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is available at the end of the Results: We illustrate that cognac is able to rapidly identify phylogenetic marker

article genes using a data driven approach and efficiently generate concatenated gene align-

ments for very large genomic datasets. To benchmark our tool, we generated core
gene alignments for eight unique genera of bacteria, including a dataset of over 11,000
genomes from the genus Escherichia producing an alignment with 1353 genes, which
was constructed in less than 17 h.

Conclusions: We demonstrate that cognac presents an efficient method for generat-
ing concatenated gene alignments for phylogenetic analysis. We have released cognac
as an R package (https://github.com/rdcrawford/cognac) with customizable param-
eters for adaptation to diverse applications.
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Background
Phylogenetic analysis is becoming an increasingly integral aspect of biological research
with applications in population genetics, molecular biology, structural biology, and epi-
demiology [1]. Generating a quality multiple sequence alignment (MSA) is fundamen-
tal to robust phylogenetic inference. MSA is a foundational tool in many disciplines of
biology, which aims to capture the relationships between residues of related biological
sequences, and therefore facilitate insights into the evolutionary or structural relation-
ships between the sequences in the alignment.

The first analysis incorporating genetic sequences to understand the evolutionary his-
tory of an organism was a sample of 11 Drosophila melanogaster Adh alleles in 1983
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[2]. Since then, there has been a growing interest in using gene sequences to estimate
the evolutionary relationships between organisms. However, it was quickly observed
that individual gene trees are often inaccurate estimations of the species tree [3]. These
incongruencies can arise from errors while building the tree, or from biological pro-
cesses such as incomplete lineage sorting, hidden parology, and horizontal gene transfer
[4].

One approach for mitigating the incongruence between gene and species trees is the
analysis of multiple genes at multiple loci concatenated into a supergene to generate
more precise phylogenies [5-9]. This approach better leverages the large quantity of
available data using multiple genes to substantially increase the number of variant sites
and minimize the stochastic errors that may be associated with the limited information
contained in a single gene [10]. This approach to infer the species tree has also been
shown to be accurate under a range of simulated conditions, in spite of the biological
processes which might pose a challenge to accurate phylogenetic inference [11, 12].

Prior selection of a gene or set of genes for a given species is a commonly used strategy
for selecting phylogenetic marker genes. For bacteria, the most commonly used marker
gene for phylogenetic analysis is the 16S rRNA gene [13]. This gene is ubiquitous in
bacteria and archaea with highly conserved and variable regions which makes it a useful
marker for estimating the evolutionary relationships between prokaryotes; however, this
gene evolves slowly, often resulting in few variant positions within a species. Curated
methods for selecting marker genes, such as multi-locus sequence typing, expand the
number of marker genes for a given species, and have led to improved resolution within
a species [14]. However, this approach remains limited in that only a small number of
curated genes are selected for a specific species, limiting its application to understudied
organisms. Recently this concept has been expanded to include 400 marker genes com-
monly present in bacteria and archaea concatenated into a supergene for phylogenetic
analysis of prokaryotes [10]. While these tools have many useful applications, relying on
a limited number of predefined genes may limit the number of phylogenetically informa-
tive markers contained in a given dataset, which is important in situations where maxi-
mizing variation to distinguish closely related isolates is required.

In this work, we present cognac (core gene alignment concatenation), a novel data-
driven method and rapid algorithm for identifying phylogenetic marker genes from
whole genome sequences and generating concatenated gene alignments, which scales
to extremely large datasets of greater than 11,000 bacterial genomes. Our approach is
robust when handling data sets with extremely diverse genomes and is capable of creat-
ing an alignment with large numbers of variants for phylogenetic inference.

Implementation

The inputs to cognac are fasta files and genome annotations in gff format, which can
be obtained via commonly used programs such as, RAST, Prokka, or Prodigal (Fig. 1)
[17-19]. First, the sequences corresponding to the coding genes are extracted using the
coordinates provided in the gff file, and the nucleotide sequence for each gene is trans-
lated. To identify phylogenetic marker genes, CD-HIT is then used to cluster the amino
acid sequences into clusters of orthologous genes (COGs) by their sequence similarity
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Fig. 1 Overview of the cognac algorithm. Whole genome sequences and gene annotations are input, and
the coding sequences are extracted and translated to return the amino acid sequences. The amino acid
sequences are clustered to identify orthologous genes and the single copy, core genes are extracted from
the dataset. For each core gene, unique alleles are identified and aligned and the alignment is parsed to
represent the aligned sequence for the full dataset. Alignments are then concatenated, and are ready for
downstream analysis

and length [20]. By default, COGs are defined at a minimum of 70% amino acid identity,
and that the alignment coverage for the longer sequence is 80% at minimum.

