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Abstract

Within the classical eye-blink conditioning, Purkinje cells within the cerebellum are known to
suppress their tonic firing rates for a well defined time period in response to the conditional
stimulus after training. The temporal profile of the drop in tonic firing rate, i.e., the onset and
the duration, depend upon the time interval between the onsets of the conditional and
unconditional training stimuli. Direct stimulation of parallel fibers and climbing fiber by elec-
trodes was found to be sufficient to reproduce the same characteristic drop in the firing rate
of the Purkinje cell. In addition, the specific metabotropic glutamate-based receptor type 7
(mGiluR-) was found responsible for the initiation of the response, suggesting an intrinsic
mechanism within the Purkinje cell for the temporal learning. In an attempt to look for a
mechanism for time-encoding memory formation within individual Purkinje cells, we propose
a biochemical mechanism based on recent experimental findings. The proposed mecha-
nism tries to answer key aspects of the “Coding problem” of Neuroscience by focusing on
the Purkinje cell’s ability to encode time intervals through training. According to the proposed
mechanism, the time memory is encoded within the dynamics of a set of proteins—mGIuR-,
G-protein, G-protein coupled Inward Rectifier Potassium ion channel, Protein Kinase A, Pro-
tein Phosphatase 1 and other associated biomolecules—which self-organize themselves
into a protein complex. The intrinsic dynamics of these protein complexes can differ and
thus can encode different time durations. Based on their amount and their collective dynam-
ics within individual synapses, the Purkinje cell is able to suppress its own tonic firing rate for
a specific time interval. The time memory is encoded within the effective dynamics of the
biochemical reactions and altering these dynamics means storing a different time memory.
The proposed mechanism is verified by both a minimal and a more comprehensive mathe-
matical model of the conditional response behavior of the Purkinje cell and corresponding
dynamical simulations of the involved biomolecules, yielding testable experimental
predictions.
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Introduction

How do we store memories in our brain? How do we retrieve and edit them when required?
Recent experimental findings have shed some light onto these fundamental questions. Experi-
ments have shown that memories are held within specific neuronal populations [1-3]. Such
populations, referred as memory engram cells [4, 5] store memory either by forming or elimi-
nating synapses [6, 7] or by altering synaptic strengths between neurons [8, 9] within the popu-
lation. These forms of learning and memory formation fall under the widely accepted Hebbian
learning paradigm [10]. However, the individual contribution of each synapse to the engrams,
and how changes in synaptic strength affects memories, remain poorly understood. The prob-
lem of information encoding was raised by C.R. Gallistel [11] and termed as the “Coding
Question”, one of the fundamental open questions in Neuroscience today. Recent experiments
on Purkinje cells, one of the major neuronal populations in the Cerebellum and essential for
motor coordination, have shed some light on the Coding Problem. Those experimental results
have illustrated that the memory of time interval duration can be encoded within individual
Purkinje cells, and does not require a whole neuronal population [12, 13]. In addition, the
stored time memory can be accessed and changed anytime. This result has also challenged the
prevailing doctrine of Hebbian learning by showing that traditional changes of synaptic
strength alone cannot explain the Purkinje cell response after learning [14].

Purkinje cells can learn to encode a specific time memory through Classical or Pavlovian
conditioning. This kind of associative learning can occur when a biologically potent stimulus,
such as food, is paired with a neutral stimulus, such as a metronome, that precedes it. Depend-
ing upon the response the potent stimulus elicits, e.g., saliva flow, and the exact protocol fol-
lowed, Classical Conditioning can be categorized into various kinds. One of them being
classical motor conditioning, such as the eye blink conditioning, where a neutral conditional
stimulus (CS) in the form of a light or a sound can trigger an eye blink response before the
onset of an unconditional stimulus (US) that elicits a blink reflex response [15, 16]. In other
words, CS triggers a response that predicts the time of arrival of the US. Such a conditional
response appears after training with repeated paired presentation of two stimuli, where a CS is
followed by an US after a fixed time interval “T”, called the interstimulus time interval (ISI)
[17]. At the cellular level, the eye blink response is causally related to a suppression of the tonic
firing of individual Purkinje cells, which have projections onto cerebellar nuclei which in turn
regulate the activity of ocular muscles [17, 18]. Because of such causal connection, the suppres-
sion of the firing rate of the Purkinje cell is termed as the conditional response of the Purkinje
cell.

Previous mechanistic explanations considered Long-term Depression (LTD) of selective
synapses between parallel fibers and Purkinje cells (pf-PC) as the main mechanism behind the
conditional response in the Purkinje cell [19]. Based on the widely accepted Marr-Albus
model of the cerebellum [20, 21], this suggests that the time memory of the response is
encoded within the network dynamics of Granule cell neurons and inhibitory interneurons,
found within the molecular layer of the Cerebellum between Mossy fibers and Purkinje cells.
However, recent experiments on ferrets were able to identify the source of the conditional
response at the level of individual Purkinje cells by showing that the direct stimulation of paral-
lel fibers and climbing fibers using electrodes was sufficient for Purkinje cells to learn the spe-
cific time interval duration [12]. These experiments also showed that a glutamate-based
metabotropic receptor type 7 (mGluR?7) initiates the conditional response [13] by opening G-
protein coupled Inward Rectifier Potassium (GIRK) ion channels [22]. This implies that there
exists a specific biochemical mechanism within the Purkinje cell that can encode and store
temporal information. However, immunohistochemistry results for the expression of the
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mGluR; receptor on the Purkinje cell’s synapses or dendritic spines have been highly contro-
versial. Although several early studies showed mGlIuR; expression in Purkinje cells [23, 24],
posterior with proper controls and highly specific immunostaining concluded that Purkinje
cells lack mGluR;a and mGluR;b-like immunoreactivities on dendritic spines or cell bodies
completely [25]. Instead these authors proposed that mGluR;b might be expressed on the Pur-
kinje cell axon’s terminals. Considering moderate or fairly strong mGluR; mRNA expression
levels in Purkinje cells [26, 27], one expects a significantly wider expression of mGluR; recep-
tors on the Purkinje cell. Although the study in [25] applied a commonly applicable immunos-
taining approach, it is possible that it was not sufficiently sensitive to detect low or moderate
expression of mGluR; receptors on the remaining parts of the Purkinje cells as proper immu-
nostaining depends on both specificity and sensitivity of the antibody-antigen pair [28, 29].

In summary, it has been traditionally believed that memory storage in the cerebellum
requires neuronal assemblies. The recent findings suggest instead that temporal signatures can
be encoded within a single Purkinje cell. Yet, the specific mechanism remains poorly under-
stood. Here, we propose a biochemical description, based on past experimental findings, that
is able to explain time memory formation, consolidation and access.

Materials and methods
Model conceptualization: Proposed biochemical mechanism

As mentioned above, the conditional response at the level of an individual Purkinje cell
appears after several repetitions of two stimuli: A CS from the parallel fibers followed by an US
from the climbing fiber after a fixed ISI. A sufficient condition for the learning process to be
called completed is that a CS without an applied US can initiate the conditional response—the
suppression of the tonic firing rate—within the given ISI.

We propose that the conditional response arises due to interactions between four main pro-
teins: metabotropic glutamate based receptor (mGluR;), Protein Kinase A (PKA), Protein
Phosphatase 1 (PP1) and G-protein, which regulate the gating dynamics of the G-protein
inward rectifier potassium (GIRK) ion channel. G-Protein Coupled Receptors such as the
mGluR; receptor have been known to form protein complexes with GIRK ion channels [30-
32]. The protein complex can include Phosphatase and Kinase proteins such as PP1 which can
be active all the time, while the activity of PKA can change depending on the cAMP concentra-
tion [33, 34]. As PKA and PP1 activities have opposite roles, one of the two proteins will typi-
cally dominate and decide the de/phosphorylation state of the target protein [33, 35]. For
instance, PKA dominates over PP1 upon increase in cAMP concentration, [cAMP], and causes
phosphorylation of the target protein [33, 35]. Otherwise PP1 dominates and causes dephos-
phorylation of the target protein [35]. Such dual role of Kinase and Phosphatase have been
observed to be facilitated by A-Kinase Anchoring Proteins (AKAPs) [31-33]. In addition,
AKAP proteins can also harbour Acetyl-Cyclase (AC) proteins, which can associate with G-
protein coupled receptors to regulate the receptor mediated ion channel dynamics [31, 33].
Altogether, we propose that the mGluR; receptor, G-protein and GIRK ion channel form a sta-
ble protein complex along with proteins like AC, PKA and PP1, which are associated via an
AKAP scaffold protein close to the receptor.

Below, we provide more detail on the conditional response of the Purkinje cell and the asso-
ciated detailed biochemistry we propose. We separate our discussion into three parts: during
training, after training and training with different ISIs. The first part focuses on two questions:
What makes a Purkinje cell learn a conditional response, and how does the cell learn a condi-
tional response of a specific duration? The later two parts describe the most crucial aspects of
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the conditional response, i.e., its formation after training, along with other features of the con-
ditional response, which were experimentally observed.

