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Abstract

Within the classical eye-blink conditioning, Purkinje cells within the cerebellum are known to

suppress their tonic firing rates for a well defined time period in response to the conditional

stimulus after training. The temporal profile of the drop in tonic firing rate, i.e., the onset and

the duration, depend upon the time interval between the onsets of the conditional and

unconditional training stimuli. Direct stimulation of parallel fibers and climbing fiber by elec-

trodes was found to be sufficient to reproduce the same characteristic drop in the firing rate

of the Purkinje cell. In addition, the specific metabotropic glutamate-based receptor type 7

(mGluR7) was found responsible for the initiation of the response, suggesting an intrinsic

mechanism within the Purkinje cell for the temporal learning. In an attempt to look for a

mechanism for time-encoding memory formation within individual Purkinje cells, we propose

a biochemical mechanism based on recent experimental findings. The proposed mecha-

nism tries to answer key aspects of the “Coding problem” of Neuroscience by focusing on

the Purkinje cell’s ability to encode time intervals through training. According to the proposed

mechanism, the time memory is encoded within the dynamics of a set of proteins—mGluR7,

G-protein, G-protein coupled Inward Rectifier Potassium ion channel, Protein Kinase A, Pro-

tein Phosphatase 1 and other associated biomolecules—which self-organize themselves

into a protein complex. The intrinsic dynamics of these protein complexes can differ and

thus can encode different time durations. Based on their amount and their collective dynam-

ics within individual synapses, the Purkinje cell is able to suppress its own tonic firing rate for

a specific time interval. The time memory is encoded within the effective dynamics of the

biochemical reactions and altering these dynamics means storing a different time memory.

The proposed mechanism is verified by both a minimal and a more comprehensive mathe-

matical model of the conditional response behavior of the Purkinje cell and corresponding

dynamical simulations of the involved biomolecules, yielding testable experimental

predictions.
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Introduction

How do we store memories in our brain? How do we retrieve and edit them when required?

Recent experimental findings have shed some light onto these fundamental questions. Experi-

ments have shown that memories are held within specific neuronal populations [1–3]. Such

populations, referred as memory engram cells [4, 5] store memory either by forming or elimi-

nating synapses [6, 7] or by altering synaptic strengths between neurons [8, 9] within the popu-

lation. These forms of learning and memory formation fall under the widely accepted Hebbian

learning paradigm [10]. However, the individual contribution of each synapse to the engrams,

and how changes in synaptic strength affects memories, remain poorly understood. The prob-

lem of information encoding was raised by C.R. Gallistel [11] and termed as the “Coding

Question”, one of the fundamental open questions in Neuroscience today. Recent experiments

on Purkinje cells, one of the major neuronal populations in the Cerebellum and essential for

motor coordination, have shed some light on the Coding Problem. Those experimental results

have illustrated that the memory of time interval duration can be encoded within individual

Purkinje cells, and does not require a whole neuronal population [12, 13]. In addition, the

stored time memory can be accessed and changed anytime. This result has also challenged the

prevailing doctrine of Hebbian learning by showing that traditional changes of synaptic

strength alone cannot explain the Purkinje cell response after learning [14].

Purkinje cells can learn to encode a specific time memory through Classical or Pavlovian

conditioning. This kind of associative learning can occur when a biologically potent stimulus,

such as food, is paired with a neutral stimulus, such as a metronome, that precedes it. Depend-

ing upon the response the potent stimulus elicits, e.g., saliva flow, and the exact protocol fol-

lowed, Classical Conditioning can be categorized into various kinds. One of them being

classical motor conditioning, such as the eye blink conditioning, where a neutral conditional

stimulus (CS) in the form of a light or a sound can trigger an eye blink response before the

onset of an unconditional stimulus (US) that elicits a blink reflex response [15, 16]. In other

words, CS triggers a response that predicts the time of arrival of the US. Such a conditional

response appears after training with repeated paired presentation of two stimuli, where a CS is

followed by an US after a fixed time interval “T”, called the interstimulus time interval (ISI)

[17]. At the cellular level, the eye blink response is causally related to a suppression of the tonic

firing of individual Purkinje cells, which have projections onto cerebellar nuclei which in turn

regulate the activity of ocular muscles [17, 18]. Because of such causal connection, the suppres-

sion of the firing rate of the Purkinje cell is termed as the conditional response of the Purkinje

cell.

Previous mechanistic explanations considered Long-term Depression (LTD) of selective

synapses between parallel fibers and Purkinje cells (pf-PC) as the main mechanism behind the

conditional response in the Purkinje cell [19]. Based on the widely accepted Marr-Albus

model of the cerebellum [20, 21], this suggests that the time memory of the response is

encoded within the network dynamics of Granule cell neurons and inhibitory interneurons,

found within the molecular layer of the Cerebellum between Mossy fibers and Purkinje cells.

However, recent experiments on ferrets were able to identify the source of the conditional

response at the level of individual Purkinje cells by showing that the direct stimulation of paral-

lel fibers and climbing fibers using electrodes was sufficient for Purkinje cells to learn the spe-

cific time interval duration [12]. These experiments also showed that a glutamate-based

metabotropic receptor type 7 (mGluR7) initiates the conditional response [13] by opening G-

protein coupled Inward Rectifier Potassium (GIRK) ion channels [22]. This implies that there

exists a specific biochemical mechanism within the Purkinje cell that can encode and store

temporal information. However, immunohistochemistry results for the expression of the
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mGluR7 receptor on the Purkinje cell’s synapses or dendritic spines have been highly contro-

versial. Although several early studies showed mGluR7 expression in Purkinje cells [23, 24],

posterior with proper controls and highly specific immunostaining concluded that Purkinje

cells lack mGluR7a and mGluR7b-like immunoreactivities on dendritic spines or cell bodies

completely [25]. Instead these authors proposed that mGluR7b might be expressed on the Pur-

kinje cell axon’s terminals. Considering moderate or fairly strong mGluR7 mRNA expression

levels in Purkinje cells [26, 27], one expects a significantly wider expression of mGluR7 recep-

tors on the Purkinje cell. Although the study in [25] applied a commonly applicable immunos-

taining approach, it is possible that it was not sufficiently sensitive to detect low or moderate

expression of mGluR7 receptors on the remaining parts of the Purkinje cells as proper immu-

nostaining depends on both specificity and sensitivity of the antibody-antigen pair [28, 29].

In summary, it has been traditionally believed that memory storage in the cerebellum

requires neuronal assemblies. The recent findings suggest instead that temporal signatures can

be encoded within a single Purkinje cell. Yet, the specific mechanism remains poorly under-

stood. Here, we propose a biochemical description, based on past experimental findings, that

is able to explain time memory formation, consolidation and access.

Materials and methods

Model conceptualization: Proposed biochemical mechanism

As mentioned above, the conditional response at the level of an individual Purkinje cell

appears after several repetitions of two stimuli: A CS from the parallel fibers followed by an US

from the climbing fiber after a fixed ISI. A sufficient condition for the learning process to be

called completed is that a CS without an applied US can initiate the conditional response—the

suppression of the tonic firing rate—within the given ISI.

We propose that the conditional response arises due to interactions between four main pro-

teins: metabotropic glutamate based receptor (mGluR7), Protein Kinase A (PKA), Protein

Phosphatase 1 (PP1) and G-protein, which regulate the gating dynamics of the G-protein

inward rectifier potassium (GIRK) ion channel. G-Protein Coupled Receptors such as the

mGluR7 receptor have been known to form protein complexes with GIRK ion channels [30–

32]. The protein complex can include Phosphatase and Kinase proteins such as PP1 which can

be active all the time, while the activity of PKA can change depending on the cAMP concentra-

tion [33, 34]. As PKA and PP1 activities have opposite roles, one of the two proteins will typi-

cally dominate and decide the de/phosphorylation state of the target protein [33, 35]. For

instance, PKA dominates over PP1 upon increase in cAMP concentration, [cAMP], and causes

phosphorylation of the target protein [33, 35]. Otherwise PP1 dominates and causes dephos-

phorylation of the target protein [35]. Such dual role of Kinase and Phosphatase have been

observed to be facilitated by A-Kinase Anchoring Proteins (AKAPs) [31–33]. In addition,

AKAP proteins can also harbour Acetyl-Cyclase (AC) proteins, which can associate with G-

protein coupled receptors to regulate the receptor mediated ion channel dynamics [31, 33].

Altogether, we propose that the mGluR7 receptor, G-protein and GIRK ion channel form a sta-

ble protein complex along with proteins like AC, PKA and PP1, which are associated via an

AKAP scaffold protein close to the receptor.

Below, we provide more detail on the conditional response of the Purkinje cell and the asso-

ciated detailed biochemistry we propose. We separate our discussion into three parts: during

training, after training and training with different ISIs. The first part focuses on two questions:

What makes a Purkinje cell learn a conditional response, and how does the cell learn a condi-

tional response of a specific duration? The later two parts describe the most crucial aspects of
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the conditional response, i.e., its formation after training, along with other features of the con-

ditional response, which were experimentally observed.

During training: Learning process. What makes a Purkinje cell learn a conditional

response? The activation of the conditional response was found to be initiated by the activation

of mGluR7 receptors [13]. Although the body of literature regarding mGluR7 in the cerebellum

is limited and despite the aforementioned controversy regarding the expression of the mGluR7

receptor on the Purkinje cell’s synapses or dendritic spines, there is significant evidence that

Purkinje cells do express mGluR7 receptors. Most importantly, the effects of 6-(4-Methoxy-

phenyl)-5-methyl-3-(4-pyridinyl)isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride (MMPIP)

as an mGluR7 selective antagonist replicate the results of mGluR7 knockouts [36], while

MMPIP also has an effect on blocking the conditional response in Purkinje cells [13]. Thus, we

start from the assumption that Purkinje cells express mGluR7 on the Purkinje cells’ synapses

and that the mGluR7 receptors indeed activate the conditional response behaviour in the Pur-

kinje cell. Yet no conditional response was observed before training [12]. We propose that dur-

ing training mGluR7 receptors are being transported from the perisynaptic zone to the

postsynaptic zone of the synapse. Alternative hypotheses such as (1) the absence of GIRK ion

channels at the synapse and (2) low expression of Gi/o type G-proteins at the synapse can be

ruled out. Immunohistochemistry analysis showed the presence of GIRK subtypes GIRK2/3

ion channels on the synapses of Purkinje cells—which are innervated by parallel fibers [37]. If

(2) were true and the G-protein expression would change during training, this would affect

not only the conditional response profile but also various other physiological properties of the

Purkinje cell. This is because different types of G-proteins play crucial roles in signal transduc-

tions and determine various physiological properties of the cell [38]. Since no change in the

tonic firing rate has been observed before and after conditional training [12], we believe that

other physiological properties of the cell may also remain unaltered. Thus, the translocation of

mGluR7 receptors to the synapse is the most likely result of the training and we assume that

the amount of other proteins such as GIRK ion channels and G-protein is constant for all dif-

ferent durations of conditional training.

