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Prioritizing high‑contact 
occupations raises effectiveness 
of vaccination campaigns
Hendrik Nunner1,2*, Arnout van de Rijt3 & Vincent Buskens1,2

A twenty-year-old idea from network science is that vaccination campaigns would be more effective if 
high-contact individuals were preferentially targeted. Implementation is impeded by the ethical and 
practical problem of differentiating vaccine access based on a personal characteristic that is hard-to-
measure and private. Here, we propose the use of occupational category as a proxy for connectedness 
in a contact network. Using survey data on occupation-specific contact frequencies, we calibrate a 
model of disease propagation in populations undergoing varying vaccination campaigns. We find 
that vaccination campaigns that prioritize high-contact occupational groups achieve similar infection 
levels with half the number of vaccines, while also reducing and delaying peaks. The paper thus 
identifies a concrete, operational strategy for dramatically improving vaccination efficiency in ongoing 
pandemics.

Today, two years after its global outbreak, sustained propagation of COVID-19 continues to kill thousands of 
people a day, inflict economic damage and allows mutations to emerge that may require the development of new 
vaccines. The challenge this poses is how to effectively control the virus with limited means. In this article, we 
draw on social network analysis to propose an easily implementable strategy for more effectively vaccinating a 
population.

Two decades ago, network scientists showed that in theory, the targeting of highly connected individuals 
should be an effective vaccination strategy when propagation networks exhibit high variability in connectivity 
across nodes1,2. Recent studies that calibrate models using data on close-range contact frequencies have demon-
strated that also in the case of COVID-19, the prioritizing of individuals with many close-range contacts would 
dramatically increase the effectiveness of vaccination campaigns3,4. This is because short-range physical contact 
is highly unequally distributed across individuals. “Hubs” have many more contacts than other individuals, and 
according to contact diaries, these contacts are not shorter-lived3. As a result, hubs are not just more likely to get 
infected, but once infected, they also pass it on to more others.

Despite its promise, this strategy has remained mostly a theoretical idea5. A key obstacle to implementation 
is the ethical and practical problem of differentiating vaccine access based on a personal characteristic that is 
hard-to-measure and private. How does one identify high-contact individuals so that they can be targeted in 
vaccination campaigns? We propose the use of occupational groups as a proxy for the number of close-range 
contacts in a contact network. Differentiating COVID-19 policy interventions on the basis of individuals’ occupa-
tions is executable. Indeed, it has already been part of public policy in many countries, both in social distancing 
legislation and vaccine access, except that prioritization was not based on network analysis.

For this approach to be effective, there must be significant variability in close-range exposure between indi-
viduals working in different occupations. Clearly, occupational group is imperfect as a proxy, as people with 
the same job can still vary greatly in the number of short-range contacts they have. In this paper, we draw on 
data from a recent survey conducted at the beginning of the COVID-19 pandemic in early 20206 that combines 
detailed occupational codes with measures of close-range contact. The survey covers six countries—China, 
South Korea, Japan, Italy, UK, and US—and is nationally representative of each by age, gender, and income. 
Information is available on contact at under 1 meter distance prior to the COVID-19 pandemic, as well as on 
such short-range contact during the first lockdown in Spring 2020. The data reveal substantial occupational dif-
ferences, with teachers and cashiers being among the most connected and computer programmers among the 
least connected. To investigate whether this variability can produce significant gains when exploited in targeted 
vaccination programs, we used the data in two ways. First, we generated networks that have degree distributions 
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calibrated with occupational contact data. Second, we simulated epidemics and compared the effectiveness of 
vaccination campaigns targeting individuals randomly or targeting occupational groups with the highest aver-
age number of social contacts.

Related work.  Since the outbreak of COVID-19 in early 2020, a plethora of scientific studies has been 
published from a wide variety of disciplines, such as medical sciences7–9, artificial intelligence and machine 
learning10,11, social sciences12–15, psychology16,17, economy18–20, and food and agriculture21,22. Our model builds 
in particular on a long strand of so-called compartmental models. The origins of compartmental models in 
epidemiology23, for example, go back more than a century. These models divide a population into different 
compartments representing disease states (e.g., susceptible, infected, recovered) and define how to progress from 
one compartment to another. They are a powerful tool for predicting the possible course of epidemics and the 
effectiveness of countermeasures24–28. Compartmental models have also been used for the simulation of diffu-
sion processes on social networks, such as disease spread29,30, information spread31, and their interplay32. Our 
model likewise explicitly simulates the diffusion of an infectious disease in a social network.

