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Abstract

Lyme disease is common in the northeastern United States, but rare in the southeast, even

though the tick vector is found in both regions. Infection prevalence of Lyme spirochetes in

host-seeking ticks, an important component to the risk of Lyme disease, is also high in the

northeast and northern midwest, but declines sharply in the south. As ticks must acquire

Lyme spirochetes from infected vertebrate hosts, the role of wildlife species composition on

Lyme disease risk has been a topic of lively academic discussion. We compared tick–verte-

brate host interactions using standardized sampling methods among 8 sites scattered

throughout the eastern US. Geographical trends in diversity of tick hosts are gradual and do

not match the sharp decline in prevalence at southern sites, but tick–host associations show

a clear shift from mammals in the north to reptiles in the south. Tick infection prevalence

declines north to south largely because of high tick infestation of efficient spirochete reser-

voir hosts (rodents and shrews) in the north but not in the south. Minimal infestation of small

mammals in the south results from strong selective attachment to lizards such as skinks

(which are inefficient reservoirs for Lyme spirochetes) in the southern states. Selective host

choice, along with latitudinal differences in tick host-seeking behavior and variations in tick

densities, explains the geographic pattern of Lyme disease in the eastern US.
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Introduction

Lyme disease is the most common vector-borne disease in North America, with an estimated

300,000 cases annually in the United States [1]. A particular observation about Lyme disease

distribution has been noted by numerous investigators and has also resulted in confusion

about the geographic risk of Lyme disease for the public: The distribution of the tick vector

does not match the distribution of human cases. The major vector of Lyme disease in North

America is the blacklegged tick, Ixodes scapularis, which is abundant in the northeastern and

northcentral US, extending south into the Gulf states from Texas to Florida [2]. Human cases

of Lyme disease, however, are concentrated in the northern part of the range, with relatively

few cases in the south [3]. This reflects an enduring question about the geographical distribu-

tions of many vector-borne diseases: What factors underlie the relationships among environ-

mental conditions, vector and pathogen distributions, and human disease risk?

Several hypotheses have been proposed to explain this phenomenon, generally related to

either tick host-seeking behavior or to tick–host associations. North–south differences in tick

host-seeking behavior can affect the number of tick bites, potentially resulting in fewer humans

being bitten in the south [4,5]. The community composition of vertebrate host species also dif-

fers north to south [6], and this variation could profoundly affect pathogen transmission pat-

terns. The possible ecological effect of alternative host species lowering transmission of vector-

borne pathogens to humans has been called “zooprophylaxis,” which can result from alterna-

tive host species diverting vectors from humans [7], or from diversion of ticks from reservoir

hosts in zoonoses such as Lyme disease [8]. For zoonotic pathogens, this phenomenon could

potentially take 2 forms, which are not mutually exclusive. One is a dilution [9] or buffering

[10] effect in which increased host diversity results in the distribution of ticks among diverse

hosts, lowering the numbers of ticks on species that are highly competent reservoir hosts. In

contrast, ticks might selectively attach to hosts that are poor reservoirs, which is not dilution,

but rather host selection. In the case of Lyme disease, a primary reservoir host in the northeast-

ern US is the white-footed mouse, Peromyscus leucopus [11], and increased host diversity

could result in more ticks on hosts that are comparatively poor reservoirs of the Lyme spiro-

chete, Borrelia burgdorferi sensu stricto, such as opposums (Didelphis virginianus) and rac-

coons (Procyon lotor) (see Table 1). The dilution effect might manifest in terms of the clinal

geographical distribution of Lyme disease, because vertebrate diversity (in particular, of mam-

mals and reptiles) increases from north to south, so that southern ticks are distributed on

numerous host species in addition to mice. This, in turn, might result in fewer ticks on mice in

the south and therefore, in lower B. burgdorferi infection prevalence in questing ticks [6]. The

alternative hypothesis cites specific host associations of northern versus southern ticks and

argues that southern ticks are particularly abundant on lizards, which are particularly poor res-

ervoirs of Lyme spirochetes [12,13]. In this view, it is not dilution of generalist ticks among

hosts, but rather specific host selection patterns that result in lower prevalence of Lyme disease

in the south.

Despite the important ecological implications of these 2 hypotheses, and the implications

for disease management, north–south trends in tick–host associations have not previously

been studied using standardized methods over broad enough geographical areas to allow com-

parison of these hypotheses. We report the results of a broad geographic study that character-

izes host associations of ticks based on 8 sample sites, each of which underwent intensive

sampling of ticks, hosts, and environmental factors, including habitat characteristics and phys-

ical factors. These sites were selected to represent appropriate habitat for I. scapularis through-

out its range. They consisted of forest habitats with canopy, shrub layers (appropriate for adult

questing), and leaf litter suitable for larval and nymphal habitat. Each site had 2 to 3 sampling
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arrays, spaced >3-km apart (to minimize movement of hosts among arrays). Each array was

approximately1 ha, including live traps for all ground-dwelling vertebrates, including Sherman

and Tomahawk traps, pitfall trap arrays, wood and metal cover boards, burlap skirts on trees,

motion-activated wildlife cameras, and flag/drag transects for free-living ticks, with a weather

station to record temperature and relative humidity. Sample sites were located throughout the

eastern US, in Wisconsin, Massachusetts, New Jersey, North Carolina, Tennessee, South Caro-

lina, Alabama, and Florida, all in woodland areas with appropriate habitat for the tick vector, I.
scapularis. A sample site in Rhode Island was added for flag/drag samples and mouse samples

to collect additional spirochete prevalence and mouse infestation data. Tick life history pat-

terns, along with physical and ecological characteristics of these sites, have previously been

reported [14–16].