How does the Purkinje cell learn a conditional response of a specific duration? Purkinje

cells memorize a specific duration “T” after training with repeated paired presentation of two

stimuli, where a CS is followed by an US after a fixed time interval “T” i.e., the Interstimulus

Interval (ISI) [17]. As mentioned earlier, we propose that the learning of the conditional

response is associated with trafficking of mGluR7 receptors from perisynaptic to postsynaptic

locations at the Purkinje cell’s synapses. Specifically, we propose that such trafficking of recep-

tors occurs via Clathrin-mediated Endocytosis (CME) mediated by the activation of Protein

Kinase C (PKC) [39]. The PKC activation occurs in the presence of two stimuli: the first stimu-

lus must come from the parallel fiber, which activates mGluR1 receptors, while the second

stimulus from the climbing fiber raises the Ca+2 ion concentration [40, 41]. Both stimuli are

necessary and, in particular, the presence of only one of the two stimuli is not sufficient for

either PKC activation or Purkinje cell to learn the conditional response [17, 40]. Consequently,

we also propose that mGluR1 receptors are essential for learning of a conditional response of a

specific duration. There could be other biochemicals involved in the translocation of mGluR7

receptors as Purkinje cells cannot be trained for ISI durations shorter than 100msec [42]. Cur-

rently, we cannot make any suggestion for proteins, which might be involved in addition to

PKC during conditional learning.

To ensure storage of a specific time duration memory, such translocation processes must

stop after some time. This can happen by inhibiting PKC activation via the activation of GIRK

ion channels. Indeed, activation of GIRK ion channels causing a drop in tonic firing rate dur-

ing training has been observed in experiments [43, 44]. Therefore, we propose that as training
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progresses the intracellular Ca+2 ion concentration decreases to a level that is no longer suffi-

cient to activate PKC, which prevents further translocation of mGluR7 receptors to the synapse

and so a steady state will be reached. When a steady state has been reached, then we can say

that the Purkinje cell has learned the conditional response of duration “T” as shown in (Fig 1).

This learning mechanism also suggests that the training period needs to increase with the

duration “T” as observed experimentally [12]. As the net amount of the receptors translocated

during training depends upon its net duration, longer training means more transportation of

the receptor to the synapse. We will explain below how a higher amount of receptors can pro-

duce a longer duration conditional response.

After training. The conditional response with a duration of hundreds of milliseconds can

be initiated by a CS of as little as 20 milliseconds duration [12]. This means that just the activa-

tion of the mGluR7 receptors by CS is enough to initiate the conditional response, which is

only possible if the receptor remains active even after CS is over. Furthermore, in order to

explain the fast dynamics of the conditional response initiation observed in the experiment

[12] we propose that the mGluR7 receptor forms a protein complex with the G-protein of Gi/o

type, which is located in direct vicinity to a GIRK ion channel as facilitated by a Regulator of

G-protein signaling protein 8 (RGS8) [45, 46]. RGS8 proteins are expressed in dendritic spines

of the Purkinje cell [47] and they have the special property of accelerating both activation and

deactivation of the G-protein causing fast opening and closing of GIRK ion channels [46, 48].

If the mGluR7 receptors can remain active even after CS is over, there needs to be mecha-

nisms by which they can return to an inactive state. To explain this, there are two additional

important properties of the conditional response, which we must consider: 1) The conditional

response is lost after repetitive CS [12], and 2) the conditional response is independent of CS

duration. Dephosphorylation of the mGluR7 receptor by Protein Phosphatase 1 (PP1), which

causes their rapid internalization [49], can explain both these properties of the conditional

Fig 1. mGluR7 receptor distribution before and after conditional training in the Purkinje cell. Before training,

mGluR7 receptors are localised at perisynaptic areas of the synapses. After training, as pointed out by the blue arrows,

these receptors localised themselves at the postsynaptic area of the synapse via CME.

https://doi.org/10.1371/journal.pone.0251172.g001
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response. Rapid internalization of any receptor is initiated by the binding of a protein called

Arrestin protein, which prevents the receptor to transmit any signal further [41]. Because of

rapid internalization, retraining of the Purkinje cell with the same or a different ISI will be

faster as many receptors are close to the synapse. This rapid relearning phenomenon is called

“Saving” and it takes only a few minutes to recall the old memory of the conditional response

by the Purkinje cell [17]. To prevent dephosphorylation and rapid internalization of mGluR7

receptors, Calmodulin can stimulate Acetyl cyclase (AC) [50] to produce cAMP molecules and

increase PKA activity. In addition, Calmodulin can also activate PDE enzymes [51] which will

limit the PKA activity. It is also known that PKA can phosphorylate mGluR7 receptors [52].

Thus, phosphorylation of the receptor depends on the competition between PKA and PP1

activity as in [33], where PKA dominates over PP1’s constant activity and causes net phosphor-

ylation of the mGluR7 receptor. Thus, the phosphorylation of receptors by PKA helps in the

retention of the memory for a long time. As PKA and PP1 are essential for the conditional

response, we propose that they bind to the receptor via a AKAP protein [53].

In short, the underlying biochemical mechanism of the conditional response can be

described as follows. The release of glutamate during CS activates mGluR7 receptors on the

Purkinje cell synapses [step 1 of (Fig 2)], which in turn activates G-proteins [step 2 of (Fig 2)].

Each unit of G-protein splits into a Gα subunit and a Gβγ subunit. One unit of Gα subunit

binds to an AC enzyme to block the production of cAMP molecules. This in turn deactivates

PKA as Phosphodiesterase enzyme (PDE) hydrolyses the remaining cAMP molecules [41]

[step 3 of (Fig 2)]. At the same time the Gβγ subunit binds to the GIRK ion channel, which

becomes fully active upon binding of four Gβγ subunits [54]. As PKA activity decreases, PP1

activity causes dephosphorylation of mGluR7 receptors [step 4 of (Fig 2)] and initiates their

rapid internalization. However, rapid internalization of a receptor is still a slow process com-

pared to the conditional response as it involves many protein interactions and, hence, the

receptor is not immediately displaced from the synapse after dephosphorylation. However,

after dephosphorylation, Arrestin protein blocks the active site of the mGluR7 receptor to pre-

vent reactivation of the G-protein [55] as well as decouples the receptor from the protein com-

plex [step 5 of (Fig 2)]. After receptor dephosphorylation, the active G-protein is deactivated

by the RGS8 protein [step 6 of (Fig 2)]. As G-protein activity reduces, GIRK ion channels also

shut down. In the absence of active G-protein, PKA activity begins to rise again [step 7 of (Fig

2)] due to rise in activity of AC enzymes in the presence of Calmodulin. Active PKA phosphor-

ylates mGluR7 receptors [step 8 of (Fig 2)] to prevent their internalization and the uncoupled

phosphorylated receptor recouples back to the protein complex to prepare the Purkinje cell for

another conditional response. It is likely that the reactivation of PKA takes some time, which

might explain why CS cannot initiate another conditional response while CS is still on.

The rate at which GIRK ion channels open and close depends upon the rate at which inter-

mediate reactions occur. In other words, the time memory of the training is stored within the

effective dynamics arising from these reactions. In a complete cycle of GIRK ion channel acti-

vation and deactivation, altering only the effective dynamics for both activation and deactiva-

tion processes is sufficient to store a different time memory of the conditional response.

Training with different ISI duration and time-encoding protein complexes. Training

with a different ISI duration means storage of a different time memory. There are two addi-

tional questions we need to answer in order to get a complete understanding of time memory

storage in biochemical reactions: 1) How do these biochemical reactions get tuned so finely to

store a specific time duration memory? 2) Which dynamical parameters of the proposed bio-

chemical mechanism are most likely to get affected by choosing a different ISI for the training?

The reason behind 1) is that there are several GIRK ion channels present at the synapse.

Each GIRK ion channel requires four units of Gβγ subunits to open completely [54]. This
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means that each GIRK ion channel forms a protein complex with four units of each of G-pro-

teins, receptors and RGS8 proteins along with PKA and PP1 proteins together with their

anchoring proteins. As each of these protein complexes has their own intrinsic dynamics,

which regulate how fast the GIRK ion channel opens and closes upon stimulation, we can call

each of these protein complexes “Time-Encoding protein Complexes” (TEC). Within each

TEC, the rate of G-protein activation by the receptor and the rate of binding of G-protein sub-

units to the GIRK ion channel decide the overall rate of opening of GIRK ion channels i.e., the

Fig 2. Interactions between different biochemicals involved in our proposed mechanism of the conditional response in the Purkinje cell.

Abbreviations: R7—mGLuR7 receptor, PKA—Protein Kinase A, PP1—Protein Phosphatase 1, GIRK—G-protein coupled Inward Rectifier

Potassium ion channel. The numbers on the top of the arrows highlight the order in which the different reactions occur during the conditional

response. Conditional response initiates with the release of glutamate from parallel fibers denoted by I as input in (1), which activates mGluR7

receptors. In (2), active receptors activate G-proteins, which deactivate PKA through (3). As PKA activity reduces, PP1 activity becomes dominant

(4) causing dephosphorylation of the receptor. The dephosphorylated receptor will be blocked by Arrestin protein to prevent further signaling

transduction and also decouples the receptor from the protein complex (5). As receptor activity reduces, RGS8 reduces G-protein activity (6),

which allows PKA activity to rise again (7). Active PKA will phosphorylate dephosphorylated receptors (8) to prevent their rapid internalization

and the uncoupled phosphorylated receptor will couple back to the protein complex (9) for another conditional response. The red box identifies

the three variables and their interactions used in the minimal mathematical model to capture the conditional response behaviour. Here, u, v and x
represent the activities of PKA, mGluR7 receptor and G-protein, respectively. These protein interactions occur in each individual TEC unit

present at the synapse. The remaining states of the mGluR7 receptor are collectively denoted as v0 − v, where v0 is the maximum possible activity

of the mGluR7 receptor. Below, in the black box we highlight the pictorial description of the 5-state model of mGluR7 receptors, which is explicitly

used in the comprehensive mathematical model.

https://doi.org/10.1371/journal.pone.0251172.g002
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onset of the conditional response. After the onset of the conditional response the rates of PKA

deactivation, dephosphorylation of the receptor by PP1 and the deactivation of G-protein by

RGS8 decide the overall duration of the conditional response since at the end of these bio-

chemical reactions the GIRK ion channel begins to close. Thus, each TEC encodes the time

information of the conditional response completely in terms of the effective dynamics of dif-

ferent biochemical interactions and stores this time memory by forming a protein complex.

Formation of a protein complex as TEC ensures strong consolidation of memory with less

chances of errors in the information storage. If the rates were to be changed so would the

memory as well. The rates can be affected by the translocation of extra mGluR7 receptors to

the synapse during conditional training. These extra mGluR7 receptors can form clusters with

receptors—which are part of a TEC—with the help of a scaffold protein, Protein Interacting

with C Kinase—1 (PICK1) [56]. Such cluster formation can affect TEC’s intrinsic dynamical

properties by influencing the protein interaction of the mGluR7 receptor with the G-protein

facilitated by RGS8. As a result, RGS8’s ability to accelerate the dynamics of the conditional

response might be affected, which results in a delayed onset of the conditional response. Such

clustering of receptors can also affect the concentration of PDE proteins anchored close to the

receptor via the AKAP protein, thus affecting the rate at which PKA deactivates and hence the

time duration of the conditional response. To summarize, we propose that at individual synap-

ses the interaction of extra mGluR7 receptors with TECs can affect the dynamics of TECs and

collectively these varied TEC units help to produce the conditional response of any specific

time duration in the Purkinje cell.