The CD-HIT output file is then parsed and marker genes within the dataset are
selected for inclusion in the alignment [20]. By default cognac identifies core genes to a
given set of genomes; however, the selection criteria are customizable to allow for flex-
ibility when creating alignments for various applications. The default selection criteria
for selecting marker genes are: 1) present in 99% of genomes, 2) present in a single copy
in 99.5% of genomes, and 3) ensuring that there are at least one variant position in the
gene sequence. Allowing some degree of missingness allows for assembly errors which
may arise in large datasets. We also allow the user to input a minimum number of genes
to be included, and a minimum fraction of genes which are allowed to be missing, as
genomes that don’t share a sufficient number of phylogenetic markers may be problem-
atic for some types of phylogenetic analysis and/or be indicative of problematic samples.

Once the marker genes are identified, the individual gene alignments of the amino acid
sequences for each gene are generated with MAFFT [21]. Prior to alignment, redundant
sequences of each gene are identified, and only the unique alleles are input to MAFFT.
In particular, for each gene identified by CD-HIT, we first look for exact string matches
within each gene cluster and select the representative unique alleles. The unique alleles
are input to MAFFT and the amino acid alignment is generated. The output gene align-
ment is then parsed, replicating the aligned sequence corresponding to each duplicated
allele, generating the alignment for the entire set of alleles. Because MSA is computa-
tionally intensive, minimizing the number of sequences to align helps to reduce the asso-
ciated computational overhead, leading to significantly reduced memory consumption
and run-time.

Finally, the individual genes are concatenated into a single alignment to be used in
downstream analysis. The alignment can then be input to commonly used programs for
generating phylogenetic trees, such as RaXML or FastTree to create a maximiumium
likelihood (ML) tree or approximate ML tree respectively. We have included the abil-
ity to directly generate a neighbor joining tree within the R package, to allow users to
easily create a tree. cognac is well suited to generating alignments for extremely large
datasets, and in these instances the computational workload for ML based methods may
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be prohibitive, and therefore creating a neighbor joining tree may present a good option.
Neighbor joining trees are a distance based method which require a much less computa-
tional overhead relative to ML based methods. While ML methods are likely to produce
better results, the increased speed may be desirable for situations where a high degree of
precision is not required.

Additionally, several optional outputs may be generated. We provide the functionality
to generate a nucleotide alignment by mapping the corresponding codons to the amino
acid alignment. We use gap placement in the amino acid alignment to position the cor-
responding codons from the nucleotide sequence of each gene, generating a codon
aware nucleotide alignment. This has the added benefit of increasing the number of vari-
ant positions in the alignment, which are a product of synonymous substitutions. This
is potentially useful for applications where maximizing variation is key. We also provide
functionality for parsing the alignments including: eliminating gap positions, removing
non-variant positions, partitioning the alignment into the individual gene alignments,
removing low quality alignment positions, and creating distance matrices.

Cognac was developed for R version 4.0.2. C+ + code was integrated via the Rcpp
package (version 1.0.3) and was written using the C+ + 11 standard [22]. Multithread-
ing is enabled in the C+ 4 code via RcppParallel, which provides wrapper classes for R
objects used by Intel Threading Building Blocks parallel computing library [23]. Multi-
threading for R functions was enabled via the future.apply package (version 1.3.0) [24].
Functions for analysis of phylogenetic trees were enabled via the APE R package (version
5.3). [25].