Results

Latitudinal trends in tick infection with Lyme spirochetes

Infection of host-seeking ticks with Lyme spirochetes, B. burgdorferi, declined from north to

south, with a precipitous drop below the latitude of the state of Virginia (Fig 1). The locations

of our sample sites are shown in relation to the geographical distributions of I. scapularis in Fig

1A, infection prevalence of host-seeking adult ticks at these sites is shown in Fig 1B, and

human cases of Lyme disease in Fig 1C. Free-living nymphs are difficult to collect in the

Table 1. Reservoir competence of species in different categories of tick hosts.

Host category Species Reservoir competence (%) Reference

Mice Peromyscus leucopus Approximately 75a [21]

89b [10]

Peromyscus maniculatus 80a [22]

Voles Microtus pennsylvanicus 1–6b [23]

Approximately 62b–84a [24]

Shrews Sorex spp. 51b [25]

Blarina brevicauda 37b [26]

42b [25]

Squirrels and rats Tamias striatus 20b [10]

55b [25]

Sciurus carolinensis 17b [23]

15b [25]

Oryzomys palustris 76a [27]

Rattus norvegicus 72a [28]

Medium mammals Procyon lotor 14b [29]

0b [23]

1b [25]

Didelphis virginianus 3b [25]

Skinks Plestiodon inexpectatus 24a [30]

Plestiodon spp. 0.005a [31]�

Other lizards Sceloporus undulatus 0a [32]�

Anolis carolinensis 2a [30]

aLab study: xenodiagnoses using larvae placed on previously infected animals in lab.
bField study: infection in nymphs from larvae collected from animals in the field.

�Research done as part of the current study.

https://doi.org/10.1371/journal.pbio.3001066.t001
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southern US (S1 Fig; data are available in S2 Data) because southern nymphs rarely quest

above the leaf litter [17], so we report infection prevalence of host-seeking adult ticks in this

figure (a total of 14 free-living nymphs were collected and tested from the southern sites; all

were negative). Infection prevalence differed between northern and southern sites (logistic

regression, Wald χ2 = 18.606, df = 1, p< 0.0001), and there was a significant interaction

between the effect of latitude and north/south location (Wald χ2 = 11.257, df = 1, p = 0.0008),

so that when the effect of north/south location was included in the model, there was no further

effect of latitude on prevalence (Wald χ2 = 0.256, df = 1, p = 0.613). These results agree with

other investigators, such as Xu and colleagues [18], who recently reported a precipitous decline

in infection of host-seeking adult I. scapularis at about the same latitude. The reduced inci-

dence of human Lyme disease cases along a north–south gradient (Fig 1C) shows a direct rela-

tionship to the spirochete prevalence in ticks and is characterized by a precipitous drop in

both tick infection and human disease south of about 37˚ N latitude.

Latitudinal trends in host species diversity and tick–host associations

Ground-dwelling mammals and reptiles at our sample sites, those that are most likely to be

encountered by ticks, did not show strong latitudinal trends in diversity (Fig 2A–2D). Trends

among captured animals in species diversity (Shannon–Wiener Index, Fig 2A), species rich-

ness based on trap captures (estimated total number of species present at each of the 7 sites

with full samples, using SPECRICH, https://www.mbr-pwrc.usgs.gov/software/specrich.html,

Fig 2B), and evenness (= 1 − Berger–Parker Index, Fig 2C) [19] showed evidence of modest

decline from south to north, but these trends were not statistically significant. The numbers of

medium and large vertebrate species seen in camera traps (Fig 2D) showed no decline with lat-

itude. Our sampling protocols were the same among sites, so rather than using estimators of

species richness, one could use the total numbers of species in the actual samples to avoid

assumptions of estimators that might apply differently at different sites. Total numbers of spe-

cies captured in each array (n = 20 arrays) showed a similar trend to that based on estimated

Fig 1. Locations of study sites and tick infection prevalence. (A) Map of distribution of Ixodes scapularis ticks; red

counties have tick populations that are considered established (at least 6 ticks or at least 2 of the host-seeking life stages

had been identified in a single collection period), and blue counties have at least some tick collections, but

establishment has not been demonstrated [2]. (B) Infection prevalence in host-seeking adult I. scapularis with binomial

95% confidence intervals (from current study; number to the right of each bar is the number of ticks tested to provide

that infection prevalence value). (C) Map of human cases of Lyme disease in the eastern and central US in 2018 (CDC

map; each dot indicates 1 case of Lyme disease, placed randomly in the patient’s county of residence; https://www.cdc.

gov/lyme/stats/maps.html). Maps in Fig 1A and 1C are from the CDC, and data in Fig 1B are available in S1 Data.