From the above description, it follows that in principle a single synapse can completely con-

tain a time duration memory, which can be altered through retraining. However, a single syn-

apse probably will not be sufficient to suppress the tonic firing rate of the whole Purkinje cell.

This is because the spontaneous tonic firing rate of the Purkinje cell [57] appears to be due to

voltage-dependent resurgent Na+ ion channels, which are distributed over the entire somata

and dendritic regions of the cell [58, 59]. Activation of GIRK ion channels by CS can hyperpo-

larize the membrane at a synaptic region and deactivate resurgent Na+ ion channels near this

synaptic region. Thus, a finite fraction of the total pf-PC synapses distributed over the den-

drites can produce a suppression in tonic firing rate of the Purkinje cell for a specific duration

and the corresponding memory is encoded at the respective synapses.

Model implementation

Here, we provide both a minimal and a comprehensive mathematical model implementation

of our proposed biochemical mechanism in the context of an existing Purkinje cell model.

Purkinje cell model. To model the conditional response behavior of the Purkinje cell

after training, we start with an established dynamical model of the Purkinje cell [60] as sum-

marized by (Eqs 1–5). Specifically, it aims to model the dynamics of the Purkinje cell by incor-

porating many properties of the Purkinje cell within a realistic biophysical framework. In

contrast to the original formulation [60], (Eqs 1–5) already incorporate the features specific to

our situation: In (Eq 1), the input current term Ii, which originally signified an external electri-

cal stimulus, now signifies the intrinsic current causing the tonic firing of the Purkinje cell [61,

62]. Moreover, before training, GIRK ion channels cannot be opened because mGluR7 recep-

tors are not present at the synapse, while after training, mGluR7 receptors are present at the

synapse to open GIRK ion channels. Therefore, we added the influence of the GIRK ion chan-

nel in (Eq 2), which only becomes relevant after training. Here, gGIRK is the net conductance of

GIRK ion channels per unit area, hGIRK is the gating parameter and VGIRK is the voltage depen-

dence of the GIRK ion channel obtained from the I-V characterstics curve of the ion channel
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[63]. To model the conditional response behavior of the Purkinje cell after training, we capture

the dynamics of our proposed biochemical mechanism using the gating parameter hGIRK. As a

GIRK ion channel binds 4 units of G-protein subunits, i.e., Gβγ, we have used the exponent 4

for the hGIRK. This is based on the assumption that the dynamics of each unit of Gβγ is indepen-

dent of the others. We will discuss later the (very limited) effect of relaxing this assumption,

including the case when they are all strongly dependent on one another corresponding to an

exponent of 1.

Except for gGIRK, all values of the model are taken from [60]. As far as we know, there is no

literature on the specific gGIRK values. As a result, we chose a value of gGIRK that matches the

experimentally observed conditional response profiles. All parameter values of the Purkinje

cell model including gGIRK are summarized in S1 Text

Somatic voltage equation:

Cs
dVs

dt
¼
ðVd � VsÞ

R
� gNam1hðVs � ENaÞ � gKsð1 � hÞðVs � EKÞ

� gleakðVs � EleakÞ � gIH IhðVs � EIh
Þ þ Ii

ð1Þ

Dendritic voltage equation:

Cd
dVd

dt
¼
ðVs � VdÞ

R
� gleakðVd � EleakÞ � gKdðslowÞndðVd � EKÞ

� gGIRKh4
GIRKVGIRKðVdÞ

VGIRKðVdÞ ¼ � 0:02ð1:3Vd þ 50:0Þ=ð1:0þ expððVd þ 40Þ=10:0ÞÞ

ð2Þ

Na+ activation equation:

m1 ¼
1

1þ exp½� ðV � V1=2Þ=k�
; V1=2 ¼ � 40:0mV; k ¼ 3:0mV

dh
dt
¼

h1 � h
th

¼
1

1þ exp½� ðV � V1=2Þ=k�
; V1=2 ¼ � 40:0mV; k ¼ � 3:0mV

thðVÞ ¼
295:4

4ðV þ 50Þ
2
þ 400

þ 0:012

ð3Þ

Hyperpolarizing activated cation current (Ih):

dIh
dt

¼
Ih1 � Ih
tIh

¼
1

1þ exp½� ðV � V1=2Þ=k�
; V1=2 ¼ � 80:0mV; k ¼ � 3:0mV;

tIh ¼ 100ms

ð4Þ

Slow K+ activation equation:

dnd

dt
¼

nd1 � nd

tnd
¼

1

1þ exp½� ðV � V1=2Þ=k�
V1=2 ¼ � 35:0mV; k ¼ 3:0mV

tnd ¼ 15ms

ð5Þ

Minimal mathematical model of proposed biochemical mechanism. We first start with

a minimal mathematical model for the dynamics of the gating parameter hGIRK, which will
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allow us later to clearly establish the robustness and generality of the proposed mechanism

since it is amenable to a phase space and bifurcation analysis.

Gating of the GIRK ion channel depends upon the availability of Phosphatidylinositol

4,5-bisphosphate (PIP2) molecules [54]. These molecules have a low affinity for GIRK ion

channels but bind efficiently after binding of a Gβγ subunit to a GIRK ion channel. The

amount of PIP2 on the synaptic membrane is low but it is replenished by various biochemical

processes to maintain its concentration fairly constant upon consumption or degradation [64].

Therefore, the amount of active Gβγ subunits can determine the gating dynamics of the GIRK

ion channel. As G-proteins are closely associated with GIRK ion channels, we can assume fast

binding of the Gβγ subunit to the GIRK ion channel. Under these assumptions, we can equate

the normalized G-protein activity with the GIRK ion channel gating parameter hGIRK as sum-

marized in (Eq 9) below.

G-protein activity depends on the activity of the mGluR7 receptor along with other proteins

as discussed in Model Conceptualization: Proposed biochemical mechanism and shown in

(Fig 2), which self-orgainze to form discrete units of TECs. Since we do not know the number

of TECs and their detailed intrinsic dynamics, we choose to model the collective dynamics of

TECs and different biochemical interactions within them in an effective way. Hence, instead

of using discrete variables for the activity of different biochemicals, we use continuous vari-

ables to capture the “average” dynamics of different biochemicals by considering all TECs

together.

Our conceptual minimal model aims to reproduce features of the conditional response,

namely 1) the conditional response should be independent of CS duration, and 2) changing

the dynamics of PKA and G-protein should be sufficient to produce conditional responses of

different durations. It considers the four main biochemicals—mGluR7, G-protein, PKA and

PP1—and models their overall effective behaviour as observed in vivo. Based on the pictorial

diagram shown in (Fig 2), the dynamical equations for the proposed biochemical mechanism

within individual TECs are as follows:

t1

du
dt
¼

1

aþ x
uðu0 � uÞ � bu; ð6Þ

t2

dv
dt
¼ lvðv1 � vÞðv � v0Þ � gðw0 � duÞvþ I; ð7Þ

t3

dx
dt
¼ ðv � xÞ ð8Þ

hGIRK ¼ x=v0 ð9Þ

where u, v, and x are the activities of PKA, mGluR7 receptor, and G-protein, respectively,

while the activity of PP1 is held constant to w0 as per proposed mechanism. In the above

model, all the variables along with parameters α, v1,u0, v0, w0, and I carry units of μM. The

remaining parameters β and δ are unitless, while γ carries units of μM−1 and λ carries units of

μM−2. All parameters and variables are positive including τi for i = 1, 2, 3, which have units of

milliseconds. Table 1 discusses the biochemical significance of the various terms in (Eqs 6–8).

In (Eq 7), the term −γδuv denotes the interaction of PKA with mGluR7. Yet, there is no corre-

sponding term in (Eq 6) because such interactions are enzymetic in nature and have very short

time scales compared to the response, which we are trying to model. Hence, the activity of

PKA does not change when it interacts with other proteins.
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Comprehensive mathematical model of proposed biochemical mechanism. We now

present a comprehensive higher-dimensional mathematical model of the biochemical mecha-

nism proposed in Model Conceptualization: Proposed biochemical mechanism based on the

full chemical reaction kinetics including detailed biochemical pathways. It allows us to over-

come some technical limitations faced by our minimal model. Our minimal model captures

the essential interactions between various biomolecules: mGluR7 receptors, PKA, PP1, G-pro-

tein using linear and nonlinear terms, which are effective terms but sufficient to qualitatively

reproduce the conditional response observed experimentally as we show later. In addition,

because of its low dimensionality, it allows us to perform a detailed bifurcation analysis to

establish the robustness of the proposed mechanism and our findings. Yet, some of the param-

eters in our minimal model are effective parameters and, hence, cannot be directly connected

to experimentally accessible parameters and molecular interactions. Our full model is able to

overcome this limitation. Furthermore, it also allows a more rigorous experimental verification

of the proposed biochemical mechanism compared to the minimal mathematical model.

Table 1. Description of the various terms in the minimal model.

Term Description

u(u0 − u) in (Eq 6) This term models the rise in PKA activity up to its maximum value of u0. It captures the

increases in PKA activity due to the rise of [cAMP] by AC activity facilitated by the

Calmodulin protein, especially the non-monotonic change in the increase until PKA

saturates.

1

aþx in (Eq 6) This term models the net AC activity and captures that upon parallel fiber stimulation,

glutamate activates the mGluR7 receptor, which activates G-protein to produce a Gα subunit

to block the cAMP molecule production. The specific form is obtained from Hill’s equation

with Hill’s coefficient equal to 1 as only one unit of Gα protein binds to AC. See S2 Text for

more details. AC activity activates PKA and that is why we have the product of u(u0 − u) and
1

aþx in (Eq 6). Here α = KD is the dissociation constant of AC and G-protein binding.

−βu in (Eq 6) This term captures the suppressive influence of PDE on PKA activity via hydrolysing cAMP

molecules. β signifies the strength of the PDE action, which is proportional to its (constant)

concentration. Different conditional responses are the result of different PDE

concentrations, such that higher PDE concentrations (larger β) lead to conditional responses

of longer duration.

λv(v − v0)(v1 − v) in

(Eq 7)

This term is the effective representation of the 5-state model of the mGluR7 receptor shown

in (Fig 2) and captures the switching property of the mGluR7 receptor corresponding to the

unaltered conditional response with changing the CS durations. This is achieved by the

lowest degree polynomial required to generate an excitable dynamical system behaviour. v0

signifies the (constant) amount of receptors, which are associated with the G-protein. v1

determines the (constant) threshold activity that needs to be crossed to initiate the

conditional response, hence v0� v1. λ is set to unity and ensures the correct dimensionality

of the term.

γ(w0 − δu)v in (Eq 7) This entire term considers the interactions of the mGluR7 receptor with PP1 via −γw0 v
(lowering of receptor activity due to dephosphorylation) and with PKA via γδuv

(phosphorylation after the conditional response is over). γ denotes the (constant) interaction

strength of PP1 on the receptor. δ denotes the (constant) relative strength of PKA and PP1

interactions on the receptor.

I in (Eq 7) This term denotes the rate of activation of the receptor in unit time, which is determined by

the strength of the CS in the form of glutamate release from parallel fibers.

v − x in (Eq 8) This term models the G-protein activity as a linear function. This simplification is justified as

the G-protein is coupled with the receptor via the RGS8 protein. This means that if the

activity of the receptor increases, the G-protein activity increases too.