During training: Learning process. What makes a Purkinje cell learn a conditional
response? The activation of the conditional response was found to be initiated by the activation
of mGluR; receptors [13]. Although the body of literature regarding mGluR; in the cerebellum
is limited and despite the aforementioned controversy regarding the expression of the mGluR,
receptor on the Purkinje cell’s synapses or dendritic spines, there is significant evidence that
Purkinje cells do express mGluR; receptors. Most importantly, the effects of 6-(4-Methoxy-
phenyl)-5-methyl-3-(4-pyridinyl)isoxazolo[4,5-c] pyridin-4(5H)-one hydrochloride (MMPIP)
as an mGluR; selective antagonist replicate the results of mGluR; knockouts [36], while
MMPIP also has an effect on blocking the conditional response in Purkinje cells [13]. Thus, we
start from the assumption that Purkinje cells express mGluR; on the Purkinje cells’ synapses
and that the mGluR; receptors indeed activate the conditional response behaviour in the Pur-
kinje cell. Yet no conditional response was observed before training [12]. We propose that dur-
ing training mGIuR; receptors are being transported from the perisynaptic zone to the
postsynaptic zone of the synapse. Alternative hypotheses such as (1) the absence of GIRK ion
channels at the synapse and (2) low expression of Gy, type G-proteins at the synapse can be
ruled out. Immunohistochemistry analysis showed the presence of GIRK subtypes GIRK2/3
ion channels on the synapses of Purkinje cells—which are innervated by parallel fibers [37]. If
(2) were true and the G-protein expression would change during training, this would affect
not only the conditional response profile but also various other physiological properties of the
Purkinje cell. This is because different types of G-proteins play crucial roles in signal transduc-
tions and determine various physiological properties of the cell [38]. Since no change in the
tonic firing rate has been observed before and after conditional training [12], we believe that
other physiological properties of the cell may also remain unaltered. Thus, the translocation of
mGluR; receptors to the synapse is the most likely result of the training and we assume that
the amount of other proteins such as GIRK ion channels and G-protein is constant for all dif-
ferent durations of conditional training.

How does the Purkinje cell learn a conditional response of a specific duration? Purkinje
cells memorize a specific duration “I” after training with repeated paired presentation of two
stimuli, where a CS is followed by an US after a fixed time interval “T” i.e., the Interstimulus
Interval (ISI) [17]. As mentioned earlier, we propose that the learning of the conditional
response is associated with trafficking of mGluR; receptors from perisynaptic to postsynaptic
locations at the Purkinje cell’s synapses. Specifically, we propose that such trafficking of recep-
tors occurs via Clathrin-mediated Endocytosis (CME) mediated by the activation of Protein
Kinase C (PKC) [39]. The PKC activation occurs in the presence of two stimuli: the first stimu-
lus must come from the parallel fiber, which activates mGluR, receptors, while the second
stimulus from the climbing fiber raises the Ca*? ion concentration [40, 41]. Both stimuli are
necessary and, in particular, the presence of only one of the two stimuli is not sufficient for
either PKC activation or Purkinje cell to learn the conditional response [17, 40]. Consequently,
we also propose that mGluR, receptors are essential for learning of a conditional response of a
specific duration. There could be other biochemicals involved in the translocation of mGluR;,
receptors as Purkinje cells cannot be trained for ISI durations shorter than 100msec [42]. Cur-
rently, we cannot make any suggestion for proteins, which might be involved in addition to
PKC during conditional learning.

To ensure storage of a specific time duration memory, such translocation processes must
stop after some time. This can happen by inhibiting PKC activation via the activation of GIRK
ion channels. Indeed, activation of GIRK ion channels causing a drop in tonic firing rate dur-
ing training has been observed in experiments [43, 44]. Therefore, we propose that as training
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Fig 1. mGluR; receptor distribution before and after conditional training in the Purkinje cell. Before training,
mGluR; receptors are localised at perisynaptic areas of the synapses. After training, as pointed out by the blue arrows,
these receptors localised themselves at the postsynaptic area of the synapse via CME.

https://doi.org/10.1371/journal.pone.0251172.9001

progresses the intracellular Ca*? ion concentration decreases to a level that is no longer suffi-
cient to activate PKC, which prevents further translocation of mGluR; receptors to the synapse
and so a steady state will be reached. When a steady state has been reached, then we can say
that the Purkinje cell has learned the conditional response of duration “T” as shown in (Fig 1).
This learning mechanism also suggests that the training period needs to increase with the
duration “T” as observed experimentally [12]. As the net amount of the receptors translocated
during training depends upon its net duration, longer training means more transportation of
the receptor to the synapse. We will explain below how a higher amount of receptors can pro-
duce a longer duration conditional response.

After training. The conditional response with a duration of hundreds of milliseconds can
be initiated by a CS of as little as 20 milliseconds duration [12]. This means that just the activa-
tion of the mGluR; receptors by CS is enough to initiate the conditional response, which is
only possible if the receptor remains active even after CS is over. Furthermore, in order to
explain the fast dynamics of the conditional response initiation observed in the experiment
[12] we propose that the mGluR; receptor forms a protein complex with the G-protein of G;;,
type, which is located in direct vicinity to a GIRK ion channel as facilitated by a Regulator of
G-protein signaling protein 8 (RGS8) [45, 46]. RGS8 proteins are expressed in dendritic spines
of the Purkinje cell [47] and they have the special property of accelerating both activation and
deactivation of the G-protein causing fast opening and closing of GIRK ion channels [46, 48].

If the mGluR; receptors can remain active even after CS is over, there needs to be mecha-
nisms by which they can return to an inactive state. To explain this, there are two additional
important properties of the conditional response, which we must consider: 1) The conditional
response is lost after repetitive CS [12], and 2) the conditional response is independent of CS
duration. Dephosphorylation of the mGluR; receptor by Protein Phosphatase 1 (PP1), which
causes their rapid internalization [49], can explain both these properties of the conditional
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response. Rapid internalization of any receptor is initiated by the binding of a protein called
Arrestin protein, which prevents the receptor to transmit any signal further [41]. Because of
rapid internalization, retraining of the Purkinje cell with the same or a different ISI will be
faster as many receptors are close to the synapse. This rapid relearning phenomenon is called
“Saving” and it takes only a few minutes to recall the old memory of the conditional response
by the Purkinje cell [17]. To prevent dephosphorylation and rapid internalization of mGluR;
receptors, Calmodulin can stimulate Acetyl cyclase (AC) [50] to produce cAMP molecules and
increase PKA activity. In addition, Calmodulin can also activate PDE enzymes [51] which will
limit the PKA activity. It is also known that PKA can phosphorylate mGluR; receptors [52].
Thus, phosphorylation of the receptor depends on the competition between PKA and PP1
activity as in [33], where PKA dominates over PP1’s constant activity and causes net phosphor-
ylation of the mGluR; receptor. Thus, the phosphorylation of receptors by PKA helps in the
retention of the memory for a long time. As PKA and PP1 are essential for the conditional
response, we propose that they bind to the receptor via a AKAP protein [53].

In short, the underlying biochemical mechanism of the conditional response can be
described as follows. The release of glutamate during CS activates mGluR; receptors on the
Purkinje cell synapses [step 1 of (Fig 2)], which in turn activates G-proteins [step 2 of (Fig 2)].
Each unit of G-protein splits into a G, subunit and a Gg, subunit. One unit of G, subunit
binds to an AC enzyme to block the production of cAAMP molecules. This in turn deactivates
PKA as Phosphodiesterase enzyme (PDE) hydrolyses the remaining cAMP molecules [41]
[step 3 of (Fig 2)]. At the same time the G, subunit binds to the GIRK ion channel, which
becomes fully active upon binding of four Gg, subunits [54]. As PKA activity decreases, PP1
activity causes dephosphorylation of mGluR; receptors [step 4 of (Fig 2)] and initiates their
rapid internalization. However, rapid internalization of a receptor is still a slow process com-
pared to the conditional response as it involves many protein interactions and, hence, the
receptor is not immediately displaced from the synapse after dephosphorylation. However,
after dephosphorylation, Arrestin protein blocks the active site of the mGluR; receptor to pre-
vent reactivation of the G-protein [55] as well as decouples the receptor from the protein com-
plex [step 5 of (Fig 2)]. After receptor dephosphorylation, the active G-protein is deactivated
by the RGS8 protein [step 6 of (Fig 2)]. As G-protein activity reduces, GIRK ion channels also
shut down. In the absence of active G-protein, PKA activity begins to rise again [step 7 of (Fig
2)] due to rise in activity of AC enzymes in the presence of Calmodulin. Active PKA phosphor-
ylates mGluR; receptors [step 8 of (Fig 2)] to prevent their internalization and the uncoupled
phosphorylated receptor recouples back to the protein complex to prepare the Purkinje cell for
another conditional response. It is likely that the reactivation of PKA takes some time, which
might explain why CS cannot initiate another conditional response while CS is still on.