CDC, Centers for Disease Control and Prevention.

https://doi.org/10.1371/journal.pbio.3001066.g001
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total numbers of species present, with an apparent but modest negative trend south to north

that was not statistically significant (R2 = 0.108, p = 0.157). These trends are for overall species

richness at these sites. We can fine-tune the analysis by examining trends within each year at

each of the 7 sites for which we had full samples and by including only species groups that

ticks used as hosts (mammals and lizards) and only at the times of year when larvae and

nymphs were active (S1 Table). Using this approach, trends with latitude were not statistically

significant in 2011 for Shannon–Wiener diversity (R2 = 0.114, p = 0.145), species richness (R2

= 0.0039, p = 0.794), or evenness (R2 = 0.176, p = 0.065). In 2012, there were modest but signif-

icant trends with latitude for diversity (R2 = 0.283, p = 0.019) and evenness (R2 = 0.262, p =

Fig 2. Latitudinal trends in host diversity and tick abundance. Species diversity of mammals + reptiles at field sites

as a function of latitude. (A) Shannon–Wiener Index (H’) for trapped species at each sampling array. (B) Species

richness (overall for each of 7 sites; estimated total number of species from trap data, using SPECRICH). (C) Evenness

(1-BP) of species captured in traps at each sampling array. (D) Species richness (number of species) of animals

photographed by remote cameras at each sampling array. Latitudinal trends in tick abundance (mean numbers of ticks

on all hosts collected in each sampling array) of (E) larvae in 2011, (F) nymphs in 2011, (G) larvae in 2012, and (H)

nymphs in 2012. The Rhode Island site used only mouse traps and vertebrate trapping was limited at the North

Carolina site (no pitfall traps), so these sites are not included in the figures or the accompanying analyses. Data for Fig

2A–2D are available in S3 Data. Data for Fig 2E–2H are available in S4 Data.

https://doi.org/10.1371/journal.pbio.3001066.g002
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0.025), but not for species richness (R2 = 0.171, p = 0.079). Clearly, species diversity alone does

not provide a good match to trends in tick infection prevalence (Fig 1B) and does not appear

to explain the rapid drop in infection prevalence below the 37th parallel.

To assess tick–host relationships at our sites, we divided vertebrate species into 8 categories:

(1) mice; (2) voles; (3) shrews; (4) squirrels and rats (chipmunks, squirrels and flying squirrels,

woodrats, etc.); (5) medium-sized mammals (mostly raccoons and opossums); (6) skinks; (7)

other lizards (mostly fence lizards and anoles); and (8) snakes. These categories were defined

based on animal size and on estimates from previous literature of the relative importance of

these groups as reservoirs for B. burgdorferi (see Materials and methods). The blue bars in Fig 3

Fig 3. Proportions of hosts of different categories in samples and proportions of ticks collected from hosts in each

category. Blue bars are proportions of hosts in each category, and orange bars are proportions of ticks collected from

hosts in each category. Taxa in each category: mice (Peromyscus andOchrotomys), voles (Myodes andMicrotus),
shrews (Sorex and Blarina), squirrels, rats (Tamias, Glaucomys, Tamiasciurus, Neotoma, andOryzomys), medium

mammals (Procyon andDidelphis), skinks (Plestiodon and Scincella), other lizards (Sceloporus and Anolis), and snakes

(Diadophis, Storeria, Thamnophis, and Coluber). Data combined from 2011 and 2012 (when all 8 sites were sampled).

Data are available in S5 Data (raw data in S3 Data).

https://doi.org/10.1371/journal.pbio.3001066.g003

PLOS BIOLOGY Tick-host associations and the geographical gradient of Lyme disease

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001066 January 28, 2021 6 / 20

https://doi.org/10.1371/journal.pbio.3001066.g003
https://doi.org/10.1371/journal.pbio.3001066


are the proportions of animals in each category captured at each site, while the orange bars are

the proportions of ticks removed from hosts from each category. Note that shrews were under-

sampled at the North Carolina site because of the lack of pitfall traps, but shrews were rarely col-

lected at the other southern sites, all of which had pitfall traps. A clear north–south trend is

evident, with northern ticks collected mostly from mammals, and increasing numbers of ticks

collected from lizards at the southern sites. Fig 4A and 4B show odds ratios based on ticks col-

lected from each category of hosts with latitude, north to south. Proportions of ticks collected

from each category of hosts in our samples were significantly higher on small mammals at

northern sites and on lizards at southern sites. If this resulted from simple dilution of ticks on

more diverse hosts in the south, the similarity of the distributions of hosts among categories and

of ticks from hosts in those categories would show no trend with latitude. We assessed this trend

using percent similarity, which quantifies the similarity between 2 samples in the distributions

of individuals among categories [20]. Percent similarities were lowest at the southern sites (Fig

4C and 4D), likely resulting from selective attachment to lizards in the south (Fig 3).