τ1 in (Eq 6) Effective time constant for PKA in milliseconds

τ2 in (Eq 7) Effective time constant for mGluR7 receptor in milliseconds

τ3 in (Eq 8) Effective time constant for G-protein in milliseconds. Depending on the training, its value

can be small or big which results in a short or a long delay in the onset of the conditional

response, respectively.

https://doi.org/10.1371/journal.pone.0251172.t001
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The comprehensive mathematical model comes in the form of mass-kinetic reaction equa-

tions not only for mGluR7, PKA, PP1 and G-protein but also their associated proteins and bio-

molecules considering their detailed biochemical interactions described in Model

Conceptualization: Proposed biochemical mechanism. In particular, this model explicitly cap-

tures the mGluR7 receptor’s 5-state behaviour as depicted in (Fig 2). Depending on the relative

concentration of an enzyme compared to its substrate, we have used both Michelis-Menten

equations as well as the complete set of enzymetic reactions [65]. Because activities of proteins

like PKA will be under regulation by other proteins such as PDE, the total enzyme’s (active

form) concentration will be a function of time. Also, as the protein interaction with its sub-

strate is considered to be fast, there will be no net decrease in the free protein concentration

during its interaction with the substrate. Assuming the total [enzyme] to be e0(t), the [sub-

strate] to be s, the [substrate-enzyme complex] to be c and denoting the [product] as p, the

mathematical equations for an enzymetic reaction take on the following form

ds
dt
¼ � k1ðe0ðtÞ � cÞsþ k2c ð10Þ

dc
dt
¼ k1ðe0ðtÞ � cÞs � ðk2 þ k3Þc ð11Þ

dp
dt
¼ k3c ð12Þ

To simulate such equations, the required k1, k2 and k3 parameter values can be obtained

from the experimentally measured values of an enzyme’s turnover rate kcat and its affinity for

its substrate km and from a fixed value of the ratio
k2

k3
¼ 4. This value is recommended in [66]

for the ratio as the concentration of the protein complex is low compared to its substrate.

Using above standard enzyme reaction kinetic equations in the context of biochemical interac-

tions discussed in Model Conceptualization: Proposed biochemical mechanism, we can derive

the comprehensive model describing the collective dynamics of the TEC’s. More details

including the biochemical reactions and the full set of equations can be found in S3 Text. We

only would like to highlight here that based on our proposed biochemical mechanism, the two

parameters that control the onset and ISI duration of the conditional response are the concen-

tration of PDE, [PDE], and the rate constant of G-protein activation and deactivation, kgp.
Parameter values. All parameter values of the comprehensive model are either obtained

or constrained based on existing literature and/or experimental observations as provided in S1

Table. However, such constraints cannot be directly translated to all parameters of the minimal

model as it uses effective terms to capture multiple biochemical reactions that are individually

described in the comprehensive model. Still, many of the parameters in the minimal model

have direct counterparts in the comprehensive model and are, hence, experimentally con-

strained. These parameters are u0 = [PKA] = 4.0μM, v0 = [mGluR7] = 4.0μM, w0 = [PP1] =

4.0μM, see S2 Table as well as α = KD = 0.08μM and τ2 = 1/kf10 = 10−3 sec assuming 1μM of

[Glutamate], see S1 Table Furthermore based on our proposed biochemical mechanism, the

parameters β and τ3 in the minimal model can be treated as functions of [PDE] and 1/kgp in

the comprehensive model, respectively, and they control the models’ behavior in similar ways,

namely they determine the onset and ISI duration of the conditional response. Indeed, based

on all existing studies we are aware of and based on our proposed biochemical mechanism, we

have no clear evidence for changes in the value of any other model parameter as a consequence

of training with different ISI duration. Therefore as a first approximation, we assume all other
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parameters to be independent of ISI duration. Regarding the remaining effective parameters

of the minimal model, we chose their specific values to match the conditional response dynam-

ics of the comprehensive model. Specifically, the values of τ1 and τ3 are chosen to match the

time scales of the minimal model’s dynamics to those of the comprehensive model. Similarly,

v1 controls the threshold value for I to initiate the conditional response. Since the conditional

response behaviour is independent of stimulus duration and corresponds to that of an excit-

able system, we can use small and constant values for both v1 = 0.05μM and I = 0.1μM. For the

stimulus duration, a short duration of about 20msec is used as applied experimentally in [13]

while an arbitrary long stimulus duration is used to show that the conditional response is

indeed independent of stimulus duration. The choice and range of the remaining parameters,

namely β, γ, δ and λ, will be discussed in Robustness and stability of minimal model.

Numerical simulations. We use the odeint module of python’s scipy library to integrate

the ordinary differential equations of our mathematical models to establish their behavior. The

odeint module uses lsoda from the FORTRAN library odepack and solves the initial value

problem for stiff or non-stiff systems of first order ordinary differential equations. In particu-

lar, lsoda automatically selects the appropriate integration method and step size for a given

(stiff or non-stiff) system of ordinary differential equations [67]. The behavior of the minimal

model does not depend on the specific choice of the initial conditions as long as they are physi-

cally relevant, i.e., 0< u, v, x< 4 since there is only one stable fixed point, see Robustness and

stability of minimal model for more details. For the comprehensive model, we use the initial

conditions given in S2 Table.

Results

We now discuss and compare the dynamics of various biomolecules essential for the condi-

tional response using both the minimal and the comprehensive model. We analyze the robust-

ness and parameter sensitivities for both our mathematical models and subsequently we

establish a number of predictions that can be tested experimentally.

Properties of both minimal and comprehensive mathematic models

Since experimental results have shown that the conditional response is independent of CS

durations, the activation of the G-protein must also satisfy this property as it regulates GIRK

ion channels [22]. This behavior is indeed captured by our mathematical models. As shown in

(Fig 3), they also successfully capture the dynamics of the biochemicals—PKA, mGluR7, and

G-protein—of the proposed biochemical mechanism.

As per our proposed mechanism, before CS, PKA activity is high while the activity of the

mGluR7 receptors and G-proteins are low. Upon CS, mGluR7 receptors become active, which

in turn activate G-proteins. Due to activation of G-proteins, PKA activity drops, which causes

the deactivation of mGluR7 receptors by PP1. This leads to the deactivation of the G-proteins

by RGS8. When the stimulus is turned off, the activity of the various proteins returns to the

original state as shown in the top panel of (Fig 3). However, if the stimulus remains on for a

long time, then even very low G-protein activity can prevent the rise of PKA activity to a value

that would be high enough to overcome the activity of PP1. As a result, PP1 activity will be cru-

cial to cause dephosphorylation of mGluR7 receptors and to block their active sites to prevent

the initiation of another conditional response as shown in the middle panel of (Fig 3). Very

faint G-protein activity in case of long duration CS can be observed in the bottom panel of (Fig

3). This is enough to prevent reactivation of the conditional response.
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Fig 3. Temporal behaviour of PKA, mGluR7, and G-protein. Time varying quantities of PKA, mGluR7 and G-protein obtained from the minimal

model (left) and the comprehensive model (right) upon short 20msec (top) and long>2.5sec (middle) stimulus durations represented by the

horizontal bar at the bottom of each panel. The green vertical bar represents ISI duration (200msec in all cases). In the bottom panels, activity of the G-

protein is shown as in the upper panels but for the two different stimulus durations together, indicated by the two color-coded horizontal bars at the

bottom. Both responses are almost identical implying that the G-protein activity is indeed independent of stimulus duration. Parameters values for our

minimal dynamical model are: β = 8.5, δ = 1.0, γ = 1.4μM−1, λ = 1.0μM−2, τ1 = 2500msec, τ3 = 58msec, while the remaining parameter values are given

in Parameter values. For the comprehensive model, [PDE] = 1.25μM and 1/kgp = 50msec, while the remaining parameter values are given in S1 Table.

https://doi.org/10.1371/journal.pone.0251172.g003
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Robustness and stability of minimal model

The robustness of the proposed mechanism and the dynamics of the minimal mathematical

model shown in (Fig 3) can be established by a phase space and bifurcation analysis. We first

discuss the relevant fixed point of the model based on the nullclines before presenting a com-

prehensive bifurcation diagram.

Nullclines. Our model has three different types of nullclines, one for each variable. For

x, the nullcline (@x/@t = 0) has only a single trivial solution corresponding to x = v, see (Eq

8). Thus, we can focus on u and v in the following. For I = 0, as (Fig 4) shows, there are two

u-nullclines (where we have used the x-nullcline x = v in (Eq 6) and two v-nullclines, includ-

ing u = 0 and v = 0. The latter two ensure that (u, v, x) never become negative aka unphysi-

cal. The highlighted intersection points between nullclines in (Fig 4) correspond to the fixed

points of our model: There is only one physically relevant stable fixed point with v = 0 and

u> 0, which describes the “resting” state of the Purkinje cell after training/learning is com-

pleted as discussed in the section Model Conceptualization: Proposed biochemical mecha-

nism. For I 6¼ 0 in (Fig 4), the v-nullclines change and the location of the stable fixed point

moves to a lower value of u. The dynamics takes the system from the previous location of the

fixed point to the new location along a long trajectory. The duration corresponds to the

learned time interval and is encoded in the values of β and τ3. The parameter β controls the

slope of the linear u-nullcline and, hence, the specific location of the stable fixed point as

well as the rate at which PKA activity is reduced. The τ3 parameter controls the rate of

change in G-protein activity and, hence, the opening and closing of GIRK ion channels asso-

ciated with the decrease in firing rate of the Purkinje cell. Consequently, it determines the

time delay between the onset of the conditional response and the minimum firing rate. We

would like to note that there is only a finite range of conditional responses that can be

obtained from the minimal model for a fixed set of parameter value. In the presence of a

continuous stimulus (non-zero value of I) as β decreases, the u value of the stable fixed point

rises until it reaches the apex of the v-nullcline. At this point, a stable limit cycle emerges. As

this behaviour is not observed experimentally, this sets the lower limit for suitable values of

β. For the upper limit, an increase in β lowers the u value of the stable fixed point and,

hence, requires a stronger minimal stimulus to initiate the conditional response such that

the stimulus strength I determines the maximum suitable value of β.

The remaining two free parameters are γ and δ. They affect the dynamics of the model,

for example, by altering shapes and positions of u- and v-nullclines similar to β. For instance,

γ and δ widen the quadratic v-nullcline and bring it closer to the u = 0 nullcline. This will

affect the existence, location and stability of the fixed points including the relevant one cor-

responding to the “resting” state. For example, its stability changes whether it lies inside

(unstable/saddle) or outside (stable) the quadratic v-nullcline as the signs of the flow in (Fig

4) show. The mechanism we propose for the time-encoding memory formation in the Pur-

kinje is directly tied to the qualitative layout of the nullclines in (Fig 4) and the resulting sta-

bility of the relevant fixed point. Thus, the values of the parameters β, γ and δ are naturally

constrained and directly tied to the biological interpretations associated with the model’s

dynamics. In particular, to ensure the stability of the relevant fixed point, we need to choose

the values of γ and δ within certain ranges to position the u- and v-nullclines appropriately.