The rate at which GIRK ion channels open and close depends upon the rate at which inter-
mediate reactions occur. In other words, the time memory of the training is stored within the
effective dynamics arising from these reactions. In a complete cycle of GIRK ion channel acti-
vation and deactivation, altering only the effective dynamics for both activation and deactiva-
tion processes is sufficient to store a different time memory of the conditional response.

Training with different ISI duration and time-encoding protein complexes. Training
with a different ISI duration means storage of a different time memory. There are two addi-
tional questions we need to answer in order to get a complete understanding of time memory
storage in biochemical reactions: 1) How do these biochemical reactions get tuned so finely to
store a specific time duration memory? 2) Which dynamical parameters of the proposed bio-
chemical mechanism are most likely to get affected by choosing a different ISI for the training?

The reason behind 1) is that there are several GIRK ion channels present at the synapse.
Each GIRK ion channel requires four units of G, subunits to open completely [54]. This
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transduction and also decouples the receptor from the protein complex (5). As receptor activity reduces, RGS8 reduces G-protein activity (6),
which allows PKA activity to rise again (7). Active PKA will phosphorylate dephosphorylated receptors (8) to prevent their rapid internalization
and the uncoupled phosphorylated receptor will couple back to the protein complex (9) for another conditional response. The red box identifies
the three variables and their interactions used in the minimal mathematical model to capture the conditional response behaviour. Here, u, v and x
represent the activities of PKA, mGluR; receptor and G-protein, respectively. These protein interactions occur in each individual TEC unit
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used in the comprehensive mathematical model.

https://doi.org/10.1371/journal.pone.0251172.9002

means that each GIRK ion channel forms a protein complex with four units of each of G-pro-
teins, receptors and RGS8 proteins along with PKA and PP1 proteins together with their
anchoring proteins. As each of these protein complexes has their own intrinsic dynamics,
which regulate how fast the GIRK ion channel opens and closes upon stimulation, we can call
each of these protein complexes “Time-Encoding protein Complexes” (TEC). Within each
TEC, the rate of G-protein activation by the receptor and the rate of binding of G-protein sub-
units to the GIRK ion channel decide the overall rate of opening of GIRK ion channels i.e., the
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onset of the conditional response. After the onset of the conditional response the rates of PKA
deactivation, dephosphorylation of the receptor by PP1 and the deactivation of G-protein by
RGS8 decide the overall duration of the conditional response since at the end of these bio-
chemical reactions the GIRK ion channel begins to close. Thus, each TEC encodes the time
information of the conditional response completely in terms of the effective dynamics of dif-
ferent biochemical interactions and stores this time memory by forming a protein complex.
Formation of a protein complex as TEC ensures strong consolidation of memory with less
chances of errors in the information storage. If the rates were to be changed so would the
memory as well. The rates can be affected by the translocation of extra mGIuR; receptors to
the synapse during conditional training. These extra mGluR; receptors can form clusters with
receptors—which are part of a TEC—with the help of a scaffold protein, Protein Interacting
with C Kinase—1 (PICK1) [56]. Such cluster formation can affect TEC’s intrinsic dynamical
properties by influencing the protein interaction of the mGluR; receptor with the G-protein
facilitated by RGS8. As a result, RGS8’s ability to accelerate the dynamics of the conditional
response might be affected, which results in a delayed onset of the conditional response. Such
clustering of receptors can also affect the concentration of PDE proteins anchored close to the
receptor via the AKAP protein, thus affecting the rate at which PKA deactivates and hence the
time duration of the conditional response. To summarize, we propose that at individual synap-
ses the interaction of extra mGluR; receptors with TECs can affect the dynamics of TECs and
collectively these varied TEC units help to produce the conditional response of any specific
time duration in the Purkinje cell.

From the above description, it follows that in principle a single synapse can completely con-
tain a time duration memory, which can be altered through retraining. However, a single syn-
apse probably will not be sufficient to suppress the tonic firing rate of the whole Purkinje cell.
This is because the spontaneous tonic firing rate of the Purkinje cell [57] appears to be due to
voltage-dependent resurgent Na™ ion channels, which are distributed over the entire somata
and dendritic regions of the cell [58, 59]. Activation of GIRK ion channels by CS can hyperpo-
larize the membrane at a synaptic region and deactivate resurgent Na* ion channels near this
synaptic region. Thus, a finite fraction of the total pf-PC synapses distributed over the den-
drites can produce a suppression in tonic firing rate of the Purkinje cell for a specific duration
and the corresponding memory is encoded at the respective synapses.

Model implementation

Here, we provide both a minimal and a comprehensive mathematical model implementation
of our proposed biochemical mechanism in the context of an existing Purkinje cell model.
Purkinje cell model. To model the conditional response behavior of the Purkinje cell
after training, we start with an established dynamical model of the Purkinje cell [60] as sum-
marized by (Eqs 1-5). Specifically, it aims to model the dynamics of the Purkinje cell by incor-
porating many properties of the Purkinje cell within a realistic biophysical framework. In
contrast to the original formulation [60], (Eqs 1-5) already incorporate the features specific to
our situation: In (Eq 1), the input current term I;, which originally signified an external electri-
cal stimulus, now signifies the intrinsic current causing the tonic firing of the Purkinje cell [61,
62]. Moreover, before training, GIRK ion channels cannot be opened because mGluR; recep-
tors are not present at the synapse, while after training, mGluR; receptors are present at the
synapse to open GIRK ion channels. Therefore, we added the influence of the GIRK ion chan-
nel in (Eq 2), which only becomes relevant after training. Here, ggirx is the net conductance of
GIRK ion channels per unit area, hgr is the gating parameter and Vr is the voltage depen-
dence of the GIRK ion channel obtained from the I-V characterstics curve of the ion channel
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[63]. To model the conditional response behavior of the Purkinje cell after training, we capture
the dynamics of our proposed biochemical mechanism using the gating parameter hgri. As a
GIRK ion channel binds 4 units of G-protein subunits, i.e., Gg,, we have used the exponent 4
for the h¢r. This is based on the assumption that the dynamics of each unit of Gg, is indepen-
dent of the others. We will discuss later the (very limited) effect of relaxing this assumption,
including the case when they are all strongly dependent on one another corresponding to an
exponent of 1.

Except for ggiri all values of the model are taken from [60]. As far as we know, there is no
literature on the specific ggiri values. As a result, we chose a value of ggrrx that matches the
experimentally observed conditional response profiles. All parameter values of the Purkinje
cell model including ggri are summarized in S1 Text

Somatic voltage equation:

v, _(V,~V)

Cs dt :T_gl\]umooh(vs _ENtZ) _gKS(l —h)(VS _EK) (1)

_gleak(V: - Eleuk) - gIHIh(Vs - Elh) + Ii

Dendritic voltage equation:

dvd (Vs — Vd)

oF ar = — R Siea (Vi — Epi) — 8kd(stow) n,(Vy — Ey)
) 2
_gGIRKhéIRKVGIRK(Vd) ( )
Vere(V,) = —0.02(1.3V,+ 50.0)/(1.0 + exp((V, + 40)/10.0))

Na" activation equation:

1
T 1t exp[—(V - V,,)/K]

, Vi, =—40.0mV, k=3.0mV

dh h_—h 1
dh - _hemh L Vi =—40.0mV, k=-30mV (3)
dt T, 1+ exp[—(V — Vl/z)/k]
295.4
(V) = B4 012
A(V + 50)° + 400

Hyperpolarizing activated cation current (I,):

dI I, —1 1

i R S , Vi, =-80.0mV, k=-3.0mV,

dt T, 1+ exp[—(V — VI/Q)/k] (4)
7, = 100ms

h

Slow K" activation equation:

dn, Ny — My 1

4 dx = Vi =—35.0mV, k=3.0mV

dt Tod L+exp[—(V—V,)/k] " (5)
T, = lbms

ngq

Minimal mathematical model of proposed biochemical mechanism. We first start with
a minimal mathematical model for the dynamics of the gating parameter hgrrx, which will
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allow us later to clearly establish the robustness and generality of the proposed mechanism
since it is amenable to a phase space and bifurcation analysis.

Gating of the GIRK ion channel depends upon the availability of Phosphatidylinositol
4,5-bisphosphate (PIP,) molecules [54]. These molecules have a low affinity for GIRK ion
channels but bind efficiently after binding of a Gg, subunit to a GIRK ion channel. The
amount of PIP, on the synaptic membrane is low but it is replenished by various biochemical
processes to maintain its concentration fairly constant upon consumption or degradation [64].
Therefore, the amount of active Gg, subunits can determine the gating dynamics of the GIRK
ion channel. As G-proteins are closely associated with GIRK ion channels, we can assume fast
binding of the Gg, subunit to the GIRK ion channel. Under these assumptions, we can equate
the normalized G-protein activity with the GIRK ion channel gating parameter hgrx as sum-
marized in (Eq 9) below.