These host associations are important because different host species differ in reservoir com-

petence for B. burgdorferi, the Lyme disease spirochete. Here, we define reservoir competence

as the proportion of larval ticks that acquire infection after feeding on an infected host. Table 1

Fig 4. Latitudinal trends in tick–host associations. (A, B) Logistic regression of changes in proportion of (A) larvae

and (B) nymphs from hosts in each category with latitude. Points are odds ratios with 95% Wald confidence limits. (C,

D) Latitudinal patterns of percent similarity of distributions of individual animals sampled from each host category

with distributions of (C) larvae and (D) nymphs collected from hosts in those categories. Data for Fig 4A and 4B are

available in S6 Data. Data for Fig 4C and 4D are available in S7 Data.

https://doi.org/10.1371/journal.pbio.3001066.g004
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displays several literature estimates of reservoir competence of animals in our host categories.

We did not include snakes because no Ixodes ticks were found on snakes in our samples (with

the exception of 1 nymph on a smooth green snake in Wisconsin). Estimates of reservoir com-

petence were based on lab studies (a) in which the host animals were infected in the lab (gener-

ally by feeding of infected nymphs) before uninfected larvae were allowed to feed on the

animals; and on field studies (b), which generally involved placing larvae on field-caught hosts

or collecting attached larvae dropping from these hosts (so it was unknown whether the host

animals were infected before larval feeding). Infection status was tested after the larvae had

engorged, dropped off, and molted to the nymphal stage. Differences among host categories

are clear: Mice, voles, and shrews tend to be excellent reservoirs for B. burgdorferi, while larger

mammals and lizards are not. Therefore, the preponderance of attachment to mice by larvae

and nymphs in northern sites (Figs 3 and 4) results in efficient transmission of B. burgdorferi
in ticks attaching to these highly competent reservoir species, while ticks in the south attach

largely to lizards, which generally do not maintain spirochetal infection.

One problem, however, is that the different trapping methods we utilized are not equally

effective at capturing animals from the various categories of hosts. As such, the values in Fig 3

show captures, but do not represent the actual proportions of host animals or of ticks present

on each category of hosts at the site. This problem is not likely to affect geographical trends

because the sampling protocol was the same among sites. However, these results quantify only

the proportions of hosts collected from each host category and do not quantify tick abundance

at the various sites. Abundance can be critical, because higher tick abundance can result in

more ticks per individual host, which can affect the probability of spirochete transmission to

and from that host animal [10,33].

Overall abundance of ticks on hosts at a site can be quantified as the mean number of ticks

collected from all hosts per sample, over the entire activity season of that tick stage [16]. We

used this approach in Fig 2 E–H to quantify overall abundance of ticks at each site. This

approach is superior to flag/drag sampling for latitudinal comparisons because north–south

differences in tick host-seeking behavior [17] result in differential sampling effectiveness of

tick life stages on a latitudinal gradient (S1 Fig). We used multiple vertebrate sampling meth-

ods designed to capture a broad variety of ground-dwelling tick host species, and we used a

standardized sampling protocol at our sites so the samples are directly comparable. Abundance

of both larvae and nymphs showed modest trends of increase with latitude (Fig 2E–2H), but

there was a great deal of variability among sites, and the latitudinal trends were statistically sig-

nificant for larvae but not for nymphs. To assess the combined effects of differences in tick

abundance and distributional patterns of ticks on hosts, we quantified the number of ticks per

individual host animal in each host category over the season (Fig 5). Here, the bars represent

the mean number of ticks collected per animal in each category; the number to the right is the

total number of animals used to calculate that mean, and the dashed line divides sites above

and below 37˚ N latitude. Latitudinal trends in the numbers of immature ticks per individual

host animal tended to be positive at higher latitudes for small mammals like mice and negative

for skinks (Fig 5 and S2 Table). These results clearly document predominant attachment to

mammals in the northern sites and to lizards (especially skinks) in the southern sites, with

very low levels of attachment to efficient reservoir hosts (such as mice) in the south.

The number of ticks per individual host animal is critical in determining the level of ampli-

fication of a pathogen (the spread of the pathogen through vector and host populations),

because as the number of ticks that attach to an animal increases, the probability also increases

that the host will be exposed to the pathogen and then potentially serve as a reservoir of infec-

tion for transmission to uninfected vectors. We assessed the factors that influence the number

of ticks that attach to individual mice, the primary reservoirs for B. burgdorferi infection, at
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our northern and southern sites by applying general linear models (GLMs) to assess the effects

of overall tick abundance, overall host abundance, and host species richness on mean numbers

of ticks per individual host animal. GLM analyses to assess log numbers of ticks per mouse at

all sites, with “North versus South” as a class variable, found significant differences between

northern and southern sites for both larvae (p = 0.0002) and nymphs (p< 0.0001), so we ana-

lyzed northern sites separately from southern sites in Table 2. Overall tick abundance (the

mean number of ticks collected from all hosts per sample week, Fig 2H) predicted the number

Fig 5. Latitudinal trends in tick numbers on hosts. Mean number of ticks per individual animal in each category

over the season. Numbers to the right of bars indicate the number of individual captured animals from which each

mean was calculated. Dashed line divides northern from southern sites. Data are available in S8 Data.

https://doi.org/10.1371/journal.pbio.3001066.g005

Table 2. Factors affecting the number of ticks per host animala.