As the value of β determines the specific ISI durations and, hence, needs to be varied, we

also need to make sure these variations in β do not change the properties of the relevant

fixed point either. Besides controling the shape and position of the quadratic v-nullcline, γ
also influences the rate of decay of mGluR7 receptor’s activity. For numerical values of γ
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Fig 4. U and V nullclines for different parameters. Using the x-nullcline x = v in (Eq 8), we obtain a pair of nullclines for both variables u and v shown for

the same parameters as in (Fig 3) except for β and τ3, which are chosen to correspond to different ISIs (see Table 2): Top panels from left to right are for

ISI = 200msec, 400msec with I = 0μM. Bottom panels from left to right are the same but with I = 0.1μM. These panels also include the projection of the

trajectories from the location of the stable fixed point without stimulus (I = 0μM) to the new one (I = 0.1μM). The time it takes to get from one to the other

corresponds to the ISI duration. Closed circles represent stable fixed points, while open circles represent unstable/saddle fixed points. +/− signs represent

the signs of du/dt and dv/dt, which change across u and v-nullclines, respectively.

https://doi.org/10.1371/journal.pone.0251172.g004
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close to

g >
ðv0 � v1Þ

2

4w0

¼ 0:975mM� 1; ð13Þ

the minimum of the quadratic v-nullcline approaches the u = 0 nullcline. Physically, this

means that as the interaction strength between the receptor and the two proteins, PKA and

PP1, decreases for smaller γ, the state of the receptor can only be changed if the difference

between PKA and PP1 activity is large. Thus, in the presence of constant PP1 (fixed w0), the

PKA activity, u, has to take on lower values. As a decrease in PKA activity is regulated by the

action of PDE on PKA, a decrease in PKA also slows down the rate of change in PKA activ-

ity. Slower changes in u also slow down the variation in v as the receptor activity will not

change until PKA reaches its minimum value, which corresponds the minimum of the qua-

dratic v-nullcline. Overall, this extends the duration during which the mGluR7 receptor

remains active and, hence, the duration of the conditional response. On the other hand,

larger numerical values of γ� 1μM−1 raise the minimum of the quadratic v-nullcline, which

implies that even a small difference between PKA and PP1 activity can change the state of

the receptor. In such a case, PDE can quickly down regulate PKA activity, which leads to

faster deactivation of the receptor. More importantly, if the inequality in (Eq 13) is violated,

a new pair fixed points emerges, one stable and one unstable. This must be avoided in order

to be consistent with our proposed mechanism. As a result, we chose an intermediate value

of γ = 1.4μM−1 in (Fig 4), which produces a sufficiently wide window of conditional

responses as observed in the experiments. Linear stability analysis shows that for

d <
v1v0 þ gw0

gu0

ð14Þ

the relevant fixed point is always stable. This is why we chose δ = 1.0 in (Fig 3), which satis-

fies (Eq 14) for any arbitrarily large value of γ. However, if δ is significantly decreased, then a

higher value of I is required to initiate the conditional response. From a biological perspec-

tive, PP1 dominates over PKA relatively for smaller values of δ and hence this requires a

stronger stimulus to initiate the conditional response. In summary, the possible range for δ
is 0 < δ ⩽ 1 while for γ it is 0.975μM−1 < γ.

Bifurcation analysis. To obtain the full bifurcation diagram, we use the numerical bifur-

cation software MATCONT [68], which provides us with both local and global bifurcations

for our model. Specifically, we find codimension-1 (codim1) bifurcations including branch

point (transcritical), limit point (saddle-node) and Hopf bifurcations, rare codimension-2

(codim2) bifurcations including Bogdanov-Takens, Generalised-Hopf and Cusp bifurcations

as well as global bifurcations such as homoclinic bifurcations. (Fig 5) shows the fixed points of

our model and the various local codim1 and global bifurcations over certain parameter ranges.

For δ = 1.0 and both values of γ, the fixed point with v = 0 and u> 0, which describes the “rest-

ing” state of the Purkinje cell after training/learning is completed, is stable for all values of β as

indicated by the straight solid line. In contrast, for δ = 1.2 this is only true for large values of β.

When decreasing β, it becomes a saddle point through a branch point. Over a very limited

range in β the new stable fixed point first loses its stability through a supercritical Hopf bifurca-

tion giving rise to a stable limit cycle, which then is destroyed through a homoclinic bifurca-

tion around β = 6.7645, turning the original relevant fixed point into the attractor of the

physically relevant dynamics despite being a saddle point. One way to verify this is that there

exists no stable fixed point for δ = 1.2, 1.5 ≲ β≲ 6, yet the directions of all flow vectors at the

surface of a cuboid of sides u = 4,v = x = 5 starting from the origin, point inwards. This implies
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that an attractor exist within the cuboid. The aforementioned limit cycle is the attractor over

the very limited parameter range of its existence, leaving the original relevant fixed point as the

attractor otherwise. This continues to be the case until a new stable fixed point emerges

through a sub-critical Hopf bifurcation at much lower values of β.

While this suggests that larger values of δ violating (Eq 14) would also be largely consistent

with our proposed mechanism, this is not the case. Specifically, in the absence of PDE, i.e., for

β = 0, the only stable fixed point would be v> 0 and u> 0—even in the absence of a stimulus.

This implies that receptors can become active and initiate the conditional response on their

own without a stimulus being provided, which contradicts the experimental observation [12].

If δ does not violate (Eq 14), there are two stable fixed points for β = 0: u> 0 and v = 0; u> 0

and v> 0. Being an excitable model, any initial condition within the quadratic v-nullcline will

settle to the active state, i.e., u> 0 and v> 0, while if outside the v-nullcline, the final state

would be the inactive state, i.e., u> 0 and v = 0, corresponding to the relevant fixed point of

our model. As the shape of the quadratic v-nullcline depends on the values of γ and δ, the

region of this bistability in β becomes arbitrarily small for sufficient large values of γ such that

only the relevant stable fixed point remains.

Fig 5. Stability of fixed points and their bifurcations for different values of β, γ and δ. Abbreviations for various bifurcations as BP: Branch point, SpH:

Supercritical Hopf, SbH: Subcritical Hopf, Hom: Homoclinic, LP: Limit point. Each curve corresponds to one fixed point solution for given set of

parameters values. Solid lines represent stable fixed points, while dashed lines represent unstable or saddle fixed points. The black curves in both panels are

shifted upwards to differenciate them from the red curves as they would overlap otherwise. We ignored the fixed point (0,0,0) as it remains unstable for all γ
> 0, δ> 0 and β< u0/α>>1. Unphysical solutions are shaded with a gray background. Left panel (γ = 1.4μM−1): For δ = 1.0, the relevant fixed point is

stable for all shown values of β values. For δ = 1.2, the same fixed point is only stable for larger values of β. When decreasing β, it becomes a saddle point

through a branch point. Over a very limited range in β the new stable fixed point first loses its stability through a supercritical Hopf bifurcation giving rise

to a stable limit cycle, which then is destroyed through a homoclinic bifurcation around β = 6.7645, turning the original relevant fixed point into the

attractor of the physically relevant dynamics despite being a saddle point. This continues to be the case until a new stable fixed point emerges through a

sub-critical Hopf bifurcation at much lower values of β. Right panel (γ = 0.9μM−1): In addition to the fixed points in the left panel, a new pair of fixed

points with u = 0 is present for this smaller value of γ since the quadratic v-nullcline is shifted down. For clarity, we have shown them as separate lines (two

for each value of δ). One of them is stable over a large range of β. The pair of new fixed points undergoes their own bifurcations at β = 1.5076 and β =

2.6795, respectively, replacing the sub-critical Hopf bifurcation.

https://doi.org/10.1371/journal.pone.0251172.g005
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As mentioned above, if the inequality in (Eq 13) is violated, an additional pair of fixed

points emerges. This is the case for γ = 0.9 (right panel in (Fig 5), where we have an additional

stable fixed point with u = 0 for large values of β. From the biological perspective, this corre-

sponds to a weak interaction between the receptor and PKA and PP1 giving rise to partially

active receptors in the absence of PKA activity. Due to weak interactions, PP1 is not effective

in deactivating the receptor’s activity, which means that once the receptor gets into this state, it

will remain in the state. Even if we change the value of β, it will not go back to its inactive state.

A condition like this where PKA or PP1 interact weakly with their target protein is not bio-

chemically realistic as it offers no advantage to have them close to each other as observed and

argued in previous studies [31–33]. This fixed point becomes unstable at β* 1 through a

branch point and a new stable fixed point emerges corresponding to the active state discussed

above with finite residual activity for both PKA and the receptor. In summary, the relevant

fixed point with v = 0 and u> 0, which describes the “resting” state of the Purkinje cell after

training/learning is completed, is the unique stable fixed point of our model as long as

0.975μM−1 < γ, 0< δ ⩽ 1.0 and 0.0 ≲ β< u0/α = 50.0. Note that at β = u0/α, u becomes zero.

This shows that the desired model behavior is quite robust against changes in γ and β and to a

somewhat lesser degree in δ parameter. In particular, the following properties of the model

remain preserved: i) The G-protein activation remains largely independent of the CS duration,

and ii) no oscillatory response emerges. These two features are essential in order to reproduce

the observed experimental results.

Sensitivity analysis of the comprehensive model

In the previous section, our bifurcation analysis revealed not only the robustness of the

dynamics of the minimal model but it also highlighted that all its properties are in line with the

proposed biological mechanism. While we cannot do such an analysis of the comprehensive

model due to its high-dimensionality, a simple local parameter sensitivity analysis can establish

its robustness to express the conditional response. Specifically, our sensitivity analysis aims to

find the individual range of each parameter over which the opening of GIRK ion channels for

the conditional response of the Purkinje cell occurs. As GIRK ion channels can fully open

when 3-4 G-protein subunits bind to them [69], we select the G-protein activity averaged over

all TECs as our indicator and require it to be between 3 and 4. This analysis shows that most of

the kinetic parameters of the comprehensive model are fairly robust as their values can be

increased or decreased by a factor of 50. However, there are a total of four parameters that can

only be varied less than 5-fold with respect to their original values. These more sensitive

parameters are: kgp, kf11, kcat7 and kcat8, see S3 Table. As mentioned before, kgp controls the rate

of G-protein activation and deactivation and, hence, both onset and delay of the conditional

response. kf11 controls the rate of dephosphorylation of the receptor by PP1. Based on the

experimental evidence discussed in Model Conceptualization: Proposed biochemical mecha-

nism, kf11 is considered to be constant for all different conditional responses and the range

over which it allows for the conditional response to be observed is consistent with the expected

range of rate constants, see S3 Table for more details. kcat7 and kcat8 control the cAMP produc-

tion and hydrolysation by AC and PDE enzymes, respectively. The sensitivity with respect to

kcat7 and kcat8 is not concerning since they are constrained by their experimentally measured

values and we assume them to be constant in the absence of literature indicating otherwise.

Besides the kinetic parameters, the concentration of biomolecules can also vary in principle.

Yet, the only biomolecule whose concentration could vary in our case is PDE as the reactions

stoichiometry constrains the concentrations of all other biomolecules. Indeed, the comprehen-

sive model’s dynamics depends sensitively on [PDE], see S3 Table. This is not surprising since
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based on our proposed biochemical mechanism [PDE] controls both onset and duration of

the conditional response.