Results

To demonstrate the utility of our tool, we created genus-level core gene alignments for
27,529 genomes from eight clinically relevant species of bacteria (Table 1, Additional
file 1: Table S1). The number of genomes included from each genera had a wide range
from 24 for Pluralibacter to 11,639 for Escherichia. Cognac was run requiring that at
least 1000 genes which qualify as core genes included in the alignment and genomes
missing greater than 1% of core genes were removed. This was a large data set with the
potential for inaccurate species assignment or assemblies to be of poor quality, ensuring
that these genomes do not limit the number of core genes included. Additionally, for our
test runs we included the optional steps to generate the nucleotide alignment, create a

Table 1 Description of dataset and run statistics for the analysis in this study

Number Total number Number Alignment Run time (min) Memory
of genomes of coding of core length (amino usage (GB)
sequences genes acid residues)

Citrobacter 262 1,356,975 1864 590,749 14.78 34
Enterobacter 1947 9,575,752 1671 551,522 105.81 37.39
Escherichia 11,639 6,104,2774 1353 387,857 693.38 223.81
Klebsiella 9879 55,944,623 1957 631,196 980.95 184.86
Pluralibacter ~ 24 131,798 1919 611,547 2.88 1.21
Proteus 207 806,518 1081 305,078 494 241
Pseudomonas 3051 19,509,251 1065 313,694 9542 47.83

Serratia 520 2,673,835 1109 327,628 14.1 6.84
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pairwise single nucleotide variant distance matrix from the nucleotide alignment, and
generate a neighbor joining tree.

All runs finished in less than a day, and ranged from three minutes to 16 h and 21 min
(Table 1). Run-time grew linearly as the number of genomes increased (Fig. 2a). For all
runs, with the exception of Pseudomonas, generating the MAFFT alignments was the
largest portion of the total run-time (Fig. 2b). The CD-HIT step was the highest fraction
of runtime for Pseudomonas due to the larger genome size and the large degree of pan-
genome diversity observed for this genus (Table 1).

To assess the magnitude of the reduction in the quantity of sequences that were
aligned by selecting only the unique alleles of each gene, which is related to increased
computational efficiency, we calculated the number of unique alleles per core gene as
a fraction of the number of genomes (Table 1, Fig. 3a). We observed a strong inverse
relationship between the number of genomes included and the number of unique alleles
identified within the dataset (Fig. 3b). As a fraction of the number of genomes, Kleb-
siella had the lowest range of unique alleles with 0.02% (n=2) to 6.07% (n=600), with
a median of 1.13% (n=112). Pluralibacter had the fewest genomes and had the highest
proportion of unique alleles, with a maximum value of 79.9% unique alleles (n=19). This
is a substantial decrease in the quantity of sequences that need to be aligned, enabling
cognac to scale to very large datasets. Because organisms are related genealogically,
sequences in the genome are not independent, sharing a common ancestor. Therefore
adding additional genomes does not necessarily expand the number of unique alleles for
any genes, and all of the sequences may be represented by a substantially reduced subset
of the number of samples.

We then wanted to analyze the effect of converting the amino acid alignments to
nucleotide alignments with respect to amplifying the sequence diversity. The raw num-
ber of pairwise substitutions was calculated between all genomes from both the amino
acid alignment and nucleotide normalized to the alignment length (Fig. 4). This greatly
expanded the quantity of genetic variation contained in the alignment, although to
different degrees for different datasets. This may reflect non-biological processes. For
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Fig. 2 cognac is able to maintain reasonable run time even for very large datasets, generating the amino
acid alignment, mapping back to nucleotide sequence, creating a distance matrix, and neighbor joining
tree. a For each genus the run time plotted against the number of genomes included in the analysis. b The
composition of the run time by step
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number of genomes. b The relationship between the number of genomes and the median fraction of unique
alleles for each gene

example, different data sets may have more diversity due to non-random sampling of the
diversity within each genus. Additionally, the magnitude of the phylogenetic distances
between isolates may not be uniform within different taxonomic assignments. Although
biological factors may also play a role in the observed genetic distances. For example, the
lowest amount of diversity was observed in Pseudomonas. The published mutation rate
for E. coli is 2.5 times higher than that of P aeruginosa, suggesting that the differences in

diversity may be a function of the mutation rate in these organisms [26].

Discussion

We present a method to rapidly identify over 1000 marker genes and generate concat-
enated gene alignments that is capable of handling diverse bacterial genomes. Recently,
we used this method to generate a core genome alignment and maximum likelihood tree
for 52 genomes in the family Bacteroidetes, illustrating the utility of this tool to create
gene trees over large phylogenetic distances [27]. Importantly, phylogenetically inform-
ative marker genes are selected using a data driven approach, without any knowledge of
the input genomes a priori, which allows for flexible selection of marker genes that are
tailored to any input dataset.