Region Host Tick abundance Host abundance Host species richness R2

Larvae

Northb Mice 0.622��� −0.043��� 0.012 0.867���

Southb Mice 0.110 −0.002 0.004 0.191

Southb Skinks 0.974��� −0.041 0.070 0.704���

Nymphs

Northb Mice 0.111 −0.002 0.002 0.408

South Mice −0.005� −0.001 <0.0001 0.472

Southb Skinks 0.566��� 0.005 −0.004 0.868���

R2 values are for GLMs with “site” as a class variable (to account for environmental differences among sites) plus the variables “tick abundance” (= number of ticks

collected from all hosts at the array per sample), “host abundance” (= number of host individuals captured at the array per sample), and “host species richness” (= total

number of host species captured at the sample array).
aEntries for each variable are model coefficients. Significance for independent variables and for entire model (R2): �p < 0.05, ��p < 0.01, ���p < 0.001.
bNumbers of ticks log transformed to improve model fit.

GLM, general linear model.

https://doi.org/10.1371/journal.pbio.3001066.t002
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of larvae per mouse in the north and larvae per skink in the south, as well as the number of

nymphs per skink at the southern sites (Table 2). Also, overall host density was negatively

related to the number of larvae per mouse in the north. Host species richness, however, did

not contribute significantly in any of the models. Therefore, the factors that determine the

number of ticks per host animal were most closely related to tick and host abundance at our

sites, not to host diversity.

The implications of these patterns of tick–host associations for transmission of Lyme

spirochetes can be seen by assessing the probability of a potential reservoir host animal,

such as a mouse, to be exposed to infection. The probability of exposure depends on the

number of nymphal tick bites and the proportion of ticks that are infected with the spiro-

chete [33,34]. We estimated these probabilities using the binomial probability of expo-

sure at different numbers of tick bites and different levels of infection prevalence in ticks

and then compared these probabilities at our study sites (Fig 6). Our study sites are

arranged along the horizontal axis of Fig 6 based on rough estimates of the total numbers

of tick bites per mouse over the season. Clearly, the northern sites are distributed at high

enough levels of the horizontal axis, so that even with relatively low infection prevalence

in nymphs, the probability of exposure to the spirochete is high for a mouse. The south-

ern sites are mostly at the low end of the horizontal axis, so that even with moderate

infection prevalence in nymphs, the probability that a mouse would be exposed to spiro-

chetes is low. One exception is the South Carolina site, where mice could potentially be

exposed to the spirochete if nymphal infection rates were high. The number of ticks per

mouse at this site was low (0.1 nymphs per mouse), but the long active season resulted in

moderate numbers of ticks per mouse over the year. However, the vast majority of both

nymphs and larvae are on skinks and not mice at this site (Fig 3), so infection in ticks

remains low. Two of the southern sites, North Carolina and Tennessee, had a large pro-

portion of ticks on mice (partly because skinks were relatively uncommon, Fig 3), but

the low tick numbers overall resulted in few ticks per mouse (Figs 2E–2H and 4), lower-

ing the probability of exposure (Fig 6). Thus, low tick densities at some southern sites

contributed to the low infection rates and low numbers of host-seeking ticks, resulting in

Fig 6. Probability of exposure to spirochetes for mice bitten by varying numbers of nymphal ticks. Probabilities

calculated for different levels of infection prevalence in ticks. Approximate yearly numbers of nymphs per mouse over

the season at the 8 primary field sites (2011–2012) and at Rhode Island (2012) indicated below horizontal axis. Data are

available in S9 Data.

https://doi.org/10.1371/journal.pbio.3001066.g006
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low densities of infected nymphs (DIN), even at southern sites with low lizard

abundance.

Discussion

The dilution effect has been invoked to explain patterns of tick infection with zoonotic patho-

gens, including the distribution of Lyme disease in the US [6]. Our results indicate that the

north–south trend in tick infection prevalence with B. burgdorferi, and the associated gradient

in human Lyme disease, results from selective attachment of ticks to lizards, especially skinks,

in the southern states, and not from simple dilution of ticks among host species. Latitudinal

trends in tick host-seeking behavior [4] and in tick densities at some sites (Fig 5) also contrib-

ute to this north–south gradient.