Neuronal spiking activity of the Purkinje cell

Now we focus on the conditional response dynamics of the Purkinje cell, where our mathe-

matical model of the proposed biochemical mechanism—either the minimal one or the com-

prehensive one—determines the dynamics of the gating parameter hGIRK, see Purkinje cell

model. In (Fig 6) we show that the suppression of firing rates during the conditional response

of ISI = 200msec is independent of CS durations—for both the minimal model and

Fig 6. Conditional response in both models is independent of conditional stimulus duration. Membrane potential of the Purkinje cell during

conditional response for ISI = 200msec obtained using our minimal model (top panels) and our comprehensive model (bottom panels). The width of the

light green vertical bar corresponds to the duration of the ISI and the black bar at the bottom signifies the conditional stimulus duration, which is short in

the left panels and long in the right panels. Parameters for both models are the same as in (Fig 3).

https://doi.org/10.1371/journal.pone.0251172.g006
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comprehensive model—as observed in the experiments [12]. Experimentally, Purkinje cells

have shown a drop of roughly between 10% and 30% in their firing rate [13], while both our

models show a drop in the firing rate between 20% and 30% for the chosen value of gGIRK.

Note that the dynamics shown in (Fig 6) can be considered as an average response of the firing

rate during the conditional response given the deterministic nature of our model.

In order to obtain a conditional response of longer duration, more mGluR7 receptors need

to be inserted into the synapse. These extra receptors cause a rise in the value of τ3 (minimal

model) or 1/kgp (comprehensive model) and lower the value of β aka the PDE concentration as

discussed earlier in Model Conceptualization: Proposed biochemical mechanism. Different

values of τ3, 1/kgp, [PDE] and β corresponding to different conditional responses are summa-

rized in Table 2. (Fig 7) shows different long duration conditional responses, which match

with the experimental results [12]. For ISI = 200msec as shown in (Fig 7)(left panels), the firing

rate drops and then rises slowly, which is consistent with the experimental results. For higher

ISI = 400msec, the drop and rise of the firing rate is observed to be even slower compared to

ISI = 200msec as shown in (Fig 7)(right panels). Again both our minimal and comprehensive

models produce similar results. Both of our models, in fact, can produce conditional responses

of ISI = 100msec and ISI = 1000msec, which are the extreme values observed experimentally

[42, 70]. This is simply because β—or equivalently [PDE]—and τ3—or equivalently 1/kgp—can

take on a wide range of values without fundamentally changing the behavior. This can be seen,

for example, in the bifurcation plot (Fig 5) for δ = 1.0 and γ = 1.4. Larger values of β imply

shorter ISI durations of the conditional response and vice versa.

To summarize, changing values of both β and τ3 (minimal model) or kgp and [PDE] (com-

prehensive model) simultaneously allows us to model different conditional responses within

our mathematical framework. We would like to point out that changing either one of the two

alone does not reproduce the experimental behavior.

The three normalized conditional response firing patterns obtained from both our models

shown in the left panels of (Fig 8) match with the experimental results [13]. Moreover, we also

determine the delays in the onset of the conditional response by recording the time when the

normalized firing rate drops to 95% of the spontaneous firing rate. These recorded onset delays

are consistent with the experimental observed values [12, 13], see Table 3. Such variable onset

delays can be observed in certain species such as rabbits and ferrets [12, 71] but there are other

species such as mice that exhibit a fixed onset delay of conditional eye-blink response [72].

Our models can reproduce such a behavior as well if the individual G-protein subunits are

strongly interacting with each other—as sometimes observed experimentally [73]—such that

in (Eq 2) the 4 units of G-protein subunits, Gβγ, give rise to a term hgirk instead of h4
girk. This is

shown in the bottom panels of (Fig 8) using the very slightly modified parameter values given

in S4 Table

Our proposed mechanism also explains why the time-memory remains unaffected in the

presence of mGluR7 antagonist MMPIP as observed in the experiment [13]. Specifically,

because of the presence of MMPIP, fewer mGluR7 receptors are left to activate GIRK ion

Table 2. Model parameters for different conditional responses of the Purkinje cell.

ISI (msec) Minimal Model Comprehensive model

β τ3 (msec) [PDE] in μM 1/kgp in (msec)

200.0 8.5 58.0 1.25 50.0

300.0 6.1 97.0 0.98 78.7

400.0 4.7 139.0 0.88 100.0

https://doi.org/10.1371/journal.pone.0251172.t002
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channels, which leads to a smaller drop in firing rate. However, reducing the net amount of

active mGluR7 does not inhibit the internal interactions between the receptor and other pro-

teins involved in our proposed mechanism. Hence, the time-memory, which is encoded within

effective dynamics of the biochemical reactions, is unaffected by MMPIP as shown in (Fig 8)

(right panels in top and middle rows). Note that in (Fig 8) the action of an increasing dose of

MMPIP is simulated by decreasing the value of the parameter gGIRK. As the corresponding val-

ues of gGIRK have not been measured experimentally as mentioned in Purkinje cell model, we

choose suitable values of gGIRK.

Fig 7. Different conditional responses of the Purkinje cell obtained from the mathematical models. Membrane potential of the Purkinje cell during

conditional response for different ISIs = 200msec (left panels) and 400msec (right panels) for the minimal model (top panels) and the comprehensive

model (bottom panels). The specific parameters values are given in Table 2, all others are the same as in (Fig 3). The width of the light green vertical bar

corresponds to the duration of the ISI interval. The black horizontal bar at the bottom represents the conditional stimulus duration.

https://doi.org/10.1371/journal.pone.0251172.g007
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Fig 8. Conditional response profiles for different ISIs and different amounts of MMPIP. Conditional response profiles obtained from the minimal

model (top panels) and the comprehensive model (middle panels) for different parameter values (see Table 2, all other parameters as in (Fig 3)) (left

panels), and in the presence of the mGluR7 receptor’s antagonist MMPIP (right panels). As a mGluR7 antagonist, MMPIP leads to a decrease in the net

amount of active mGluR7 and, hence, the amount of active GIRK ion channels, which corresponds to smaller values of gGIRK (see Eq 2). The bottom panels

show the conditional response profile for a modified G-protein subunit dynamics (see text for details) in the minimal model (left panel) and in the

comprehensive model (right panel). Note that the normalized instantaneous firing activity is calculated here by taking the inverse of the time interval

between two successive spikes, centered on the midpoint between the two spikes, and dividing it by the firing frequency before the onset of the conditional

response.

https://doi.org/10.1371/journal.pone.0251172.g008

Table 3. Onset delay for different conditional responses of the Purkinje cell.

ISI (msec) Onset delay (msec) Experimental data (msec) [12, 13]

Minimal Comprehensive

200.0 52.0 40.0 48.0±34

300.0 71.0 60.0 73.0±18

400.0 95.0 80.0 90.0±20

https://doi.org/10.1371/journal.pone.0251172.t003
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Model predictions

Based on our proposed models, we can make two predictions that can easily be tested by

experiments. 1) If PP1 is knocked out then active mGluR7 receptors will never deactivate once

they have been activated by CS and, hence, the G-protein will remain active. This implies that

the Purkinje cell will not fire again after receiving CS as shown in (Fig 9). 2) On the other

hand, knocking out PKA activation will allow PP1 to dephosphorylate mGluR7 receptors and,

hence, the G-protein cannot be activated. This implies that the Purkinje cell will not exhibit a

conditional response as shown in (Fig 9). As both our mathematical models produce the same

predictions, we only show the results for the minimal model in (Fig 9).

However, in reality biological cells are very robust and have redundancy mechanisms to

overcome such behaviours. As a result, there might be still a weak conditional response

Fig 9. Model predictions for knockout experiments. In our minimal model, PP1 can be knocked out by setting w0 = 0.0 at the onset of stimulus (top left

panel), which prevents the Purkinje cell to fire again after the initiation of the conditional response (bottom left panel). PKA can be knocked out by setting

u0 = 0.0 in our model (top right panel), which prevents the Purkinje cell to initiate a conditional response (bottom right panel).

https://doi.org/10.1371/journal.pone.0251172.g009
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observed after knocking out PKA or a slow deactivation of G-protein after knocking out PP1,

but in both cases significant effects on the conditional response should be observed.

Specific experimental options to test the proposed model

There are various experimental options to check whether our proposed mechanism for the

conditional response is valid or not, including the two model predictions mentioned above.

1. As PP1 desensitizes the mGluR7 receptor during conditional response, blocking of PP1,

using Okadaic acid, for example, must affect the deactivation rate of GIRK ion channels

during the conditional response. This would test the first model prediction. Alternatively,

one could block the PDE enzyme via IBMX (3-isobutyl-1-methylxanthine) since without a

drop in PKA activity, PP1 cannot dephosphorylate the receptor.

2. As PKA is an essential biochemical for the resensitization of the receptor and maintaining

low PP1 activity, reducing PKA activity in the cell will prevent the Purkinje cell from sup-

pressing its firing rate as PP1 will desensitize the receptor and therefore GIRK ion channels

will not be activated. This can be verified by using, for example, cAMPS-Rp or triethylam-

monium salt, which will block the cAMP production and, hence, PKA. This would test the

second model prediction. Alternatively, one could block the AC enzyme via SQ22536 since

without activity of AC, PKA cannot be activated.

3. If mGluR1 receptors are activating PKC then blocking of mGluR1 receptors using

CPCCOEt during training will not initiate trafficking of mGluR7 receptors and thus no

conditional response should be observed even after extensive training.

4. Use of RGS8 knockout specimen should allow only long duration conditional response:

Without RGS8 protein, the activation and deactivation of G-protein will be much slower

and will produce only long conditional response durations.

Discussion and conclusion

As both the minimal and the comprehensive mathematical models agree very well with the

experimental results, we conclude that our proposed biochemical mechanism can successfully

reproduce the conditional response features: 1) Temporal profile of firing rate for different ISI

durations, 2) its independence of CS duration, and 3) the various behaviors of the onset delay

of the conditional response with changing ISI duration. In addition to these, our models are

also able to capture the effect of blocking mGluR7 receptor on the conditional response consis-

tent with experimental observations. In particular, our proposed mechanism makes consistent

statements regarding how ISI duration should affect the training period duration. Further-

more, our mathematical models and proposed biochemical mechanism are applicable to both

trace and delayed conditioning. This is because at the level of individual cells, both types of

conditioning engage the same Purkinje cells, which show similar conditional behaviour in the

presence of CS [74]. Yet, some model limitations do remain, which should to be addressed in

the future after experimental results further validate our proposed mechanism. These include:

1. Both mathematical models assume simple activation and deactivation dynamics for the Gα

and Gβγ subunits depending on receptor’s activity even though individual G-protein sub-

units have been shown to modulate the GIRK ion channel gating dynamics [73]. Due to the

slower dynamics of the modulation compared to the conditional response, we have

neglected this here. However, RGS8 can potentially accelerate the dynamics of the G-
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protein subunits such that a more complex conditional response behaviour could arise

including the double pause conditional response observed in experiments [75].

