3 staple
motif, while a single Pt atom only can be doped individually and locates in the center of the cluster.
The overall performance of AgxAu25−x(SR)18 was similar to that of Au25(SR)18 and Pt1Au24(SR)18,
which showed a decrease in catalytic activity (Table 5). The catalytic activity was AgxAu25−x(SR)18

≈ Au25(SR)18 > CuxAu25−x(SR)18 > Pt1Au24(SR)18. Interestingly, the CuxAu25−x(SR)18 produced a
homo-coupling product base on the Ullmann homo-coupling pathway, which was contrary to the
other three cluster catalysts. However, DFT calculations showed that the adsorption energy of one
PA molecule on the Pt1Au24(SR)18, Cu1/2Au24/23(SR)18, and Au25(SR)18 nanoclusters was very similar
(−0.50 to −0.52 eV, Table 6). The adsorption energy of one IB molecule onto the Pt1Au24(SR)18,
Ag1/2Au24/23(SR)18, and Au25(SR)18 was also very similar (−0.59 to −0.61 eV, Table 6). These results
suggested that the adsorption process of the PA and IB onto the alloy clusters was not the key step
during the coupling reactions. Generally, the catalytic activity was largely affected by the electronic



Nanomaterials 2019, 9, 838 12 of 17

effect in the core of bimetallic clusters (i.e., Pt1Au12, CuxAu13-x, AgxAu13-x, and Au13), and the selectivity
of the product is primarily turned by the atomic type on the shell of MxAu12-x [51,57].

4.4. A3-Coupling

A3-coupling reactions, where three reactants (aldehydes, amines, and alkynes) react each other
in one-pot to yield only one product, have attracted overwhelming interest in the past decade.
The A3-coupling is favorable from environmental and economic perspectives: more efficient and less
waste [58–61]. The A3-coupling reactions involve new C–C and C–N bond formation in one procedure.
The alkyne activation was deemed as the key step for the A3-coupling; the aldehydes could react with
amines spontaneously. Hence, the gold clusters should be active in this reaction, because the cluster
catalyst has exhibited the capacity of the alkyne activation in the semi-hydrogenation of terminal
alkynes [36].

The catalytic performance of the Au25(PPh3)10(PA)5X2 was investigated in different solvents and
reaction temperatures [62]. The most prominent feature was that the polarity of the solvent had a
great influence on catalytic activity. The TiO2-supported Au25 catalyst gave higher activity in the polar
solvents. The gold clusters also showed good recyclability. Interestingly, the cluster catalyst showed
no conversion using ketones as reactants (Figure 8), which was completely different from the catalytic
behaviors of the gold complexes and bare gold nanoparticles. Therefore, the electronic factors and
steric hindrance of the substituents had significant effects on the reaction conversion rate.
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reaction. Reaction conditions: 100 mg catalyst (1 wt.% cluster loading), 1.0 mmol benzaldehyde,
1.2 mmol piperidine, 1.3 mmol phenylacetylene, 5 mL water, 100 ◦C, 18 h, under a N2 atmosphere.

An induction period (0 to 3 h) appeared and the conversion slightly increased during the induction
period. After the induction period, the reaction conversion of gold clusters significantly increased in
the time evolution for A3-coupling [62]. The results showed that some phosphine ligands are removed
to generate catalytic active sites, which associates with the surface gold atoms. Further research found
that the capped phosphine ligands can be selectively removed in the case of Au11(PPh3)7X3 with the
aid of base (e.g., pyridine), evidenced by UV-vis and ESI-MS analyses [63].

Finally, the catalytic mechanism over the gold clusters was studied by DFT calculations. Firstly,
the phosphine ligand is detached in the presence of the reaction system, and then the uncovered Au
atoms are exposed to the reactants. Next, the PA molecules are adsorbed onto the M1 site via the
interaction of Au···whole triple bond, Figure 9. Further, a terminal hydrogen deprotonation occurrs in
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the presence of amine (e.g., HN(CH3)2). The iminium ion (H2C=N(CH3)2
+) interacts with the PhC≡C–

on site M1 and finally give rise to the final product (i.e., propargylamine) [62].
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Further, Jin et al. reported Au38 nanocluster-catalyzed the A3-coupling reaction [64]. They argued
that the synergistic effect of the partial positive charged Au surface (Auδ+, 0 < δ< 1) and the electron-rich
Au23 kernel were responsible for the catalytic behaviors. Li et al. found that cadmium doped Au13

nanocluster also showed catalytic activity in the A3-coupling [65]. The cooperation between the exerted
cadmium atoms and the neighbor gold atoms on the surface of Au13 icosahedron are tentatively
deemed as the active sites in the cross-coupling reactions.

5. Summary and Outlook

In the past decade years, remarkable advances have been made in developing catalytic applications
of gold nanoclusters, which is a new perspective for gold nanocatalysis, especially in carbon–carbon
cross-coupling reactions. These gold nanoclusters were more efficient in the cross C-C coupling
reactions in this Review. The higher catalytic activity was mainly because of the distinctive frame
structure and electronic properties of the gold nanoclusters and the protecting ligands. However, some
of the gold nanoclusters with the protection of thiolate/phosphine could not stay intact under the harsh
reaction conditions during the catalysis processes, leading to a decrease or even disappearance of
catalytic activity due to the increasing size of formed particles. How to maintain the stability of gold
nanoclusters during the catalysis has become a major challenge and subject for future research.

The present review demonstrated that CeO2 and TiO2 oxides have been observed to be excellent
supports for gold nanoclusters [66]. Few studies have been done on other oxides. Developing new
types of supports is another significant issue for substances such as zeolite [67,68], carbon materials
(e.g., graphene or graphite oxide) [69,70], and MOFs [71]. For example, mesoporous materials,
e.g., MOFs and zeolite, exhibited regular tunnels and cages and improved the stability of the Au
clusters during the catalytic processes [72]. The tunnels and cages, by enriching concentration of the
reactants, can also improve the catalytic activity. The steric effects of MOFs organic linker can improve
the selectivity of products. In addition, the sites of Lewis acids and Bronstein acids in zeolites also can
change the catalytic performance of the catalysts.

In a word, gold nanoclusters will be expected to be used into carbon–heteroatom cross-coupling
reactions, which are not yet well investigated. The formed C–O and C–N bonds are very useful
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drug intermediates [73]. Recently, some attempts have been reported in these categories, such as
the cross-aldol condensation and Michael addition (forming C=C bonds) and photo-oxidation of
amines to imines (C=N bonds) [10,74]. Future research on gold nanoclusters will contribute to
fundamental researches and provide clues for the new design of efficient catalysts for other specific
chemical processes.
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