North–south patterns in tick–host associations and spirochete infection

prevalence

Infection prevalence of I. scapularis with B. burgdorferi is substantial in the northern states and

low in the south, dropping precipitously below roughly 37˚ N latitude (Fig 1), a pattern

recently reported by other investigators [18]. This pattern does not closely match trends in spe-

cies diversity of ground-dwelling vertebrates (Fig 2A–2D), which show a gradual latitudinal

trend, and thus does not support the hypothesis that simple dilution effects explain the latitudi-

nal trend in tick infection with spirochetes or Lyme disease incidence. We took comprehensive

samples of mammals and lizards at our sites, and only occasional bird samples, but the overall

latitudinal trend in bird diversity similarly does not support the dilution effect [6]. Further-

more, simple geographical patterns of tick abundance (Fig 2E–2H) do not seem to explain the

dramatic drop in spirochete prevalence between northern and southern sites (Fig 1B).

Patterns of actual tick–host associations tell a somewhat more complex story. It is impor-

tant to understand that larval ticks are not infected with the Lyme spirochete, B. burgdorferi,
when they hatch from the egg [35]. The uninfected larvae attach to host animals, which, if

infected, can transmit infection to the larvae. Infected engorged larvae maintain infection

when they molt to the nymphal stage. Nymphs are active earlier in the season than larvae in

the Northeast [35], and larval and nymphal activity more closely coincide in spring and sum-

mer in the northern midwest [15,36]. Therefore, hosts are exposed to infection by nymphs in

northern sites at the same time or before uninfected larvae feed on the hosts, resulting in high

proportions of larvae acquiring spirochetes if the host species is an efficient reservoir (i.e., it

infects a high proportion of feeding larvae) or low proportions if the host is an inefficient reser-

voir (i.e., it infects none or a low proportion of feeding larvae). The engorged larvae molt into

nymphs, which can then transmit the infection to other hosts, including people [35]. Thus, the

distribution of larvae on hosts affects the proportion of nymphs that are infected, and this pat-

tern does not follow a simple latitudinal gradient in eastern North America.

Dilution versus nonrandom host selection

The results in Figs 3–5 suggest selective attachment of ticks to different categories of hosts and

that this attachment pattern differs from north to south. If ticks were simply being diluted

among hosts, then the proportions of hosts from each category, and the proportions of ticks

collected from each category, would show the same relationship at all sites, and the percent

similarity of the distributions of hosts and ticks among host categories would not change with

latitude. However, the relationship of host and tick distributions clearly changes with latitude

(Fig 3), producing a latitudinal pattern in percent similarities of distributions of hosts among

categories compared to ticks attaching to those host categories (Fig 4C and 4D). These results
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indicate a latitudinal gradient in host selection by I. scapularis, rather than a simple gradient in

dilution of ticks among hosts.

Whether this selective attachment results from behavioral factors (e.g., host preferences) or

ecological factors (e.g., differences between times or sites of tick and host activity) is not clear.

It is possible, for example, that northern ticks might be host generalists (attaching largely to

the abundant rodents), while the southern ticks might be specialists (attaching predominantly

to skinks). One behavioral study, however, found no consistent difference in attachment of

southern I. scapularis to mice versus lizards in the lab [37]. The differential questing behavior

of southern compared to northern ticks [4,17] might contribute to this differential attachment

pattern because southern ticks remain below the leaf litter surface to seek hosts while northern

ticks seek hosts atop the leaf litter, but additional studies examining the determinants of host-

seeking behavior are needed.

Ecological determinants of tick infection prevalence

Our results show that the decline in tick infection prevalence from north to south results from

a combination of lower tick densities at some southern sites (e.g., our sites in Tennessee and

North Carolina) and a broad shift in host associations with latitude. Northern larval and

nymphal ticks are generally abundant on hosts (Fig 5), including efficient reservoir hosts such

as mice, voles, and shrews (Table 1). Southern ticks tend to be uncommon on reservoir hosts,

and more common on lizards, particularly skinks (Figs 3 and 5), which are relatively poor res-

ervoirs for the Lyme spirochete. Two southern sites where skinks were relatively uncommon

(Tennessee and North Carolina) had very low tick populations, and thus few ticks on mice

(Fig 5). One southern site had substantial tick populations (Florida), but the larval and

nymphal ticks displayed strong selective attachment to skinks and not to mice (Fig 5). The rel-

ative rarity of ticks attaching to reservoir hosts in the south results in low levels of infection of

host-seeking ticks with Lyme spirochetes (Fig 1B).

The other major factor that affects human exposure to Lyme spirochetes along a geographi-

cal gradient is that nymphal ticks, the primary vector stage of Lyme spirochetes to humans

[35], differ in host-seeking patterns in northern versus southern locales; the northern ticks

often climb to the top of the leaf litter and quest on leaf tops and twigs to seek hosts, while

southern ticks tend to remain down in the leaf litter beneath the surface [17]. Therefore, a

summer walk through the woods in the north results in direct exposure to host-seeking Ixodes
ticks, while a similar walk in the south does not. The tendency to quest high (at or above the

leaf litter surface) is well correlated with incidence of human Lyme disease [4], likely account-

ing for the far greater numbers of tick bites by this species in northern compared to southern

locales [5]. This difference in host-seeking behavior might result from climatic factors because

the warmer southern temperatures result in desiccation stress above the leaf litter, possibly

providing a selective pressure for southern ticks to remain down below the surface [38].