G-protein activity depends on the activity of the mGluR; receptor along with other proteins
as discussed in Model Conceptualization: Proposed biochemical mechanism and shown in
(Fig 2), which self-orgainze to form discrete units of TECs. Since we do not know the number
of TECs and their detailed intrinsic dynamics, we choose to model the collective dynamics of
TECs and different biochemical interactions within them in an effective way. Hence, instead
of using discrete variables for the activity of different biochemicals, we use continuous vari-
ables to capture the “average” dynamics of different biochemicals by considering all TECs
together.

Our conceptual minimal model aims to reproduce features of the conditional response,
namely 1) the conditional response should be independent of CS duration, and 2) changing
the dynamics of PKA and G-protein should be sufficient to produce conditional responses of
different durations. It considers the four main biochemicals—mGluR;, G-protein, PKA and
PP1—and models their overall effective behaviour as observed in vivo. Based on the pictorial
diagram shown in (Fig 2), the dynamical equations for the proposed biochemical mechanism
within individual TECs are as follows:

du 1
- - _ _ 6
Ty dt a+x”(”0 u) — fu, (6)
d
‘EZd—: = (v, —v)(v—v,) —y(w, — du)v + I, (7)
dx
— = (v— 8
7 (v —x) (8)
hGIRK = x/Vo (9)

where u, v, and x are the activities of PKA, mGluR; receptor, and G-protein, respectively,
while the activity of PP1 is held constant to wy as per proposed mechanism. In the above
model, all the variables along with parameters @, v;,up, vo, Wo, and I carry units of yM. The
remaining parameters 8 and & are unitless, while y carries units of uM ' and A carries units of
UM 2. All parameters and variables are positive including 7; for i = 1, 2, 3, which have units of
milliseconds. Table 1 discusses the biochemical significance of the various terms in (Eqs 6-8).
In (Eq 7), the term —yduv denotes the interaction of PKA with mGIuR;. Yet, there is no corre-
sponding term in (Eq 6) because such interactions are enzymetic in nature and have very short
time scales compared to the response, which we are trying to model. Hence, the activity of
PKA does not change when it interacts with other proteins.
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Table 1. Description of the various terms in the minimal model.

Term Description

u(ug — u) in (Eq 6) This term models the rise in PKA activity up to its maximum value of u,. It captures the
increases in PKA activity due to the rise of [CAMP] by AC activity facilitated by the
Calmodulin protein, especially the non-monotonic change in the increase until PKA
saturates.

—in (Eq6) This term models the net AC activity and captures that upon parallel fiber stimulation,

' glutamate activates the mGluR; receptor, which activates G-protein to produce a G, subunit
to block the cAMP molecule production. The specific form is obtained from Hill’s equation
with Hill’s coefficient equal to 1 as only one unit of G, protein binds to AC. See S2 Text for

more details. AC activity activates PKA and that is why we have the product of u(u, — u) and
—~in (Eq 6). Here & = Kp is the dissociation constant of AC and G-protein binding,

—Bu in (Eq 6) This term captures the suppressive influence of PDE on PKA activity via hydrolysing cAMP
molecules. 3 signifies the strength of the PDE action, which is proportional to its (constant)
concentration. Different conditional responses are the result of different PDE
concentrations, such that higher PDE concentrations (larger ) lead to conditional responses
of longer duration.

M(v —vo)(v; —v)in | This term is the effective representation of the 5-state model of the mGluR; receptor shown
(Eq7) in (Fig 2) and captures the switching property of the mGluR; receptor corresponding to the

unaltered conditional response with changing the CS durations. This is achieved by the
lowest degree polynomial required to generate an excitable dynamical system behaviour. v,

signifies the (constant) amount of receptors, which are associated with the G-protein. v;

determines the (constant) threshold activity that needs to be crossed to initiate the
conditional response, hence v, > v;. A is set to unity and ensures the correct dimensionality
of the term.

y(wo — Su)vin (Eq7) This entire term considers the interactions of the mGluR; receptor with PP1 via —yw, v
(lowering of receptor activity due to dephosphorylation) and with PKA via yduv
(phosphorylation after the conditional response is over). ¥ denotes the (constant) interaction
strength of PP1 on the receptor. § denotes the (constant) relative strength of PKA and PP1
interactions on the receptor.

I'in (Eq7) This term denotes the rate of activation of the receptor in unit time, which is determined by
the strength of the CS in the form of glutamate release from parallel fibers.

v—xin(Eq8) This term models the G-protein activity as a linear function. This simplification is justified as
the G-protein is coupled with the receptor via the RGS8 protein. This means that if the
activity of the receptor increases, the G-protein activity increases too.

7, in (Eq 6) Effective time constant for PKA in milliseconds
7, in (Eq 7) Effective time constant for mGluR; receptor in milliseconds
73 in (Eq 8) Effective time constant for G-protein in milliseconds. Depending on the training, its value

can be small or big which results in a short or a long delay in the onset of the conditional
response, respectively.

https://doi.org/10.1371/journal.pone.0251172.t001

Comprehensive mathematical model of proposed biochemical mechanism. We now
present a comprehensive higher-dimensional mathematical model of the biochemical mecha-
nism proposed in Model Conceptualization: Proposed biochemical mechanism based on the
full chemical reaction kinetics including detailed biochemical pathways. It allows us to over-
come some technical limitations faced by our minimal model. Our minimal model captures
the essential interactions between various biomolecules: mGluR; receptors, PKA, PP1, G-pro-
tein using linear and nonlinear terms, which are effective terms but sufficient to qualitatively
reproduce the conditional response observed experimentally as we show later. In addition,
because of its low dimensionality, it allows us to perform a detailed bifurcation analysis to
establish the robustness of the proposed mechanism and our findings. Yet, some of the param-
eters in our minimal model are effective parameters and, hence, cannot be directly connected
to experimentally accessible parameters and molecular interactions. Our full model is able to
overcome this limitation. Furthermore, it also allows a more rigorous experimental verification
of the proposed biochemical mechanism compared to the minimal mathematical model.
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The comprehensive mathematical model comes in the form of mass-kinetic reaction equa-
tions not only for mGluR;,, PKA, PP1 and G-protein but also their associated proteins and bio-
molecules considering their detailed biochemical interactions described in Model
Conceptualization: Proposed biochemical mechanism. In particular, this model explicitly cap-
tures the mGluR; receptor’s 5-state behaviour as depicted in (Fig 2). Depending on the relative
concentration of an enzyme compared to its substrate, we have used both Michelis-Menten
equations as well as the complete set of enzymetic reactions [65]. Because activities of proteins
like PKA will be under regulation by other proteins such as PDE, the total enzyme’s (active
form) concentration will be a function of time. Also, as the protein interaction with its sub-
strate is considered to be fast, there will be no net decrease in the free protein concentration
during its interaction with the substrate. Assuming the total [enzyme] to be ey(t), the [sub-
strate] to be s, the [substrate-enzyme complex] to be ¢ and denoting the [product] as p, the
mathematical equations for an enzymetic reaction take on the following form

ds
a —ky(ey(t) — €)s + kye (10)
dc
a = kl(eU(t) C)S - (k2 + ks)c (11)
dp B
E = k3C (12)

To simulate such equations, the required k1, k, and k3 parameter values can be obtained
from the experimentally measured values of an enzyme’s turnover rate k., and its affinity for

its substrate k,,, and from a fixed value of the ratio % = 4. This value is recommended in [66]

for the ratio as the concentration of the protein complex is low compared to its substrate.
Using above standard enzyme reaction kinetic equations in the context of biochemical interac-
tions discussed in Model Conceptualization: Proposed biochemical mechanism, we can derive
the comprehensive model describing the collective dynamics of the TEC’s. More details
including the biochemical reactions and the full set of equations can be found in S3 Text. We
only would like to highlight here that based on our proposed biochemical mechanism, the two
parameters that control the onset and ISI duration of the conditional response are the concen-
tration of PDE, [PDE], and the rate constant of G-protein activation and deactivation, kg,
Parameter values. All parameter values of the comprehensive model are either obtained
or constrained based on existing literature and/or experimental observations as provided in S1
Table. However, such constraints cannot be directly translated to all parameters of the minimal
model as it uses effective terms to capture multiple biochemical reactions that are individually
described in the comprehensive model. Still, many of the parameters in the minimal model
have direct counterparts in the comprehensive model and are, hence, experimentally con-
strained. These parameters are 1y = [PKA] = 4.0uM, vo = [mGluR;] = 4.0uM, wo = [PP1] =
4.0uM, see S2 Table as well as @ = K, = 0.08uM and 1, = 1/kg = 10~ sec assuming 1uM of
[Glutamate], see S1 Table Furthermore based on our proposed biochemical mechanism, the
parameters 8 and 73 in the minimal model can be treated as functions of [PDE] and 1/k,, in
the comprehensive model, respectively, and they control the models’ behavior in similar ways,
namely they determine the onset and ISI duration of the conditional response. Indeed, based
on all existing studies we are aware of and based on our proposed biochemical mechanism, we
have no clear evidence for changes in the value of any other model parameter as a consequence
of training with different ISI duration. Therefore as a first approximation, we assume all other
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parameters to be independent of ISI duration. Regarding the remaining effective parameters
of the minimal model, we chose their specific values to match the conditional response dynam-
ics of the comprehensive model. Specifically, the values of 7; and 73 are chosen to match the
time scales of the minimal model’s dynamics to those of the comprehensive model. Similarly,
v, controls the threshold value for I to initiate the conditional response. Since the conditional
response behaviour is independent of stimulus duration and corresponds to that of an excit-
able system, we can use small and constant values for both v; = 0.054M and I = 0.1uM. For the
stimulus duration, a short duration of about 20msec is used as applied experimentally in [13]
while an arbitrary long stimulus duration is used to show that the conditional response is
indeed independent of stimulus duration. The choice and range of the remaining parameters,
namely f3, ¥,  and A, will be discussed in Robustness and stability of minimal model.