Recent studies have proposed numerous network interventions33 for reducing the propagation of COVID-
19. Some interventions seek to strategically restrict close-range contact to occur only within predetermined 
interaction structures so that the speed and reach of COVID-19 spread can theoretically be greatly reduced34,35. 
However, even severe social distancing policies such as full-scale lock-downs can only temporarily reduce infec-
tions and hospitalizations36–42, leaving large-scale vaccination as the primary vehicle for sustainable control 
over the SARS-CoV-2 virus. Highly effective vaccines are being mass-distributed and evidence is mounting 
that vaccinations do not just prevent severe cases but also greatly reduce infection43–51. Nonetheless, global vac-
cine roll-out has logistical and financial limits. We study a different kind of network intervention that seeks to 
minimize resources needed to achieve a certain level of epidemic control by strategically making use of network 
properties. Specifically, we research the prioritizing of occupational groups with workers exposed to close-range 
contact with large numbers of individuals.

For many diseases spreading through close-range contacts, evidence has accumulated that a small fraction of 
source individuals is responsible for most infections52–58. It is estimated that for COVID-19, between 10 and 20% 
of infected individuals produce 80% to 90% of new cases59–64. This suggests that if one could somehow identify 
and protect the minority of spreaders, the virus may be controlled through focused interventions at lower overall 
cost. While the mechanisms that underlie interpersonal variability in infectiousness are poorly understood65–67, 
it is self-evident that the more others one exposes to a given intensity and duration of short-range contact, the 
larger the number of new cases that one generates. One may suspect a trade-off between the number of close-
range contacts and the length of such contact. Then, if the infection probability were increasing in contact length, 
hubs would not play a relatively less critical role. However, data from contact diaries suggest that those who meet 
only a handful of people on one day do not expose these others for a longer period of time than those who meet 
dozens of distinct people on one day3, reinforcing the strategic value of targeting hubs in contact networks for 
vaccination and other forms of infection prevention.

Simulation model
Networks of 10,000 nodes were generated using a network formation model30 that allows control of degree (for 
details, see Methods). A genetic algorithm was used to fit the average degrees per major occupational group 
(according to the SOC codes from the US bureau of labor statistics) reported for times prior to the epidemic. 
Table 1 shows the numbers for reported mean degrees by major occupational group6. Recent US labor market 
numbers were taken to set occupational group size68. Office and Administrative Support Occupations, for example, 
were the largest group containing 12.74% of the entire labor market, and thus our generated networks included 
the same percentage of nodes for this occupational group. A cross-sectional survey study on social contacts in 
GB among 5000 respondents69 estimated the average proportion of closed triads in contact networks to be about 
0.46, while reducing with age. Accordingly, we varied clustering in a range around that value, at 0.3, 0.4, and 
0.5. Occupational group homophily was varied to cover scenarios with no (0.0), medium (0.4), and high (0.8) 
probabilities of ties between nodes from the same occupational group.

For each combination of clustering (3 values) and homophily (3 values), we selected the 10 best fitting 
networks. Based on these 90 normal networks, another 90 lockdown networks were generated by severing ties 
between nodes. Ties were severed based on the average contact number reduction reported for the two con-
necting nodes’ occupational groups (Table 1). This procedure lasted until the empirical average degrees of the 
occupational groups were achieved. Consequently, we ended up with a total number of 180 networks. Detailed 
descriptive statistics on network composition and fitting of average degrees to occupational groups can be found 
in respectively Tables S1 and S2–S5 in the supplementary information.

To assess the effectiveness of different vaccination campaigns, we simulated epidemics under three differ-
ent conditions shown in Fig. 1. In the baseline condition (a), no vaccinations were given, and thus all nodes 
remained susceptible. The baseline condition therefore provides a benchmark for judging the effect of vaccination 
campaigns on epidemics. The two vaccination campaigns differ in the way nodes are selected for the adminis-
tration of vaccinations. In the random condition (b), randomly selected nodes were vaccinated irrespective of 
occupational group membership. In the targeted condition (c), nodes were vaccinated based on occupational 
group membership and in descending order of the reported average number of social contacts (i.e., 1. Health 
Practitioners and Technical Occupations, 2. Personal Care and Service Occupations, 3. Educational Instruction 
and Library Occupations, etc. in the normal networks; and 1. Health Practitioners and Technical Occupations, 
2. Personal Care and Service Occupations, 3. Healthcare Support, etc. in the lockdown networks; see Table 1).
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A flowchart for how we simulated disease transmission and intervention is given in Fig. 2. In addition to 
varying the input networks (normal vs. lockdown, clustering, occupational group homophily), we varied the 
availability of vaccines for the population (5%, 10%, 20%, 30%, 40%, 50%) and vaccine effectiveness in terms of 
probability of immunization (0.60, 0.75, 0.90). Note that the latter entails both the probability to prevent sick-
ness and the probability that the disease is spread further. 20 simulation runs were performed for each of the 
180 networks, 3 vaccination campaign conditions, and 6 vaccine availability percentages as well as 3 vaccine 
effectiveness controls (non-baseline conditions only), resulting in a total number of 133200 simulated epidemics.