Therefore, our findings support the hypothesis that 2 ecological and behavioral factors

explain the relative rarity of Lyme disease in the southern US. First, people are bitten by fewer

nymphal I. scapularis in the south [5] because southern nymphs seek hosts below the leaf litter

(where they generally do not encounter humans), while northern nymphs abundantly seek

hosts on top of the leaf litter [4,17] where they can frequently encounter people. Second, even

when people are bitten in the south, the ticks have a considerably lower infection prevalence

with B. burgdorferi than in the north (Fig 1B), because few of the southern ticks attach to reser-

voir host species, either because ticks are rare at some sites or because they selectively attach to

hosts that are poor reservoirs, such as skinks (Fig 5). Our results provide ecological mecha-

nisms that are consistent with geographical genetic gradients in I. scapularis populations [18].
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These results provoke interesting questions about the future distribution of Lyme disease,

especially in view of climate change. Tick population and spirochete transmission models sug-

gest that the distribution of I. scapularis will expand northward, as will human cases of Lyme

disease [39]. Indeed, northward expansion of ticks and Lyme disease in southern Canada is

already evident [40]. However, the southern edge of the range presents complex problems.

Will ticks in the mid-Atlantic states start to behave more like southern ticks, resulting in less

Lyme disease in Virginia and Maryland? This might be expected if populations of skinks

increase with climate change in the mid-Atlantic states and if higher temperatures result in

selective pressure on mid-Atlantic ticks to seek hosts below the leaf litter surface to avoid desic-

cating conditions produced by the increased temperatures [38]. However, the situation is com-

plicated by the history of I. scapularis in North America, which has been characterized by

range expansions from refugia in the northeastern coastal states and northern midwestern

sites [41]. Indeed, recent studies have identified expansion of northern-type ticks south along

the Appalachian Mountains of southwestern Virginia [42] and possibly in river valleys in

northeastern Tennessee [43]. These ticks might act like northern ticks, resulting in an initial

increase in the incidence of Lyme disease in the south. Indeed, Lyme disease incidence has

increased in recent years in southwestern Virginia [42], and increases in canine prevalence of

anti-B. burgdorferi antibodies also have been observed on both sides of the Appalachians in

these areas [44]. However, it is plausible that, with time, these ticks will undergo selection to

act more like southern ticks, resulting in lowering incidence of Lyme disease. Indeed, I. scapu-
larismight disappear altogether from the most southern limits of its range due to inhospitable

climate for both ticks and hosts. At present, we cannot predict whether human cases of Lyme

disease will increase in some southern states or whether Lyme disease will decline in the mid-

Atlantic states with increasing lizard populations and with climate change–related temperature

increases. Given the results of our study, we now know, at least, what questions need to be

answered in order to make that prediction.

Materials and methods

Sampling program

Nine sample sites were located in the eastern and central US, from north to south (Fig 1). The

sites (with approximate latitude/longitude) included Fort McCoy, Wisconsin (44.04 N, -90.68

W), Cape Cod National Seashore, Massachusetts (41.87 N, -69.98 W), scattered sites in Rhode

Island (41.41 N, -71.62 W) and in the pine barrens of central New Jersey (39.85 N, -74.57 W),

Mattamuskeet National Wildlife Refuge, North Carolina (35.48 N, -76.31 W), Arnold Air

Force Base, Tennessee (35.33 N, -86.10 W), Savannah River Site, South Carolina (33.29 N,

-81.73 W), Oakmulgee Talladega National Forest, Alabama (32.96 N, -87.46 W), and Tall Tim-

bers Research Station, Florida (30.66 N, -84.21 W). Four sites were sampled from 2010 through

2012 (Wisconsin, Massachusetts, Tennessee, and South Carolina), 4 were sampled in 2011 and

2012 (New Jersey, North Carolina, Alabama, and Florida), and 1 was a partial sample in 2012

(Rhode Island).

Each site had 2 to 3 sampling arrays, spaced >3-km apart (to minimize movement of hosts

among arrays). Each array (S2 Fig) was approximately 1 ha, including a 7 × 7 grid of Sherman

collapsible live traps (23 × 7.6 × 9 cm) placed 15-m apart (Sherman Traps, Tallahassee, Florida,

US), 4 pitfall trap arrays (1 at each edge), 4 Tomahawk traps (81.3 × 25.4 × 30.5 cm), 1 set at

each edge of the array (Tomahawk Live Trap, Hazelhurst, Wisconsin, US), 20 pairs of plywood

and corrugated metal cover boards (each 0.6 × 0.6 m), 20 burlap skirts on trees (1-m2 at breast

height), 4 action-activated wildlife cameras (Bushnell Trophy Cam, model #119405, Bushnell,