Numerical simulations. We use the odeint module of python’s scipy library to integrate
the ordinary differential equations of our mathematical models to establish their behavior. The
odeint module uses Isoda from the FORTRAN library odepack and solves the initial value
problem for stiff or non-stiff systems of first order ordinary differential equations. In particu-
lar, Isoda automatically selects the appropriate integration method and step size for a given
(stiff or non-stiff) system of ordinary differential equations [67]. The behavior of the minimal
model does not depend on the specific choice of the initial conditions as long as they are physi-
cally relevant, i.e., 0 < u, v, x < 4 since there is only one stable fixed point, see Robustness and
stability of minimal model for more details. For the comprehensive model, we use the initial
conditions given in S2 Table.

Results

We now discuss and compare the dynamics of various biomolecules essential for the condi-
tional response using both the minimal and the comprehensive model. We analyze the robust-
ness and parameter sensitivities for both our mathematical models and subsequently we
establish a number of predictions that can be tested experimentally.

Properties of both minimal and comprehensive mathematic models

Since experimental results have shown that the conditional response is independent of CS
durations, the activation of the G-protein must also satisfy this property as it regulates GIRK
ion channels [22]. This behavior is indeed captured by our mathematical models. As shown in
(Fig 3), they also successfully capture the dynamics of the biochemicals—PKA, mGluR;, and
G-protein—of the proposed biochemical mechanism.

As per our proposed mechanism, before CS, PKA activity is high while the activity of the
mGluR; receptors and G-proteins are low. Upon CS, mGluR; receptors become active, which
in turn activate G-proteins. Due to activation of G-proteins, PKA activity drops, which causes
the deactivation of mGluR; receptors by PP1. This leads to the deactivation of the G-proteins
by RGS8. When the stimulus is turned off, the activity of the various proteins returns to the
original state as shown in the top panel of (Fig 3). However, if the stimulus remains on for a
long time, then even very low G-protein activity can prevent the rise of PKA activity to a value
that would be high enough to overcome the activity of PP1. As a result, PP1 activity will be cru-
cial to cause dephosphorylation of mGluR; receptors and to block their active sites to prevent
the initiation of another conditional response as shown in the middle panel of (Fig 3). Very
faint G-protein activity in case of long duration CS can be observed in the bottom panel of (Fig
3). This is enough to prevent reactivation of the conditional response.
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Fig 3. Temporal behaviour of PKA, mGluR5, and G-protein. Time varying quantities of PKA, mGluR; and G-protein obtained from the minimal
model (left) and the comprehensive model (right) upon short 20msec (top) and long >2.5sec (middle) stimulus durations represented by the
horizontal bar at the bottom of each panel. The green vertical bar represents ISI duration (200msec in all cases). In the bottom panels, activity of the G-
protein is shown as in the upper panels but for the two different stimulus durations together, indicated by the two color-coded horizontal bars at the
bottom. Both responses are almost identical implying that the G-protein activity is indeed independent of stimulus duration. Parameters values for our
minimal dynamical model are: = 8.5, 8= 1.0,y = 1L4uM ', A = 1.0uM 2, 7, = 2500msec, 75 = 58msec, while the remaining parameter values are given
in Parameter values. For the comprehensive model, [PDE] = 1.254M and 1/kg, = 50msec, while the remaining parameter values are given in S1 Table.

https://doi.org/10.1371/journal.pone.0251172.9g003
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Robustness and stability of minimal model

The robustness of the proposed mechanism and the dynamics of the minimal mathematical
model shown in (Fig 3) can be established by a phase space and bifurcation analysis. We first
discuss the relevant fixed point of the model based on the nullclines before presenting a com-
prehensive bifurcation diagram.

Nullclines. Our model has three different types of nullclines, one for each variable. For
x, the nullcline (0x/0t = 0) has only a single trivial solution corresponding to x = v, see (Eq
8). Thus, we can focus on u and v in the following. For I = 0, as (Fig 4) shows, there are two
u-nullclines (where we have used the x-nullcline x = v in (Eq 6) and two v-nullclines, includ-
ing u = 0 and v = 0. The latter two ensure that (u, v, x) never become negative aka unphysi-
cal. The highlighted intersection points between nullclines in (Fig 4) correspond to the fixed
points of our model: There is only one physically relevant stable fixed point with v = 0 and
u > 0, which describes the “resting” state of the Purkinje cell after training/learning is com-
pleted as discussed in the section Model Conceptualization: Proposed biochemical mecha-
nism. For I # 0 in (Fig 4), the v-nullclines change and the location of the stable fixed point
moves to a lower value of . The dynamics takes the system from the previous location of the
tixed point to the new location along a long trajectory. The duration corresponds to the
learned time interval and is encoded in the values of f and 75. The parameter  controls the
slope of the linear u-nullcline and, hence, the specific location of the stable fixed point as
well as the rate at which PKA activity is reduced. The 7; parameter controls the rate of
change in G-protein activity and, hence, the opening and closing of GIRK ion channels asso-
ciated with the decrease in firing rate of the Purkinje cell. Consequently, it determines the
time delay between the onset of the conditional response and the minimum firing rate. We
would like to note that there is only a finite range of conditional responses that can be
obtained from the minimal model for a fixed set of parameter value. In the presence of a
continuous stimulus (non-zero value of I) as § decreases, the u value of the stable fixed point
rises until it reaches the apex of the v-nullcline. At this point, a stable limit cycle emerges. As
this behaviour is not observed experimentally, this sets the lower limit for suitable values of
B. For the upper limit, an increase in § lowers the u value of the stable fixed point and,
hence, requires a stronger minimal stimulus to initiate the conditional response such that
the stimulus strength I determines the maximum suitable value of §.

The remaining two free parameters are y and . They affect the dynamics of the model,
for example, by altering shapes and positions of u- and v-nullclines similar to 8. For instance,
y and 6 widen the quadratic v-nullcline and bring it closer to the u = 0 nullcline. This will
affect the existence, location and stability of the fixed points including the relevant one cor-
responding to the “resting” state. For example, its stability changes whether it lies inside
(unstable/saddle) or outside (stable) the quadratic v-nullcline as the signs of the flow in (Fig
4) show. The mechanism we propose for the time-encoding memory formation in the Pur-
kinje is directly tied to the qualitative layout of the nullclines in (Fig 4) and the resulting sta-
bility of the relevant fixed point. Thus, the values of the parameters f3, y and & are naturally
constrained and directly tied to the biological interpretations associated with the model’s
dynamics. In particular, to ensure the stability of the relevant fixed point, we need to choose
the values of ¥ and 8 within certain ranges to position the u- and v-nullclines appropriately.
As the value of B determines the specific ISI durations and, hence, needs to be varied, we
also need to make sure these variations in  do not change the properties of the relevant
tixed point either. Besides controling the shape and position of the quadratic v-nullcline, ¥y
also influences the rate of decay of mGluR; receptor’s activity. For numerical values of ¥
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ISI = 200msec, 400msec with I = OuM. Bottom panels from left to right are the same but with I = 0.1uM. These panels also include the projection of the
trajectories from the location of the stable fixed point without stimulus (I = 0uM) to the new one (I = 0.1uM). The time it takes to get from one to the other
corresponds to the ISI duration. Closed circles represent stable fixed points, while open circles represent unstable/saddle fixed points. +/— signs represent
the signs of du/dt and dv/dt, which change across u and v-nullclines, respectively.

https://doi.org/10.1371/journal.pone.0251172.9004
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close to

(v — V1)2

=0.975uM™", (13)
4w,

7y >

the minimum of the quadratic v-nullcline approaches the u = 0 nullcline. Physically, this
means that as the interaction strength between the receptor and the two proteins, PKA and
PP1, decreases for smaller y, the state of the receptor can only be changed if the difference
between PKA and PP1 activity is large. Thus, in the presence of constant PP1 (fixed wy), the
PKA activity, u, has to take on lower values. As a decrease in PKA activity is regulated by the
action of PDE on PKA, a decrease in PKA also slows down the rate of change in PKA activ-
ity. Slower changes in u also slow down the variation in v as the receptor activity will not
change until PKA reaches its minimum value, which corresponds the minimum of the qua-
dratic v-nullcline. Overall, this extends the duration during which the mGluR; receptor
remains active and, hence, the duration of the conditional response. On the other hand,
larger numerical values of ¥ > 1uM ' raise the minimum of the quadratic v-nullcline, which
implies that even a small difference between PKA and PP1 activity can change the state of
the receptor. In such a case, PDE can quickly down regulate PKA activity, which leads to
faster deactivation of the receptor. More importantly, if the inequality in (Eq 13) is violated,
a new pair fixed points emerges, one stable and one unstable. This must be avoided in order
to be consistent with our proposed mechanism. As a result, we chose an intermediate value
of y = 1.4uM " in (Fig 4), which produces a sufficiently wide window of conditional
responses as observed in the experiments. Linear stability analysis shows that for

ViV T YW,
YU,

o< (14)

the relevant fixed point is always stable. This is why we chose 6 = 1.0 in (Fig 3), which satis-
fies (Eq 14) for any arbitrarily large value of y. However, if § is significantly decreased, then a
higher value of I is required to initiate the conditional response. From a biological perspec-
tive, PP1 dominates over PKA relatively for smaller values of § and hence this requires a
stronger stimulus to initiate the conditional response. In summary, the possible range for &
is 0 < & < 1 while for y it is 0.975uM " < y.