Each simulation run was initiated by distributing vaccinations to an entirely susceptible population. Whether 
a node was immunized depended on whether the node was selected for vaccination (vaccination campaign con-
dition and vaccine availability) and whether the vaccination was successful (vaccine effectiveness). In contrast 

Table 1.   Mean degrees per major occupational group for empirical networks at time points prior to (normal) 
and during the first COVID-19 lockdown in Spring 2020.

Normal Lockdown

Healthcare Practitioners and Technical Occupations 20.17 5.19

Personal Care and Service Occupations 12.82 4.58

Educational Instruction and Library Occupations 12.76 2.61

Legal Occupations 8.28 0.92

Management Occupations 5.84 1.32

Sales and Related Occupations 5.59 3.3

Healthcare Support Occupations 5.44 3.7

Food Preparation and Serving Related Occupations 5.32 1.57

Transportation and Material Moving Occupations 5.31 2.69

Life, Physical, and Social Science Occupations 4.63 3.55

Office and Administrative Support Occupations 4.42 1.94

Building and Grounds Cleaning and Maintenance Occupations 3.93 1.26

Installation, Maintenance, and Repair Occupations 3.76 2.83

Business and Financial Operations Occupations 3.66 1.52

Construction and Extraction Occupations 3.6 1.99

Architecture and Engineering Occupations 3.47 1.88

Arts, Design, Entertainment, Sports, and Media Occupations 3.23 2.51

Production Occupations 2.87 2.91

Computer and Mathematical Occupations 2.85 1.21

Community and Social Service Occupations 2.84 1.08

Unemployed 2.34 0.96

Farming, Fishing, and Forestry Occupations 2.15 1.76

Retired 2.13 0.87

Protective Service Occupations 1.12 1.05

Figure 1.   Vaccination campaign scenarios. (a) Baseline scenario without vaccinations, (b) random distribution 
of vaccines, and (c) targeted distribution of vaccines based on occupational group membership in descending 
order of average number of social contacts. Nodes represent individuals and colors represent occupational 
group membership (e.g., red: Healthcare Practitioners and Technical Occupations with high average degree, 
brown nodes: Office and Administrative Support Occupations with low average degree). Enlarged nodes represent 
immunized individuals. Thick ties represent social connections of immunized nodes, and are therefore ruled out 
as possible transmission routes.
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to immunized nodes, unsuccessfully vaccinated nodes remained susceptible. Note that we neglect the possible 
spread of the disease through vaccinated people who do not develop symptoms.

In a second step, a randomly selected node was infected (index case). The remainder of a simulation run 
consisted of discrete time steps to compute disease transmission between infectious and susceptible nodes and 
recovery events of infected nodes. That is, whether a node i got infected depended on the probability of disease 
transmission per single contact ( γ = 0.15 ) and the number of infectious contacts of node i ( niI):

Infectious nodes recovered after 10 time steps and could not get infected a second time. A simulation run 
ended when no infectious nodes were left. Detailed descriptive statistics on network compositions, index cases, 
epidemics, and counter measures can be found in Table S1 in the supplementary information.

Results
Comparison of vaccination campaigns.  Figure 3 shows across all simulation runs, separately for each 
vaccination scenario, the distributions of two commonly studied measures of epidemic control: (a) final size and 
(b) peak size. Final size is the percentage of nodes that have been infected over the entirety of a simulated epi-
demic. Peak size describes the maximum percentage of simultaneously infected nodes per epidemic. To increase 
the resolution of differences between the conditions, the inset of plot (b) shows peak sizes in epidemics involv-
ing a minimum of at least two simultaneously infected nodes. Each plot shows the relative frequencies of one 

(1)πi = 1− (1− γ )niI

Figure 2.   Flowchart of the simulation.
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measure per vaccination campaign (baseline—red, random—yellow, targeted—blue). Dashed lines depict mean 
values, and solid lines median values per vaccination campaign.