Our approach relies fundamentally on amino acid sequence comparisons. Transla-
tion provides a natural compression algorithm, which has several advantages. First,
the amino acid sequences have a third of the length of the corresponding nucleotide
sequence. Because the length of the input sequences is a major contributor to the com-
putational complexity of MSA, this reduction in length significantly improves perfor-
mance and scalability [28, 29]. Additionally, amino acid sequences have a higher degree
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of conservation relative to nucleotide sequences [30]. This enables us to leverage redun-
dancy in the codon code to more accurately identify orthologous genes and generate
more accurate alignments. This enables a more robust and rapid approach for identify-
ing and aligning orthologous genes, especially when applied to phylogenetically diverse
datasets.

When performing computationally intensive procedures, amino acid sequences have
many advantages; however, nucleotide alignments may be preferable for some applica-
tions. To address this, we provide the optional functionality to map the corresponding
codons back to the amino acid alignment to return the nucleotide alignment. This can
substantially increase the sequence variation contained in the alignment, which may be
useful for applications where it is important to distinguish between closely related iso-
lates. Additionally, we leverage the information contained in the amino acid sequences
to produce a codon aware alignment. This allows for greater accuracy in placement of
functional residues within the gene sequence and reduces the potential for misalignment

of codons that may occur when aligning nucleotide sequences.
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An important feature of our algorithm is that it relies only on annotated whole genome
assemblies, which provides several advantages over commonly used techniques of align-
ing raw sequencing reads to a reference genome. First, with respect to the size of the
files, assemblies are a small fraction of the files containing the raw sequencing data. Sec-
ond, cognac does not require selection of a reference genome. Different choices of ref-
erence genome have been shown to have large influences on the quality of the output
alignment, potentially amplifying the frequency of mapping errors [31]. Additionally,
the mapping accuracy is severely compromised when considering diverse datasets, even
within a species. This limits the application of this method to diverse datasets. Finally,
since our approach relies on assemblies, this enables us to analyze genomes sequenced
on different platforms, allowing for increased sample size.

Other assembly based methods for estimating the genomic distance between genomes
use dimensionality reduction techniques such as k-mers or the MinHash algorithm to
estimate the distance between genomes [32, 33]. These methods have the advantage that
they can leverage non-coding regions as a source of additional variation; however, the
natural structure of the data is lost. Our method not only allows for an estimation of
the genetic distances between isolates, but also produces an alignment that can be used
in downstream applications. This has the potential to leverage the alignment to identify
recombinogenic genes, and has the potential for use in gaining biological insights into
molecular evolution.

Our algorithm was able to scale to extremely large datasets. For a data set of 11,639
Escherichia genomes we were able to generate a neighbor joining tree from a nucleotide
concatenated gene alignment in less than 17 h. This is accomplished by reducing the
computational overhead of MSA in two ways: (1) translating the sequences, effectively
reducing their length; and (2) reducing the number of sequences by only aligning unique
alleles. For extremely large datasets, this results in an approximately 99% reduction in
the number of sequences that need to be aligned, allowing for great improvements in
scalability, and allows for application to extremely large datasets.

Conclusions

In summary, cognac is a robust, rapid method for generating concatenated gene align-
ments that scales to extremely large datasets. Our method uses a data driven approach
for identification of phylogenetic markers, which are efficiently aligned and concate-
nated into a single alignment for downstream phylogenetic analysis. The pipeline is open
source and freely available as an R package. We expect our tool will be generally use-
ful for many different types of analysis and will enable evolutionary insights in a broad
range of applications.

Availability and requirements

Project Name: cognac

Project Home page: https://github.com/rdcrawford/cognac

Operating system: Tested on Linux

Programming languages: R, C+ +

Other requirements: R 3.6 or higher, CD-HIT (version 4.7), and MAFFT (v7.310).
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License: GNU General Public License, version 2

Any restrictions to use by non-academics: none

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-021-03981-4.

Additional file 1: Genomes used in this study. Associated meta-data of the genome sequences that were used in
this manuscript.

Abbreviations
MSA: Multiple sequence alignment; ML: Maximum likelihood.
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