Bifurcation analysis. To obtain the full bifurcation diagram, we use the numerical bifur-
cation software MATCONT [68], which provides us with both local and global bifurcations
for our model. Specifically, we find codimension-1 (codim1) bifurcations including branch
point (transcritical), limit point (saddle-node) and Hopf bifurcations, rare codimension-2
(codim?) bifurcations including Bogdanov-Takens, Generalised-Hopf and Cusp bifurcations
as well as global bifurcations such as homoclinic bifurcations. (Fig 5) shows the fixed points of
our model and the various local codim1 and global bifurcations over certain parameter ranges.
For 6 = 1.0 and both values of y, the fixed point with v =0 and u > 0, which describes the “rest-
ing” state of the Purkinje cell after training/learning is completed, is stable for all values of 3 as
indicated by the straight solid line. In contrast, for § = 1.2 this is only true for large values of 8.
When decreasing S, it becomes a saddle point through a branch point. Over a very limited
range in ff the new stable fixed point first loses its stability through a supercritical Hopf bifurca-
tion giving rise to a stable limit cycle, which then is destroyed through a homoclinic bifurca-
tion around f = 6.7645, turning the original relevant fixed point into the attractor of the
physically relevant dynamics despite being a saddle point. One way to verify this is that there
exists no stable fixed point for § = 1.2, 1.5 S § < 6, yet the directions of all flow vectors at the
surface of a cuboid of sides u = 4,v = x = 5 starting from the origin, point inwards. This implies
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> 0,8 > 0and B < ug/a > >1. Unphysical solutions are shaded with a gray background. Left panel (y = 1.4uM '): For § = 1.0, the relevant fixed point is
stable for all shown values of 8 values. For § = 1.2, the same fixed point is only stable for larger values of 5. When decreasing f, it becomes a saddle point
through a branch point. Over a very limited range in f the new stable fixed point first loses its stability through a supercritical Hopf bifurcation giving rise
to a stable limit cycle, which then is destroyed through a homoclinic bifurcation around j = 6.7645, turning the original relevant fixed point into the
attractor of the physically relevant dynamics despite being a saddle point. This continues to be the case until a new stable fixed point emerges through a

sub-critical Hopf bifurcation at much lower values of . Right panel (y = 0.9uM ): In addition to the fixed points in the left panel, a new pair of fixed

points with u = 0 is present for this smaller value of y since the quadratic v-nullcline is shifted down. For clarity, we have shown them as separate lines (two
for each value of §). One of them is stable over a large range of 8. The pair of new fixed points undergoes their own bifurcations at = 1.5076 and § =

B

2.6795, respectively, replacing the sub-critical Hopf bifurcation.

https://doi.org/10.1371/journal.pone.0251172.9005
that an attractor exist within the cuboid. The aforementioned limit cycle is the attractor over
the very limited parameter range of its existence, leaving the original relevant fixed point as the
attractor otherwise. This continues to be the case until a new stable fixed point emerges
through a sub-critical Hopf bifurcation at much lower values of j.
While this suggests that larger values of ¢ violating (Eq 14) would also be largely consistent
with our proposed mechanism, this is not the case. Specifically, in the absence of PDE, i.e., for
B =0, the only stable fixed point would be v > 0 and u > 0—even in the absence of a stimulus.
This implies that receptors can become active and initiate the conditional response on their
own without a stimulus being provided, which contradicts the experimental observation [12].
If & does not violate (Eq 14), there are two stable fixed points for 8=0: u > 0andv=0; u > 0
and v > 0. Being an excitable model, any initial condition within the quadratic v-nullcline will
settle to the active state, i.e., u > 0 and v > 0, while if outside the v-nullcline, the final state
would be the inactive state, i.e., # > 0 and v = 0, corresponding to the relevant fixed point of
our model. As the shape of the quadratic v-nullcline depends on the values of y and J, the
region of this bistability in # becomes arbitrarily small for sufficient large values of ¥ such that

only the relevant stable fixed point remains.
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As mentioned above, if the inequality in (Eq 13) is violated, an additional pair of fixed
points emerges. This is the case for y = 0.9 (right panel in (Fig 5), where we have an additional
stable fixed point with u = 0 for large values of 8. From the biological perspective, this corre-
sponds to a weak interaction between the receptor and PKA and PP1 giving rise to partially
active receptors in the absence of PKA activity. Due to weak interactions, PP1 is not effective
in deactivating the receptor’s activity, which means that once the receptor gets into this state, it
will remain in the state. Even if we change the value of §3, it will not go back to its inactive state.
A condition like this where PKA or PP1 interact weakly with their target protein is not bio-
chemically realistic as it offers no advantage to have them close to each other as observed and
argued in previous studies [31-33]. This fixed point becomes unstable at § ~ 1 through a
branch point and a new stable fixed point emerges corresponding to the active state discussed
above with finite residual activity for both PKA and the receptor. In summary, the relevant
fixed point with v = 0 and u > 0, which describes the “resting” state of the Purkinje cell after
training/learning is completed, is the unique stable fixed point of our model as long as
0.975‘1,1M_1 <9,0<86<1.0and 0.0 S 8 < up/a = 50.0. Note that at § = ug/a, u becomes zero.
This shows that the desired model behavior is quite robust against changes in y and fand to a
somewhat lesser degree in § parameter. In particular, the following properties of the model
remain preserved: i) The G-protein activation remains largely independent of the CS duration,
and ii) no oscillatory response emerges. These two features are essential in order to reproduce
the observed experimental results.

Sensitivity analysis of the comprehensive model

In the previous section, our bifurcation analysis revealed not only the robustness of the
dynamics of the minimal model but it also highlighted that all its properties are in line with the
proposed biological mechanism. While we cannot do such an analysis of the comprehensive
model due to its high-dimensionality, a simple local parameter sensitivity analysis can establish
its robustness to express the conditional response. Specifically, our sensitivity analysis aims to
find the individual range of each parameter over which the opening of GIRK ion channels for
the conditional response of the Purkinje cell occurs. As GIRK ion channels can fully open
when 3-4 G-protein subunits bind to them [69], we select the G-protein activity averaged over
all TECs as our indicator and require it to be between 3 and 4. This analysis shows that most of
the kinetic parameters of the comprehensive model are fairly robust as their values can be
increased or decreased by a factor of 50. However, there are a total of four parameters that can
only be varied less than 5-fold with respect to their original values. These more sensitive
parameters are: Kgp, Kf11, kear7 and kqss, see S3 Table. As mentioned before, kg, controls the rate
of G-protein activation and deactivation and, hence, both onset and delay of the conditional
response. kz; controls the rate of dephosphorylation of the receptor by PP1. Based on the
experimental evidence discussed in Model Conceptualization: Proposed biochemical mecha-
nism, kg, is considered to be constant for all different conditional responses and the range
over which it allows for the conditional response to be observed is consistent with the expected
range of rate constants, see S3 Table for more details. k., and kg control the cAMP produc-
tion and hydrolysation by AC and PDE enzymes, respectively. The sensitivity with respect to
ka7 and k4 is not concerning since they are constrained by their experimentally measured
values and we assume them to be constant in the absence of literature indicating otherwise.
Besides the kinetic parameters, the concentration of biomolecules can also vary in principle.
Yet, the only biomolecule whose concentration could vary in our case is PDE as the reactions
stoichiometry constrains the concentrations of all other biomolecules. Indeed, the comprehen-
sive model’s dynamics depends sensitively on [PDE], see S3 Table. This is not surprising since
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based on our proposed biochemical mechanism [PDE] controls both onset and duration of
the conditional response.