Our simulations suggest that independently of network composition, vaccine availability, and vaccine effec-
tiveness, targeting high contact occupations is much more effective than random distribution of vaccines. While 
the random campaign produces average final sizes of about 35% infected nodes (both mean and median), the 
targeted campaign produces mean final sizes of only 20% infected nodes and even prevents most epidemics 
entirely (median final size close to 0%). A similar picture is drawn regarding peak size. While random distribu-
tion of vaccines produces epidemics with about 10% (median) to 20% (mean) simultaneously infected nodes, 
the majority of epidemics in the targeted distribution do not show notable peaks at all (median close to 0%).

Table 2 shows that, independent of input parameter variations, targeted distribution of vaccines is substan-
tially more effective in reducing infection numbers than random distribution. Specifically, targeted distribution 
of vaccines achieve about the same reduction of infection numbers with only half the number of vaccines. That is, 
targeted vaccination of 5% of the population reduces final size by 11%, while the same reduction in the random 
condition requires 10% vaccine coverage. The same applies to 10% and 20% vaccine availability in the targeted 
condition, which require 20% and 40% vaccine coverage in the random condition, respectively.

The effect of vaccine availability is even more striking for the lockdown networks (lower half of Table 2). That 
is, targeted vaccination of 20% of the population can bring the epidemic to a halt (reduction of 26.02% points 
from 26.64 in the baseline condition). To achieve the same with random distribution of vaccines, two-and-a-half 
times the number of vaccines is required, as about half of the population would need to be vaccinated. In sum, 
with or without lockdown, targeted vaccination greatly improves campaign effectiveness.

A similar picture is drawn for vaccine effectivity. For both network types (no lockdown, lockdown), and all 
other parameters considered equal, targeted distribution of vaccines reduces the number of infections signifi-
cantly stronger than random distribution of vaccines.

These main results are broadly robust across network parameters. Table 2 shows effects of network composi-
tion on the final size of epidemics. Clustering has been divided into three categories: networks at the lower end 
(0.4), the upper end (0.6), and in the middle (0.5) of the clustering range reported for contact networks69. The 
simulations show that while targeted intervention is more effective at all clustering levels, the more clustered 
the network, the greater the relative gains vis-à-vis random. Occupational group homophily is also divided into 
three categories. The low homophily category contains the networks without consideration of occupational group 
for tie creation. The medium homophily category contains networks that used a probability of 0.4, while the 

Figure 3.   Densities of final and peak size of epidemics. Relative densities of final size (a) and peak size (b) of 
epidemics by vaccination campaign. Both measures are reported as percentage of the population (final size: 
percentage of cumulative infected nodes; peak size: maximum percentage of simultaneously infected nodes). 
Dashed lines show mean, solid lines show median values. Note that mean peak size in the Targeted condition is 
largely covered by median peak size in the Random condition.
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high homophily category contains networks that used a probability of 0.8 for the creation of ties between nodes 
from the same occupational group. Because of the redundancy of occupation-targeted intervention under high 
occupational homophily, we find that when homophily is increased the effectiveness of targeted versus random 
intervention is somewhat reduced in the non-lockdown networks.

Dynamics of epidemics.  Figure 4 visualizes the effects of vaccine availability and type of distribution on 
the temporal progression of epidemics. Depicted is a comparison of the average course of epidemics between 

Table 2.   Mean final size of baseline condition (2nd column) and difference by test condition in percent points. 
Notes: Raw numbers are provided in Table S6 in the supplementary information.

Baseline Random Targeted
to Baseline to Baseline to Random

I. No lockdown

Overall 90.97 −30.19 −52.39 −22.20

Vaccine availability 5% −5.73 −11.27 −5.54
Vaccine availability 10% −11.28 −25.25 −13.97
Vaccine availability 20% −22.50 −47.71 −25.21
Vaccine availability 30% −35.27 −67.31 −32.04
Vaccine availability 40% −47.13 −78.67 −31.54
Vaccine availability 50% −59.23 −84.13 −24.90

Vaccine effectivity 60% −23.75 −40.32 −16.57
Vaccine effectivity 75% −30.17 −53.80 −23.62
Vaccine effectivity 90% −36.65 −63.05 −26.40