2. While both mathematical models can fully capture the conditional response after training is

completed, they do not directly describe the learning process itself. A mathematical model

for the learning process based on our proposed biochemical mechanism would need to cap-

ture aspects of learning experimentally observed during training such as the increase of the

ISI duration of the conditional response until it reaches its final value [17]. Such a behavior

would require the adjustment of kgp and [PDE] in the comprehensive model or τ3 and β in

the minimal model over time. Modeling this aspect from a biological perspective is highly

nontrivial as it involves the translocation and protein complex formation of the various pro-

teins involved in the proposed mechanism. Hence, it remains a challenge for the future.

3. By construction, both mathematical models also do not capture the dynamics of individual

TEC units. Instead, they model the collective behaviour of all TEC units. This simplifica-

tion, however, fails to explain how different decoupled TEC units can produce a strong and

robust conditional response of a specific duration. cAMP biomolecules can potentially offer

a necessary coupling mechanism as merging of cAMP microdomains [76] from different

TEC units can synchronize the dynamics across different TECs and collectively produce a

conditional response of a specific duration.

In terms of the bigger picture, we introduced a potential biochemical mechanism to explain

time-encoding memory formation within a single synapse of a Purkinje cell. This time-encod-

ing memory is stored in an excitatory synapse, but it is associated with an inhibitory response,

i.e., the suppression of the Purkinje cell’s tonic firing rate in the presence of an excitatory stimu-

lus, namely glutamate discharge from the parallel fiber. During conditional training, Purkinje

cells imprint the time information by expressing an appropriate amount of mGluR7 receptors

on the synapse, while encoding time information in the form of effective dynamics of biochem-

ical interactions. The memory is stored by forming a protein complex we call TEC. Alterations

of effective dynamics within TECs will change its temporal signature, while the removal of

receptors from the synapse will cause memory loss. However, during retraining, the previous

memory can quickly be reacquired and it becomes accessible again. Our idea of TEC is similar

to the “Timer Proteins” previously proposed by Ref. [77], but in contrast, it does not require an

active selection of feedforward protein activations to produce a specific conditional response.

Recently, a different biochemical mechanism was proposed for time interval learning, which

uses Ca+2 oscillation and feedback loops for storing different time intervals information [78].

Unlike our mathematical models which explain the temporal profile of the conditional

response after learning has been completed, their mathematical model focuses on the condi-

tional learning process, which occurs during training in the Purkinje cell. However, their pro-

posed underlying learning mechanism is fundamentally different from our biochemical

mechanism in the sense that it does not require translocation of receptors at the synapse. Yet,

another potential mechanism behind time-memory learning involves microtubules along with

a mitogen-activated protein kinase (MAPK) pathway based on its general role in memory and

learning processes [79]. This mechanism considers alteration in microtubules dynamics and

their hexgonal lattice structure, which ultimately leads to storage of different time-duration

memories. However, this does not directly explain how the Purkinje cell suppresses its tonic fir-

ing rate. All these three alternative hypotheses—involving microtubules, the Ca+2 mechanism

as well as our GIRK ion channel dependent suppression of the firing rate—solely consider

molecular interactions within individual Purkinje cells and assume that mGluR7 receptors initi-

ate the conditional response.
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As mentioned in the Introduction, the presence of mGluR7 receptors on Purkinje cells is

highly controversial. Previous studies by Johansson, Hesslow and coworkers [12, 13, 22] pro-

vide ample indirect evidence for the presence of mGluR7 receptors in PC synapses, but a

proper immunohistochemical characterization within synaptic terminals is still necessary to

fully confirm its presence. Another option would be to reverse trace the chemical cascade

involving the GIRK ion channel, as it has been shown to cause the suppression in tonic firing

rate in Purkinje cells [22] and is expressed in Purkinje cell synapses [37]. As the release of glu-

tamate from the parallel fiber initiates the conditional response, one can conclude that only

class 2 and 3 of the mGluR receptor family can be responsible for the initiation of the condi-

tional response [80]. This is because only class 1 mGluR receptors interact with Gq/11 type G-

proteins [80], which activate the Phospholipase C (PLC) enzyme. PLC converts Phosphatidyli-

nositol 4,5-bisphosphate (PIP2) molecules into diacylglycerol (DAG) and inositol 1,4,5-tri-

sphosphate (IP3) [81]. As PIP2 is essential for the GIRK ion channel activation [54], class 1 of

mGluR cannot initiate the conditional response as shown in [82]. Among classes 2 and 3 of the

mGluR receptor family, only the mGluR7 receptor is expressed by the Purkinje cell which is

based on mRNA expression levels mentioned earlier [26, 27].

An alternative pathway involves strong feed-forward inhibition from the molecular layer

interneurons to the Purkinje cell [43, 83]. However, in this scenario the mechanism behind the

precise timing of the conditional response has not been established yet. Due to the fact that

neurons are inherently noisy, it is also a possibility that multiple mechanisms both at the level

of individual Purkinje cells and at the network level including interneurons are responsible for

the robust expression of the conditional response. At the single cell level, GIRK ion channels

control different features. Besides suppressing the tonic firing rate of the Purkinje cell, GIRK

ion channels also happen to potentiate pf-PC synapses [84] potentially by increasing the gluta-

mate release from parallel fibers. Such potentiation of pf-PC synapses favors the robust activa-

tion of mGluR7 receptors in order to access the time memory stored at synapses. At the

network level, inhibition from interneurons effectively reduces the total GIRK ion channel

current required to suppress the tonic firing rate of the entire Purkinje cell. In other words,

fewer Purkinje cell’s synapses would be needed to initiate the conditional response. Thus, hav-

ing multiple ways to suppress the firing rate increases the memory storage capacity of an indi-

vidual Purkinje cell within the cerebellum.

As previously mentioned, in our model the time information of the conditional response is

stored in the TECs found on individual synapses, implying that the substrate or the Engram of

a time memory can reside at individual synapses, not in a cell or a cell assembly. This result is

in line with the synaptogenic point of view of memory substrates [10], where single synapses

play a large role in memory formation. In contrast, another point of view puts more emphasis

on the intrinsic plasticity of a whole neuronal cell compared to the synaptic plasticity of indi-

vidual synapses [85]. Intrinsic plasticity considers changes in the electrophysiological proper-

ties of the cell by changing the expression of Voltage-dependent Ca/K ion channels and many

other kinds of ion channels, which are expressed by neurons and which decide neural firing

rate as well as the sensitivity of the cell upon stimulation. However, neither points of view can

fully account for the development of the conditional response in the Purkinje cell, since it nei-

ther involves the formation or elimination of pf-PC synapses [12, 13], nor LTD of pf-PC syn-

apses [14] nor any change in the electrophysiological properties of the cell [12]. Thus, Purkinje

cells show a novel form of synaptic plasticity and provide an example of monosynaptic mem-

ory encoding. In addition, considering this fact and that each Purkinje cell makes at least one

synapse with up to 200,000 parallel fibers passing through the dendritic tree of the cell [86], the

Purkinje cell might be considered as a multi-information storage device. Specifically, one

might be able to encode a specific time interval by stimulating only a subset of parallel fibers
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and encode another time interval by stimulating a separate subset of fibers. In this case, a spe-

cific time memory out of the whole set can be selectively retrieved when the respective set of

parallel fibers becomes active upon stimulation, producing the conditional response for the

previously encoded time interval.

One can get a rough estimate of the total number of unique time memories that can be

stored by an individual Purkinje cell by taking the ratio of the collective hyperpolarization cur-

rent produced by GIRK ion channels from all synapses and the minimum required hyperpo-

larization current in order to noticeably suppress the tonic firing rate of the cell. To determine

the minimum hyperpolarization current, one can assume that its value is approximately equal

to the net resurgent Na+ current as the resurgent Na+ ion channel has the capability to sponta-

neously generate rapid sequences of action potentials [58, 87]. In order to determine the collec-

tive hyperpolarization current, one needs to know the conductances of the GIRK ion channels

and their respective densities on the synapses. Although there are experimentally measured

values for single GIRK ion channel conductances [88, 89], no absolute density quantification

of GIRK ion channels at Purkinje cell synapses has been done as far as we know. Only relative

abundances of GIRK ion channels at Purkinje cell’s dendritic spines are known [37]. Hence, it

is currently not possible to determine the collective hyperpolarization current and, thus, the

total number of unique time memories that can be stored by an individual Purkinje cell. This

remains an interesting challenge for the future.

As an alternative approach, one could aim to establish experimentally that an individual

Purkinje cell can indeed store at least two different time memories at separate sets of pf-PC

synapses. As discussed above, stimulating separate sets of parallel fibers can in principle initiate

different conditional responses. While this can be achieved by electrodes [12], it is challenging

less so in terms of potential experimental protocols for conditional training [43] but rather due

to difficulties in selecting specific fibers. An alternative could be to stimulate granule cells in

the Granule layer of the Cerebellum [90] since parallel fibers are axonal branches of the gran-

ule cells. By stimulating a selected sub-population of granule cells and a specific branch of the

climbing fiber, a subset of pf-PC synapses of an individual Purkinje cells can be trained for a

specific ISI. Stimulating granule cells may appear as a drawback as they also excite other

GABAergic interneurons, namely Golgi, stellate, and basket cells, which directly or indirectly

can influence Purkinje cell firing activity [90]. However, their excitation did not appear to

influence the conditional response profile of the Purkinje cell as shown experimentally [12].

Hence, stimulating subsets of granule cells experimentally—potentially using optogenetics

[91]—might be a good way to test the capability of a Purkinje cell as a multi-information stor-

age device in the future.

Note added: New support for our proposed biochemical mechanism for time-encoding

memory formation comes from the observation that the mGluR1 receptor is necessary for the

learning process, while it is not for the activation of the conditional response [82]. Despite

using a different experimental approach, it basically verifies point 3 listed in the section “Spe-

cific experimental options to test the proposed model”. Specifically, the observation matches

with our proposed mechanism since the latter assumes that the mGluR1 receptor is responsible

for the learning via facilitating trafficking of the mGluR7 receptor to the synapses. Further

experimental verification of our proposed mechanisms potentially along the lines outlined

above remains an exciting challenge for the future.
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61. Häusser M, Clark BA. Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal

Synaptic Integration. Neuron. 1997; 19:665–678. https://doi.org/10.1016/S0896-6273(00)80379-7

62. Shin SL, Hoebeek FE, Schonewille M, Zeeuw CID, Aertsen A, Schutter ED. Regular Patterns in Cere-

bellar Purkinje Cell Simple Spike Trains. PLoS ONE. 2007; 2:e485. https://doi.org/10.1371/journal.

pone.0000485

63. Bichet D, Haass FA, Jan LY. Merging functional studies with structures of inward-rectifier K+ channels.

Nature Reviews Neuroscience. 2003; 4:957–967. https://doi.org/10.1038/nrn1244

64. Loew LM. Where does all the PIP2 come from? The Journal of Physiology. 2007; 582:945–951. https://

doi.org/10.1113/jphysiol.2007.132860

65. Murray JD. Mathematical Biology. 1989; p. 109–139. https://doi.org/10.1007/978-3-662-08539-4_5

66. Bhalla US. Use of Kinetikit and GENESIS for modeling signaling pathways. Methods in enzymology.

2002; 345:3–23. https://doi.org/10.1016/S0076-6879(02)45003-3

67. Petzold L. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential

Equations. SIAM Journal on Scientific and Statistical Computing. 1983; 4(1):136–148. https://doi.org/