Neuronal spiking activity of the Purkinje cell

Now we focus on the conditional response dynamics of the Purkinje cell, where our mathe-
matical model of the proposed biochemical mechanism—either the minimal one or the com-
prehensive one—determines the dynamics of the gating parameter hgry, see Purkinje cell
model. In (Fig 6) we show that the suppression of firing rates during the conditional response
of ISI = 200msec is independent of CS durations—for both the minimal model and

§_6of ) y Jﬁ” mm H i HHW f W
o L

-200 O 200 400 600 800 1000 —-200 O 200 400 600 800 1000
Time (msec) Time (msec)

Fig 6. Conditional response in both models is independent of conditional stimulus duration. Membrane potential of the Purkinje cell during
conditional response for ISI = 200msec obtained using our minimal model (top panels) and our comprehensive model (bottom panels). The width of the
light green vertical bar corresponds to the duration of the ISI and the black bar at the bottom signifies the conditional stimulus duration, which is short in
the left panels and long in the right panels. Parameters for both models are the same as in (Fig 3).

https://doi.org/10.1371/journal.pone.0251172.g006
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Table 2. Model parameters for different conditional responses of the Purkinje cell.

ISI (msec) Minimal Model Comprehensive model
B 73 (msec) [PDE] in uM 1/kgy, in (msec)
200.0 8.5 58.0 1.25 50.0
300.0 6.1 97.0 0.98 78.7
400.0 4.7 139.0 0.88 100.0

https://doi.org/10.1371/journal.pone.0251172.1002

comprehensive model—as observed in the experiments [12]. Experimentally, Purkinje cells
have shown a drop of roughly between 10% and 30% in their firing rate [13], while both our
models show a drop in the firing rate between 20% and 30% for the chosen value of ggrk.
Note that the dynamics shown in (Fig 6) can be considered as an average response of the firing
rate during the conditional response given the deterministic nature of our model.

In order to obtain a conditional response of longer duration, more mGluR; receptors need
to be inserted into the synapse. These extra receptors cause a rise in the value of 73 (minimal
model) or 1/kg, (comprehensive model) and lower the value of 3 aka the PDE concentration as
discussed earlier in Model Conceptualization: Proposed biochemical mechanism. Different
values of 73, 1/kg,, [PDE] and 3 corresponding to different conditional responses are summa-
rized in Table 2. (Fig 7) shows different long duration conditional responses, which match
with the experimental results [12]. For ISI = 200msec as shown in (Fig 7)(left panels), the firing
rate drops and then rises slowly, which is consistent with the experimental results. For higher
ISI = 400msec, the drop and rise of the firing rate is observed to be even slower compared to
ISI = 200msec as shown in (Fig 7)(right panels). Again both our minimal and comprehensive
models produce similar results. Both of our models, in fact, can produce conditional responses
of ISI = 100msec and ISI = 1000msec, which are the extreme values observed experimentally
(42, 70]. This is simply because f—or equivalently [PDE]—and 73—or equivalently 1/k,,—can
take on a wide range of values without fundamentally changing the behavior. This can be seen,
for example, in the bifurcation plot (Fig 5) for 6 = 1.0 and y = 1.4. Larger values of # imply
shorter ISI durations of the conditional response and vice versa.

To summarize, changing values of both # and 75 (minimal model) or kg, and [PDE] (com-
prehensive model) simultaneously allows us to model different conditional responses within
our mathematical framework. We would like to point out that changing either one of the two
alone does not reproduce the experimental behavior.

The three normalized conditional response firing patterns obtained from both our models
shown in the left panels of (Fig 8) match with the experimental results [13]. Moreover, we also
determine the delays in the onset of the conditional response by recording the time when the
normalized firing rate drops to 95% of the spontaneous firing rate. These recorded onset delays
are consistent with the experimental observed values [12, 13], see Table 3. Such variable onset
delays can be observed in certain species such as rabbits and ferrets [12, 71] but there are other
species such as mice that exhibit a fixed onset delay of conditional eye-blink response [72].
Our models can reproduce such a behavior as well if the individual G-protein subunits are
strongly interacting with each other—as sometimes observed experimentally [73]—such that
in (Eq 2) the 4 units of G-protein subunits, Gg,, give rise to a term hg;x instead of k. This is
shown in the bottom panels of (Fig 8) using the very slightly modified parameter values given
in S4 Table

Our proposed mechanism also explains why the time-memory remains unaffected in the
presence of mGluR; antagonist MMPIP as observed in the experiment [13]. Specifically,
because of the presence of MMPIP, fewer mGluR; receptors are left to activate GIRK ion
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Fig 7. Different conditional responses of the Purkinje cell obtained from the mathematical models. Membrane potential of the Purkinje cell during
conditional response for different ISIs = 200msec (left panels) and 400msec (right panels) for the minimal model (top panels) and the comprehensive

model (bottom panels). The specific parameters values are given in Table 2, all others are the same as in (Fig 3). The width of the light green vertical bar
corresponds to the duration of the ISI interval. The black horizontal bar at the bottom represents the conditional stimulus duration.

https://doi.org/10.1371/journal.pone.0251172.g007

channels, which leads to a smaller drop in firing rate. However, reducing the net amount of
active mGluR; does not inhibit the internal interactions between the receptor and other pro-
teins involved in our proposed mechanism. Hence, the time-memory, which is encoded within
effective dynamics of the biochemical reactions, is unaffected by MMPIP as shown in (Fig 8)
(right panels in top and middle rows). Note that in (Fig 8) the action of an increasing dose of
MMPIP is simulated by decreasing the value of the parameter ggrx. As the corresponding val-
ues of ggri have not been measured experimentally as mentioned in Purkinje cell model, we
choose suitable values of ggrx-
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Fig 8. Conditional response profiles for different ISIs and different amounts of MMPIP. Conditional response profiles obtained from the minimal
model (top panels) and the comprehensive model (middle panels) for different parameter values (see Table 2, all other parameters as in (Fig 3)) (left
panels), and in the presence of the mGluR; receptor’s antagonist MMPIP (right panels). As a mGluR; antagonist, MMPIP leads to a decrease in the net
amount of active mGluR; and, hence, the amount of active GIRK ion channels, which corresponds to smaller values of g rk (see Eq 2). The bottom panels
show the conditional response profile for a modified G-protein subunit dynamics (see text for details) in the minimal model (left panel) and in the
comprehensive model (right panel). Note that the normalized instantaneous firing activity is calculated here by taking the inverse of the time interval
between two successive spikes, centered on the midpoint between the two spikes, and dividing it by the firing frequency before the onset of the conditional

response.

https://doi.org/10.1371/journal.pone.0251172.g008

Table 3. Onset delay for different conditional responses of the Purkinje cell.

ISI (msec) Onset delay (msec) Experimental data (msec) [12, 13]
Minimal Comprehensive
200.0 52.0 40.0 48.0+34
300.0 71.0 60.0 73.0£18
400.0 95.0 80.0 90.0£20

https://doi.org/10.1371/journal.pone.0251172.t003

PLOS ONE | https://doi.org/10.1371/journal.pone.0251172 May 7, 2021

23/34


https://doi.org/10.1371/journal.pone.0251172.g008
https://doi.org/10.1371/journal.pone.0251172.t003
https://doi.org/10.1371/journal.pone.0251172

PLOS ONE A biochemical mechanism for time memory formation at Purkinje cell synapses

Model predictions

Based on our proposed models, we can make two predictions that can easily be tested by
experiments. 1) If PP1 is knocked out then active mGluR; receptors will never deactivate once
they have been activated by CS and, hence, the G-protein will remain active. This implies that
the Purkinje cell will not fire again after receiving CS as shown in (Fig 9). 2) On the other
hand, knocking out PKA activation will allow PP1 to dephosphorylate mGluR; receptors and,
hence, the G-protein cannot be activated. This implies that the Purkinje cell will not exhibit a
conditional response as shown in (Fig 9). As both our mathematical models produce the same
predictions, we only show the results for the minimal model in (Fig 9).

However, in reality biological cells are very robust and have redundancy mechanisms to
overcome such behaviours. As a result, there might be still a weak conditional response
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Fig 9. Model predictions for knockout experiments. In our minimal model, PP1 can be knocked out by setting wy = 0.0 at the onset of stimulus (top left
panel), which prevents the Purkinje cell to fire again after the initiation of the conditional response (bottom left panel). PKA can be knocked out by setting
o = 0.0 in our model (top right panel), which prevents the Purkinje cell to initiate a conditional response (bottom right panel).

https://doi.org/10.1371/journal.pone.0251172.9009
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observed after knocking out PKA or a slow deactivation of G-protein after knocking out PP1,
but in both cases significant effects on the conditional response should be observed.

Specific experimental options to test the proposed model

There are various experimental options to check whether our proposed mechanism for the
conditional response is valid or not, including the two model predictions mentioned above.

1. As PP1 desensitizes the mGluR; receptor during conditional response, blocking of PP1,
using Okadaic acid, for example, must affect the deactivation rate of GIRK ion channels
during the conditional response. This would test the first model prediction. Alternatively,
one could block the PDE enzyme via IBMX (3-isobutyl-1-methylxanthine) since without a
drop in PKA activity, PP1 cannot dephosphorylate the receptor.