Low clustering 95.11 −28.91 −47.88 −18.97
Medium clustering 91.98 −29.67 −50.79 −21.12
High clustering 83.59 −32.84 −61.31 −28.47

Low homophily 89.16 −30.77 −56.05 −25.27
Medium homophily 95.16 −27.17 −45.84 −18.67
High homophily 92.90 −29.87 −48.17 −18.30

II. Lockdown

Overall 26.64 −15.98 −24.11 −8.13

Vaccine availability 5% −3.95 −16.01 −12.06
Vaccine availability 10% −7.51 −22.87 −15.36
Vaccine availability 20% −14.91 −26.02 −11.10
Vaccine availability 30% −20.14 −26.55 −6.42
Vaccine availability 40% −23.77 −26.59 −2.82
Vaccine availability 50% −25.58 −26.61 −1.03

Vaccine effectivity 60% −13.97 −22.77 −8.80
Vaccine effectivity 75% −16.21 −24.39 −8.18
Vaccine effectivity 90% −17.75 −25.16 −7.42

Low clustering 35.33 −20.46 −30.70 −10.23
Medium clustering 25.43 −15.36 −23.48 −8.13
High clustering 17.60 −11.30 −16.81 −5.51

Low homophily 23.62 −14.03 −21.47 −7.44
Medium homophily 33.57 −18.89 −28.82 −9.93
High homophily 29.06 −18.19 −26.79 −8.60
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the three vaccination campaign conditions (first row: Baseline; first column: Random; second column: Targeted) 
and the availability of vaccines (rows). Each plot shows colored lines for the median proportion of susceptible 
(yellow), infected (orange), recovered (blue), and vaccinated (green) nodes over time. Ribbons show the vari-
ability (interquartile ranges) of these results.

As before, we find that with only half of the vaccines the same reduction of final size can be achieved through 
prioritization of high-contact occupations: When comparing the plots for 20% vaccine availability in the targeted 
distribution condition (column 2, row 4) and 40% vaccine availability in the random distribution condition 
(column 1, row 6) we observe a similar end point for the number of recovered nodes (i.e., final size). Addition-
ally, we can see that the shape of the curve of infected nodes differs. That is, the peak in the targeted distribution 
condition is at an average of 15.22%, while the peak in the random distribution condition is at an average of 
23.60% (see Table S7 in the supplementary information). Furthermore, the epidemic in the random distribution 

Figure 4.   SIRV plots for vaccine availability per vaccination campaign condition. Solid lines show median 
proportion (y-axis) of susceptible (yellow), infected (orange), recovered (blue), and successfully vaccinated/
immunized (green) agents over the first 150 simulated time steps. Ribbons show interquartile range.
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condition requires on average 71.81 time steps from the first infection until the last infected node recovers. In 
the targeted distribution condition, a similar number of infection and recovery events occur in 101.85 time steps 
(see Table S9 in the supplementary information), thus creating a flatter curve of infected nodes.

In summary, our simulations suggest that distribution of vaccines prioritizing societal groups with high con-
tact rates (here: occupations) effectively and consistently reduces final size, peak size, and slow down the spread 
of a disease, largely independently of input parameter variations. That is, while similar numbers of infections 
can be achieved with only half the number of vaccines, targeted vaccinations can also flatten the curve more 
effectively than random distribution of vaccines.

Discussion
These results bring the theoretical strategy of targeting people with many close-range contacts in vaccination 
campaigns one step closer to real-world implementation. We have long known from theoretical diffusion stud-
ies that targeting interventions at hubs in social networks should reduce the spread of infectious diseases that 
are passed on through person-to-person contact1,2. Furthermore, recent model studies suggest that prioritizing 
individuals with many close-range contacts in the case of COVID-19 would dramatically increase the effective-
ness of vaccination campaigns3,4. Although all these studies, including our own, promise large efficiency gains 
through network targeting, they are hardly used for disease control. This is because implementation of network 
targeting has been impeded by the issue of how to identify people with many contacts in a practical manner. 
Deriving contact data from digital trace data poses privacy concerns. Random neighbor sampling70,71, whereby 
randomly nominated friends are vaccinated, may also work because of the statistical tendency for one’s friends 
to have more friends than oneself has72. However, the lack of familiarity with selecting recipients of a life-saving 
public health intervention through such unorthodox methods may raise practical, legal, and ethical challenges.