10.1137/0904010

PLOS ONE A biochemical mechanism for time memory formation at Purkinje cell synapses

PLOS ONE | https://doi.org/10.1371/journal.pone.0251172 May 7, 2021 32 / 34

https://doi.org/10.1113/jphysiol.2002.032151
https://doi.org/10.1038/37385
https://doi.org/10.1016/j.bbrc.2003.08.083
https://doi.org/10.1111/j.1469-7793.2001.00335.x
https://doi.org/10.1111/j.1469-7793.2001.00335.x
https://doi.org/10.1074/jbc.M112.439513
https://doi.org/10.1016/0143-4160(85)90007-7
https://doi.org/10.3892/ijmm.18.1.95
http://www.ncbi.nlm.nih.gov/pubmed/16786160
https://doi.org/10.1124/mol.61.6.1303
https://doi.org/10.1124/mol.61.6.1303
https://doi.org/10.1097/FJC.0b013e31822001e3
https://doi.org/10.1097/FJC.0b013e31822001e3
https://doi.org/10..1016/s0896-6273(03)00402-1
https://doi.org/10.1096/fasebj.4.11.2165947
https://doi.org/10.1096/fasebj.4.11.2165947
https://doi.org/10.1016/S0896-6273(00)00127-6
https://doi.org/10.1016/S0896-6273(00)00127-6
http://www.ncbi.nlm.nih.gov/pubmed/11144358
https://doi.org/10.1016/S0896-6273(00)80379-7
https://doi.org/10.1523/JNEUROSCI.17-12-04517.1997
https://doi.org/10.1523/JNEUROSCI.17-12-04517.1997
https://doi.org/10.1080/14734220309424
https://doi.org/10.1152/jn.00306.2007
https://doi.org/10.1016/S0896-6273(00)80379-7
https://doi.org/10.1371/journal.pone.0000485
https://doi.org/10.1371/journal.pone.0000485
https://doi.org/10.1038/nrn1244
https://doi.org/10.1113/jphysiol.2007.132860
https://doi.org/10.1113/jphysiol.2007.132860
https://doi.org/10.1007/978-3-662-08539-4_5
https://doi.org/10.1016/S0076-6879(02)45003-3
https://doi.org/10.1137/0904010
https://doi.org/10.1137/0904010
https://doi.org/10.1371/journal.pone.0251172


68. Dhooge A, Govaerts W, Kuznetsov YA. MATCONT: a Matlab package for numerical bifurcation analy-

sis of ODEs. ACM SIGSAM Bulletin. 2004; 38(1):21–22. https://doi.org/10.1145/980175.980184

69. Sadja R, Alagem N, Reuveny E. Graded contribution of the Gbeta gamma binding domains to GIRK

channel activation. Proceedings of the National Academy of Sciences. 2002; 99(16):10783–10788.

https://doi.org/10.1073/pnas.162346199

70. Smith MC. CS-US interval and US intensity in classical conditioning of the rabbit’s nictitating membrane

response. Journal of Comparative and Physiological Psychology. 1968; 66(3):679–687. https://doi.org/

10.1037/h0026550

71. Mauk MD, Ruiz BP. Learning-Dependent Timing of Pavlovian Eyelid Responses: Differential Condition-

ing Using Multiple Interstimulus Intervals. Behavioral Neuroscience. 1992; 106(4):666–681. https://doi.

org/10.1037/0735-7044.106.4.666

72. Chettih SN, McDougle SD, Ruffolo LI, Medina JF. Adaptive Timing of Motor Output in the Mouse: The

Role of Movement Oscillations in Eyelid Conditioning. Frontiers in Integrative Neuroscience. 2011;

5:72. https://doi.org/10.3389/fnint.2011.00072

73. Tabak G, Keren-Raifman T, Kahanovitch U, Dascal N. Mutual action by Gγ and Gβ for optimal activa-

tion of GIRK channels in a channel subunit-specific manner. Scientific Reports. 2019; 9(1):508. https://

doi.org/10.1038/s41598-018-36833-y

74. Halverson HE, Khilkevich A, Mauk MD. Cerebellar Processing Common to Delay and Trace Eyelid Con-

ditioning. Journal of Neuroscience. 2018; 38(33):7221–7236. https://doi.org/10.1523/JNEUROSCI.

0430-18.2018

75. Jirenhed DA, Rasmussen A, Johansson F, Hesslow G. Learned response sequences in cerebellar Pur-

kinje cells. Proceedings of the National Academy of Sciences. 2017; 114:6127–6132. https://doi.org/10.

1073/pnas.1621132114

76. Calebiro D, Maiellaro I. cAMP signaling microdomains and their observation by optical methods. Fron-

tiers in Cellular Neuroscience. 2014; 8:350. https://doi.org/10.3389/fncel.2014.00350

77. Johansson F, Hesslow G. Theoretical considerations for understanding a Purkinje cell timing mecha-

nism. Communicative & Integrative Biology. 2014; 7:e994376. https://doi.org/10.4161/19420889.2014.

994376

78. Majoral D, Zemmar A, Vicente R. A model for time interval learning in the Purkinje cell. PLOS Computa-

tional Biology. 2020; 16(2):e1007601. https://doi.org/10.1371/journal.pcbi.1007601

79. Yousefzadeh SA, Hesslow G, Shumyatsky GP, Meck WH. Internal Clocks, mGluR7 and Microtubules:

A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal

Medium Spiny Neurons. Frontiers in Molecular Neuroscience. 2020; 12:321. https://doi.org/10.3389/

fnmol.2019.00321

80. Niswender CM, Conn PJ. Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Dis-

ease. Annual Review of Pharmacology and Toxicology. 2010; 50:295–322. https://doi.org/10.1146/

annurev.pharmtox.011008.145533

81. Fukami K, Inanobe S, Kanemaru K, Nakamura Y. Phospholipase C is a key enzyme regulating intracel-

lular calcium and modulating the phosphoinositide balance. Progress in Lipid Research. 2010; 49

(4):429–437. https://doi.org/10.1016/j.plipres.2010.06.001

82. Nakao H, Kishimoto Y, Hashimoto K, Kitamura K, Yamasaki M, Nakao K, et al. mGluR1 in cerebellar

Purkinje cells is essential for the formation but not expression of associative eyeblink memory. Scientific

Reports. 2019; 9:7353. https://doi.org/10.1038/s41598-019-43744-z PMID: 31089195

83. ten Brinke MM, Boele HJ, Spanke JK, Potters JW, Kornysheva K, Wulff P, et al. Evolving Models of

Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice. Cell Reports. 2015; 13

(9):1977–1988. https://doi.org/10.1016/j.celrep.2015.10.057 PMID: 26655909

84. Lippiello P, Perreca C, Donna VD, Hoxha E, Tempia F, Miniaci MC. GIRK channels modulate Purkinje

cell excitability and synaptic transmission in mice cerebellum. Frontiers in Cellular Neuroscience. 2017;

11. https://doi.org/10.3389/conf.fncel.2017.37.00002

85. Titley HK, Brunel N, Hansel C. Toward a Neurocentric View of Learning. Neuron. 2017; 95:19–32.

https://doi.org/10.1016/j.neuron.2017.05.021

86. Tyrrell T, Willshaw D. Cerebellar cortex: its simulation and the relevance of Marr’s theory. Philosophical

Transactions of the Royal Society of London Series B: Biological Sciences. 1992; 336:239–257. https://

doi.org/10.1098/rstb.1992.0059

87. Khaliq ZM, Gouwens NW, Raman IM. The Contribution of Resurgent Sodium Current to High-Fre-

quency Firing in Purkinje Neurons: An Experimental and Modeling Study. Journal of Neuroscience.

2003; 23:4899–4912. https://doi.org/10.1523/JNEUROSCI.23-12-04899.2003

PLOS ONE A biochemical mechanism for time memory formation at Purkinje cell synapses

PLOS ONE | https://doi.org/10.1371/journal.pone.0251172 May 7, 2021 33 / 34

https://doi.org/10.1145/980175.980184
https://doi.org/10.1073/pnas.162346199
https://doi.org/10.1037/h0026550
https://doi.org/10.1037/h0026550
https://doi.org/10.1037/0735-7044.106.4.666
https://doi.org/10.1037/0735-7044.106.4.666
https://doi.org/10.3389/fnint.2011.00072
https://doi.org/10.1038/s41598-018-36833-y
https://doi.org/10.1038/s41598-018-36833-y
https://doi.org/10.1523/JNEUROSCI.0430-18.2018
https://doi.org/10.1523/JNEUROSCI.0430-18.2018
https://doi.org/10.1073/pnas.1621132114
https://doi.org/10.1073/pnas.1621132114
https://doi.org/10.3389/fncel.2014.00350
https://doi.org/10.4161/19420889.2014.994376
https://doi.org/10.4161/19420889.2014.994376
https://doi.org/10.1371/journal.pcbi.1007601
https://doi.org/10.3389/fnmol.2019.00321
https://doi.org/10.3389/fnmol.2019.00321
https://doi.org/10.1146/annurev.pharmtox.011008.145533
https://doi.org/10.1146/annurev.pharmtox.011008.145533
https://doi.org/10.1016/j.plipres.2010.06.001
https://doi.org/10.1038/s41598-019-43744-z
http://www.ncbi.nlm.nih.gov/pubmed/31089195
https://doi.org/10.1016/j.celrep.2015.10.057
http://www.ncbi.nlm.nih.gov/pubmed/26655909
https://doi.org/10.3389/conf.fncel.2017.37.00002
https://doi.org/10.1016/j.neuron.2017.05.021
https://doi.org/10.1098/rstb.1992.0059
https://doi.org/10.1098/rstb.1992.0059
https://doi.org/10.1523/JNEUROSCI.23-12-04899.2003
https://doi.org/10.1371/journal.pone.0251172


88. Kofuji P, Davidson N, Lester HA. Evidence that neuronal G-protein-gated inwardly rectifying K+ chan-

nels are activated by G beta gamma subunits and function as heteromultimers. Proceedings of the

National Academy of Sciences. 1995; 92:6542–6546. https://doi.org/10.1073/pnas.92.14.6542

89. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, et al. International Union of Pharma-

cology. LIV. Nomenclature and Molecular Relationships of Inwardly Rectifying Potassium Channels.

Pharmacological Reviews. 2005; 57:509–526. https://doi.org/10.1124/pr.57.4.11 PMID: 16382105

90. Purves D, Augustine G, Fitzpatrick D, et al. Circuits within the Cerebellum. U.S. National Library of

Medicine; 1970. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10865/.

91. Yamanaka A. Optogenetics, Light-Sensing Proteins and Their Applications. 2015; p. 241–248. https://

doi.org/10.1007/978-4-431-55516-2_16

PLOS ONE A biochemical mechanism for time memory formation at Purkinje cell synapses

PLOS ONE | https://doi.org/10.1371/journal.pone.0251172 May 7, 2021 34 / 34

https://doi.org/10.1073/pnas.92.14.6542
https://doi.org/10.1124/pr.57.4.11
http://www.ncbi.nlm.nih.gov/pubmed/16382105
https://www.ncbi.nlm.nih.gov/books/NBK10865/
https://doi.org/10.1007/978-4-431-55516-2_16
https://doi.org/10.1007/978-4-431-55516-2_16
https://doi.org/10.1371/journal.pone.0251172