2. As PKA is an essential biochemical for the resensitization of the receptor and maintaining
low PP1 activity, reducing PKA activity in the cell will prevent the Purkinje cell from sup-
pressing its firing rate as PP1 will desensitize the receptor and therefore GIRK ion channels
will not be activated. This can be verified by using, for example, cCAMPS-Rp or triethylam-
monium salt, which will block the cAMP production and, hence, PKA. This would test the
second model prediction. Alternatively, one could block the AC enzyme via SQ22536 since
without activity of AC, PKA cannot be activated.

3. If mGluR; receptors are activating PKC then blocking of mGluR; receptors using
CPCCOEt during training will not initiate trafficking of mGluR; receptors and thus no
conditional response should be observed even after extensive training.

4. Use of RGS8 knockout specimen should allow only long duration conditional response:
Without RGS8 protein, the activation and deactivation of G-protein will be much slower
and will produce only long conditional response durations.

Discussion and conclusion

As both the minimal and the comprehensive mathematical models agree very well with the
experimental results, we conclude that our proposed biochemical mechanism can successfully
reproduce the conditional response features: 1) Temporal profile of firing rate for different ISI
durations, 2) its independence of CS duration, and 3) the various behaviors of the onset delay
of the conditional response with changing ISI duration. In addition to these, our models are
also able to capture the effect of blocking mGluR; receptor on the conditional response consis-
tent with experimental observations. In particular, our proposed mechanism makes consistent
statements regarding how ISI duration should affect the training period duration. Further-
more, our mathematical models and proposed biochemical mechanism are applicable to both
trace and delayed conditioning. This is because at the level of individual cells, both types of
conditioning engage the same Purkinje cells, which show similar conditional behaviour in the
presence of CS [74]. Yet, some model limitations do remain, which should to be addressed in
the future after experimental results further validate our proposed mechanism. These include:

1. Both mathematical models assume simple activation and deactivation dynamics for the G,,
and Gg, subunits depending on receptor’s activity even though individual G-protein sub-
units have been shown to modulate the GIRK ion channel gating dynamics [73]. Due to the
slower dynamics of the modulation compared to the conditional response, we have
neglected this here. However, RGS8 can potentially accelerate the dynamics of the G-
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protein subunits such that a more complex conditional response behaviour could arise
including the double pause conditional response observed in experiments [75].

2. While both mathematical models can fully capture the conditional response after training is
completed, they do not directly describe the learning process itself. A mathematical model
for the learning process based on our proposed biochemical mechanism would need to cap-
ture aspects of learning experimentally observed during training such as the increase of the
ISI duration of the conditional response until it reaches its final value [17]. Such a behavior
would require the adjustment of k, and [PDE] in the comprehensive model or 73 and §in
the minimal model over time. Modeling this aspect from a biological perspective is highly
nontrivial as it involves the translocation and protein complex formation of the various pro-
teins involved in the proposed mechanism. Hence, it remains a challenge for the future.

3. By construction, both mathematical models also do not capture the dynamics of individual
TEC units. Instead, they model the collective behaviour of all TEC units. This simplifica-
tion, however, fails to explain how different decoupled TEC units can produce a strong and
robust conditional response of a specific duration. cAMP biomolecules can potentially offer
a necessary coupling mechanism as merging of cAMP microdomains [76] from different
TEC units can synchronize the dynamics across different TECs and collectively produce a
conditional response of a specific duration.

In terms of the bigger picture, we introduced a potential biochemical mechanism to explain
time-encoding memory formation within a single synapse of a Purkinje cell. This time-encod-
ing memory is stored in an excitatory synapse, but it is associated with an inhibitory response,
i.e., the suppression of the Purkinje cell’s tonic firing rate in the presence of an excitatory stimu-
lus, namely glutamate discharge from the parallel fiber. During conditional training, Purkinje
cells imprint the time information by expressing an appropriate amount of mGluR; receptors
on the synapse, while encoding time information in the form of effective dynamics of biochem-
ical interactions. The memory is stored by forming a protein complex we call TEC. Alterations
of effective dynamics within TECs will change its temporal signature, while the removal of
receptors from the synapse will cause memory loss. However, during retraining, the previous
memory can quickly be reacquired and it becomes accessible again. Our idea of TEC is similar
to the “Timer Proteins” previously proposed by Ref. [77], but in contrast, it does not require an
active selection of feedforward protein activations to produce a specific conditional response.
Recently, a different biochemical mechanism was proposed for time interval learning, which
uses Ca*? oscillation and feedback loops for storing different time intervals information [78].
Unlike our mathematical models which explain the temporal profile of the conditional
response after learning has been completed, their mathematical model focuses on the condi-
tional learning process, which occurs during training in the Purkinje cell. However, their pro-
posed underlying learning mechanism is fundamentally different from our biochemical
mechanism in the sense that it does not require translocation of receptors at the synapse. Yet,
another potential mechanism behind time-memory learning involves microtubules along with
a mitogen-activated protein kinase (MAPK) pathway based on its general role in memory and
learning processes [79]. This mechanism considers alteration in microtubules dynamics and
their hexgonal lattice structure, which ultimately leads to storage of different time-duration
memories. However, this does not directly explain how the Purkinje cell suppresses its tonic fir-
ing rate. All these three alternative hypotheses—involving microtubules, the Ca*> mechanism
as well as our GIRK ion channel dependent suppression of the firing rate—solely consider
molecular interactions within individual Purkinje cells and assume that mGluR; receptors initi-
ate the conditional response.
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A biochemical mechanism for time memory formation at Purkinje cell synapses

As mentioned in the Introduction, the presence of mGluR; receptors on Purkinje cells is
highly controversial. Previous studies by Johansson, Hesslow and coworkers [12, 13, 22] pro-
vide ample indirect evidence for the presence of mGluR; receptors in PC synapses, but a
proper immunohistochemical characterization within synaptic terminals is still necessary to
fully confirm its presence. Another option would be to reverse trace the chemical cascade
involving the GIRK ion channel, as it has been shown to cause the suppression in tonic firing
rate in Purkinje cells [22] and is expressed in Purkinje cell synapses [37]. As the release of glu-
tamate from the parallel fiber initiates the conditional response, one can conclude that only
class 2 and 3 of the mGluR receptor family can be responsible for the initiation of the condi-
tional response [80]. This is because only class 1 mGluR receptors interact with G4/, type G-
proteins [80], which activate the Phospholipase C (PLC) enzyme. PLC converts Phosphatidyli-
nositol 4,5-bisphosphate (PIP,) molecules into diacylglycerol (DAG) and inositol 1,4,5-tri-
sphosphate (IP3) [81]. As PIP, is essential for the GIRK ion channel activation [54], class 1 of
mGluR cannot initiate the conditional response as shown in [82]. Among classes 2 and 3 of the
mGluR receptor family, only the mGluR; receptor is expressed by the Purkinje cell which is
based on mRNA expression levels mentioned earlier [26, 27].

An alternative pathway involves strong feed-forward inhibition from the molecular layer
interneurons to the Purkinje cell [43, 83]. However, in this scenario the mechanism behind the
precise timing of the conditional response has not been established yet. Due to the fact that
neurons are inherently noisy, it is also a possibility that multiple mechanisms both at the level
of individual Purkinje cells and at the network level including interneurons are responsible for
the robust expression of the conditional response. At the single cell level, GIRK ion channels
control different features. Besides suppressing the tonic firing rate of the Purkinje cell, GIRK
ion channels also happen to potentiate pf-PC synapses [84] potentially by increasing the gluta-
mate release from parallel fibers. Such potentiation of pf-PC synapses favors the robust activa-
tion of mGluR; receptors in order to access the time memory stored at synapses. At the
network level, inhibition from interneurons effectively reduces the total GIRK ion channel
current required to suppress the tonic firing rate of the entire Purkinje cell. In other words,
fewer Purkinje cell’s synapses would be needed to initiate the conditional response. Thus, hav-
ing multiple ways to suppress the firing rate increases the memory storage capacity of an indi-
vidual Purkinje cell within the cerebellum.

As previously mentioned, in our model the time information of the conditional response is
stored in the TECs found on individual synapses, implying that the substrate or the Engram of
a time memory can reside at individual synapses, not in a cell or a cell assembly. This result is
in line with the synaptogenic point of view of memory substrates [10], where single synapses
play a large role in memory formation. In contrast, another point of view puts more emphasis
on the intrinsic plasticity of a whole neuronal cell compared to the synaptic plasticity of indi-
vidual synapses [85]. Intrinsic plasticity considers changes in the electrophysiological proper-
ties of the cell by changing the expression of Voltage-dependent Ca/K ion channels and many
other kinds of ion channels, which are expressed by neurons and which decide neural firing
rate as well as the sensitivity of the cell upon stimulation. However, neither points of view can
tully account for the development of the conditional response in the Purkinje cell, since it nei-
ther involves the formation or elimination of pf-PC synapses [12, 13], nor LTD of pf-PC syn-
apses [14] nor any change in the electrophysiological properties of the cell [12]. Thus, Purkinje
cells show a novel form of synaptic plasticity and provide an example of monosynaptic mem-
ory encoding. In addition, considering this fact and that each Purkinje cell makes at least one
synapse with up to 200,000 parallel fibers passing throu