By contrast, policies that intervene based on target individuals’ occupations are already used widely. During 
the COVID-19 pandemic in various countries, certain occupations saw mandatory closures, while other sectors 
of the economy were allowed to remain open. In the vaccination campaigns in most Western countries, certain 
occupations, such as doctors and teachers, were given preferential access to vaccines. The Centers for Disease 
Control and Prevention (CDC) already recommends the prioritization of essential workers who “ensure the con-
tinuity of critical functions in the United States” with those higher in order who have higher risks of exposure to 
SARS-CoV-273. Similar prioritization can be found in other countries’ vaccination strategies around the world. 
Many strategies, however, do not consider prioritization of occupational groups beyond essential occupations 
or healthcare occupations.

In this paper, we claim that expanding vaccination strategies to focus more on the number of contacts per 
occupational group, can reduce the final size of an epidemic by nearly twice as much (52% decrease) compared 
to strategies neglecting contact rates (30% decrease). In some scenarios, targeted vaccination requires only half 
the number of vaccines of non-targeted vaccination to achieve similar final sizes with later and lower epidemic 
peaks. Furthermore, the paper has shown that the positive effect of targeted vaccination is independent of vaccine 
effectivity and can be increased by stronger network clustering and lower occupational group homophily. Thus, 
maintaining social distancing policies to limit social contacts to close family and friends (increasing clustering) 
and working remotely (decreasing occupational group homophily) during targeted vaccination roll-out may 
help to bring an epidemic to a quicker end.

Currently, the choice for prioritizing people with certain occupations is often made based on how important 
these occupations are for society and the vulnerabilities individuals in these occupations are exposed to. Fur-
thermore, age and preexisting conditions that increase the vulnerability of specific people play an important role 
in the planning of COVID-19 vaccination strategies. We do not claim that the maintenance of essential societal 
functions and the protection of the most vulnerable should not be given the highest priority. We do claim, 
however, that it is important to also consider the number of relations people in an occupation have and thus 
their role in spreading an epidemic further. That is, people with many relations are not only more likely to get 
infected themselves, but are responsible for causing larger numbers of secondary cases. Immunizing persons in 
high contact occupations therefore has the potential to increase effectiveness of vaccination campaigns, as more 
people can be (indirectly) saved from infections. This becomes all the more important when vaccine availability 
is limited. Moving forward, an important question is how to integrate contact numbers into existing vaccination 
strategies. Based on our findings, we propose that occupational groups can function as a reasonably effective 
proxy for such an extension.

Our study has several important limitations. First, while we were able to reproduce the mean measured 
contacts per occupation based on the available data on these occupations, these are only estimates and for 
some occupations based on relatively few observations. Moreover, small sample sizes for single occupations and 
minor occupational groups forced us to use major occupational groups. While this approach allows an easy-
to-implement strategy for policy design, it neglects, however, that the number of relations may vary between 
occupations within the same group. In particular, we see that the variance in numbers of relations within occupa-
tions is larger in the empirical data than in the simulated networks. The reason is that we focused on matching 
average numbers of relations with our network generation procedure. Furthermore, matching variance is not 
straightforward. In addition, given the numbers of observations and the numbers of the relations reported in the 
data, it can be inferred that the variances are not well estimable based on the empirical data and outliers might 
cause variances to seem larger than they actually are.

The data we used also showed that differences in contact numbers between countries exist. Average contact 
numbers in the UK before the pandemic (9.48 contacts per day), for example, were almost 3.5 times as large as 
for Korea (2.77 contacts per day). Our results therefore show an average effect that may differ between coun-
tries. Furthermore, we do not consider age structures or household compositions. Thus, results are focused on 
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occupational networks only, neglecting the role children may play in the continuation of an epidemic. Lastly, we 
do not take advantages or disadvantages of strategies into account that go beyond the studied network effects. 
Prioritizing specific job categories, for example, may have additional effects on the course of an epidemic (e.g., 
medical sector, tourism industry).

While we are confident that the main result of a large efficiency gain from targeted vaccination is robust, this 
gain may differ in magnitude when applied to specific diseases. To adapt the model to COVID-19, for example, 
some details, such as probability of transmission per contact, recovery times, and finer resolution of compart-
ments, need to be modelled more precisely. Furthermore, we assume that successfully vaccinated people cannot 
get, nor spread the disease anymore. Although it is still under discussion to what extent vaccinated people remain 
potential transmitters of COVID-19 and thus reduce the effect of targeted vaccine distribution, it is now clear 
that vaccinations do not just prevent severe cases but greatly reduce infection52–58. These effects, however, will 
depend on viruses and variants that emerge and the vaccines that are developed to combat them.

In conclusion, when severe social distancing measures do not suffice, vaccination remains the most effective 
weapon against an epidemic outbreak. Although we have long known that immunizing high contact individuals 
can reduce the spread of infectious diseases, these measures have hardly been used for disease control. Our study 
suggests that using high-contact occupations as a readily available proxy for targeted vaccination campaigns can 
significantly increase the effectiveness of vaccine roll-out, while avoiding some pitfalls impeding implementation 
(e.g., privacy concerns, practical, legal, and ethical challenges).

Methods
The methods presented here provide a higher-level overview. The aim is to promote understanding of the simu-
lation procedures and to enable putting the results into context. For a more detailed and formal description 
of the methods, including all equations, pseudocode of algorithms, and parameter settings, please refer to the 
section Supplementary Methods in the supplementary information.

Network formation model and simulation.  The networks used as input for the simulation of epidemics 
and the simulation of epidemics are based on a specific model case74 of the Networking during infectious diseases 
model (NIDM)30. The network formation model is based on the idea that social ties provide utility75,76. Further-
more, this utility can be maximized by changing the position someone takes in the network. Utility in the NIDM 
describes personal well-being from the perspective of each node i and is the difference between benefits of social 
ties (social capital, comfort, sense of belonging, etc.) and costs to maintain these ties (time, effort, etc.):

b1 is the immediate benefit for the number of ties ti and is discounted by the immediate costs c1 and the marginal 
costs c2 for the number of ties. Note that variations of c2 , while keeping parameters constant (here: b1 = 1.0 and 
c1 = 0.2 ), allow controlling the optimal number of ties per node. A setting of c2 = 0.05 , for example, translates 
into an optimum of 8 ties per node, while c2 = 0.1 creates an optimum of 4 ties per node. The benefit of network 
positions is furthermore dependent on whether the actual proportion of closed triads xi matches the optimal 
proportion of closed triads α and how much weight b2 there is on this part of the equation. Consider, for example, 
node A having three ties (AB, AC, AD), which implies three possible closed triads node A is part of (AB-AC-BC, 
AB-AD-BD, AC-AD-CD). Furthermore, consider α set to a value of 0.33. It follows that the optimum for node 
A would be to have only one of the three possible closed triads.

Agent-based simulations77 were used to generate the networks based on the data with normal (prior to 
lockdown) degree distribution. Starting from an empty network, agents maximize individual utility based on 
Eq. (2) by either creating or severing ties to other agents. Simulation parameter ω allows furthermore to control 
the proportion of ties between agents from the same occupational group. That is, corresponding to the concept 
of baseline homophily78, the simulation provides more opportunity to meet for agents sharing similar traits the 
higher the setting for ω.

Calibration of network structure with empirical data.  Networks of 10,000 nodes were generated 
using the NIDM simulation and fitted to empirical data using a genetic algorithm and a lockdown generation 
algorithm. Empirical data to define target values of the generated networks consisted of three sources. First, 
employment numbers reported by the U.S. Bureau of Labor Statistics68 for major occupational groups according 
to the Standard Occupational Classification (SOC) system79. These data were used to assign a major occupa-
tional group to each agent, with a probability according to the group’s proportional size. Second, mean degree 
per major occupational group collected in a six-country survey on COVID-19 and reporting contact numbers 
before the pandemic and during the first lockdown in Spring 20206 (see Table 1). Third, network clustering 
( α ∈ {0.3, 0.4, 0.5 }) as collected in a cross-sectional study of social contacts in England, Scotland, and Wales69. 
Due to lack of empirical data, occupational group homophily was varied to realize scenarios without ( ω = 0.0 ), 
with medium ( ω = 0.4 ) and with strong ( ω = 0.8 ) assortative mixing.

A genetic algorithm was used to find initial settings for the average number of ties per occupational group 
( c2 ) and the degree of network clustering ( α ) that match the target values for mean degree and clustering best. 
Note that occupational group homophily was not considered, but varied explicitly due to the lack of empirical 
data. The algorithm consisted of six generations for each of the nine systematically varied parameters (3 for clus-
tering, 3 for homophily). Each generation consisted of a number of model realizations with varying parameter 
settings for marginal costs per occupational group ( c2 ) and optimal proportion of closed triads ( α ). The initial 

(2)Ui = b1 · ti + b2 ·

(

1− 2 ·
|xi − α|

max (α, 1− α)

)

− c1 · ti + c2 · t
2
i
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generation consisted of 4 simulations with parameter settings according to the empirical data. At the beginning 
of each of the following five generations, the four best fitting model realizations were selected as parents (the 
lowest percentage error to the target values). For each of the six possible pairs of parents, two offspring model 
realizations were created. That is, parameter settings for marginal costs per occupational group and clustering 
were randomly selected from one of the parents (gene selection). If the parameter settings created outcomes 
that deviated more than 2% from the target values, the parameter settings were varied randomly within a range 
between 0.0 and the percentage error for the according value (gene mutation). The new offspring was used to 
generate a network in a subsequent NIDM simulation. Each simulation lasted until the fitness (cumulative 
percentage errors between target and realized values for average degrees per occupational group and network 
clustering) did not improve for 5 consecutive rounds. A single combination of the explicitly varied parameters 
(prior to lockdown contacts, 3 settings for clustering, 3 settings for homophily) thus created 4+ 5 · 6 · 2 = 64 
networks, while the entire procedure resulted in 3 · 3 · 64 = 576 networks. Finally, we selected the 10 best fitting 
networks for each parameter combination of clustering and homophily, resulting in 90 networks with normal 
(prior to lockdown) degree distributions.

Lockdown generation was realized by pruning the 90 previously generated networks. That is, network ties 
were severed based on the reduction of contacts during lockdown per occupational group. For every network 
tie, the probability of severing the tie depended on two aspects. First, both nodes have not reached the target 
lockdown degree of their corresponding occupational group. Second, the probability to sever a tie depended on 
the reduction of contacts during lockdown6. Consider two nodes are connected by a tie. Node 1 belongs to the 
group Legal Occupations, which showed an average reduction of contacts from 8.28 to 0.92 (88.89%). Node 2 
belongs to the group Healthcare Support Occupations, which showed an average reduction of contacts from 5.44 
to 3.70 (31.99%). Node 1 has 6 ties, while Node 2 has 4 ties. Thus, both nodes have more ties than the average 
node in their occupational group during lockdown, and the tie between the nodes is severed with a probability 
of 88.89+31.99

2
= 60.44% . Lockdown generation stopped when, for every pair of nodes, at least one node reached 

the lockdown degree.
In summary, a total number of 180 networks were used as input for the simulation of epidemics. This number 

consists of the 10 best fitting networks for each of the 9 systematic parameter variations (3 for clustering, 3 for 
homophily) and average degrees reported prior to the first COVID-19 lockdown in Spring 2020; and the same 
number of lockdown networks generated from these networks.

Technical setup and runtimes.  Simulations were run on a MacBook Pro 13′′ , early 2013, with an Intel 
Core i5 Dual-Core processor running at 2.6 GHz, using 8 GB DDR3 RAM at 160 MHz. At the time of the simula-
tions, the computer ran on macOS Catalina version 10.15.7 (19H524). The simulation was programmed in Java 
8 with GraphStream v1.380 used for graph handling. The Java code was executed using Eclipse v4.18 and Java 
compiler v1.8.0_91. For analyses, we used R v4.0.481 with ggplot282 for data visualization.

All simulations ran in 8 parallel threads. Runtimes are reported as combined totals. The network generation 
and fitting process for the normal (prior to lockdown) networks took 222 h and 24 min. Network pruning to 
generate the lockdown networks took 239 h and 41 min. Simulation of epidemics took 212 h and 27 min.

Data availability
The simulated network and epidemics data are available in the GitHub repository, https://​github.​com/​hnunn​er/​
NIDM-​simul​ation (version: v4.2.1., commit: 1707a0b, https://​doi.​org/​10.​5281/​zenodo.​52575​28). The six country 
survey data of close-range contact including occupational codes6 can be publicly accessed at https://​osf.​io/​aubkc/.

Code availability
The Java source code to generate the data, and the R script to analyze the data are available under the GPLv3 
license in the GitHub repository, https://​github.​com/​hnunn​er/​NIDM-​simul​ation (version: v4.2.1., commit: 
1707a0b, DOI: https://​doi.​org/​10.​5281/​zenodo.​52575​28). Detailed instruction how to reproduce all simulations 
and analyses can be found in the release notes of version v4.2.1 on GitHub and Zenodo.
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