Overland Park, Kansas, US), 1 scent-baited camera at each corner of the array, and a centrally
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located weather station (HOBO Pro v2 data loggers, Onset Computer, Bourne, Massachusetts,

US), which recorded temperature and relative humidity hourly (1 data logger at the leaf litter

surface and 1 at 0.5-m height). The Sherman traps were baited with crimped oats, and the

Tomahawk traps were baited with canned sardines. The pitfall trap arrays each consisted of

five 5-gal plastic buckets (with drainage holes) sunk to ground level with aluminum drift fences

placed in a cross pattern, with buckets at the end of each 10-m arm and at the center. Sites

were sampled every other week during tick activity periods in 2010 and every third week in

2011 and 2012. Each sample week included 2 nights of trapping, 1 check of cover boards and

burlap skirts, and 1 set of 8 flag/drag samples (see references [14–16] for details). The sampling

program was identical at all sites, except at the North Carolina site, where pitfall traps could

not be constructed because of physical conditions, and the Rhode Island site, where only flag/

drag and Sherman trap samples were taken.

Host-seeking ticks were collected from 8 flag/drag transects (90 m each, using 1-m2 white

flannel flags and drags), which were taken at the edges and between each row of Sherman traps

in each array (total of 720 m per sample at each array). Investigators stopped every 15 m on

each transect, the numbers of ticks were counted, and up to 10 specimens were collected and

placed in 95% ethanol (the rest were released). Captured animals were mostly examined with-

out anesthesia, except for some medium-sized mammals, such as raccoons, which were anes-

thetized using standard methods [15,45]. Routine data were taken (species, sex, age, weight,

etc.), and each animal was examined for attached ticks, starting at the head and working back-

ward, for a maximum examination time of 5 minutes. Animals were then released (after recov-

ery for anesthetized individuals) at the point of capture.

Estimation methods

North–south trends in infection prevalence were assessed using logistic regression (SAS, ver-

sion 9.4, LOGISTIC procedure). Host diversity parameters (Fig 2A–2D) were calculated using

all of the vertebrate host species sampled at each array at each site. Estimates of tick and host

numbers (for each tick stage) were taken from the first day to the last day a tick of that stage

was collected at that site by any sampling method (S1 Table), because tick phenologies differed

from site to site [15]. Species diversity was assessed for each sampling array using the Shan-

non–Wiener Index, H = − ∑ pi log pi, where pi is the proportion of the numbers of species i in

the samples. Estimates of total species richness from trap data for each entire site were calcu-

lated using the SPECRICH estimation program (https://www.mbr-pwrc.usgs.gov/software/

specrich.html), written by J.E. Hines, based on Burnham and Overton [46]. Regressions of spe-

cies diversity measures with latitude were performed using SAS, version 9.4 (SAS Institute,

Cary, North Carolina, US), GLM procedure. Evenness was calculated as 1 minus the Berger–

Parker Index = 1 − proportion of the total catch that was the most abundant species.

Hosts were divided into categories based roughly on size and on previous literature esti-

mates of importance as reservoirs. Mice, voles, and shrews have generally been considered

important reservoir hosts for B. burgdorferi [10,11,13,21–26,47] and generally demonstrate

high reservoir competence (Table 1). Squirrels and rats are slightly larger, vary in reservoir

competence (Table 1), and have been identified as important reservoirs only in occasional

local studies [28,48]. Medium mammals (at least, those in our samples) display low reservoir

competence (Table 1) and so are generally not considered important reservoirs. Blacklegged

ticks readily attach to skinks but attach relatively rarely to fence lizards and anoles [12,32] and

rarely attach to snakes.

Logistic regressions on the change in proportion of ticks from each host category with lati-

tude were performed with SAS, version 9.4, LOGISTIC procedure. The dependent variable
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was the number of ticks collected from hosts in each category divided by the total number of

ticks collected from all hosts. Percent similarity of hosts in each category, and ticks collected

from hosts in each category (Fig 3C), were calculated using the following formula [45], % Simi-

larity = 100 − 50∑│pa,i−pb,i│, where pa,i = proportion of host individuals a in category i and

pb,i = proportion of ticks b from hosts in category i.
Numbers of ticks from animals were compiled at each site (Figs 2–5), and tick abundance

on hosts was calculated as the mean of the total numbers of ticks collected from all hosts dur-

ing each sample week, averaged over the season. For these estimates, we used hosts collected

on the first trapping day each sample week, to avoid including data from animals from which

the ticks had been removed earlier in the week.

We estimated the total number of ticks per mouse over the season (Fig 6) by multiplying

the mean number of ticks per mouse over the season by twice the number of weeks in the sea-

son (because a nymph typically stays attached 3 to 4 days, so there are roughly 2 cohorts of

nymphs on a mouse per week). We then multiplied by a factor of 1.2 to account for the ticks

on the mouse that we missed with the visual inspection [49]. The probability of exposure to

the pathogen (Pe) was estimated as the binomial probability of being bitten by at least 1

infected tick [34], given n tick bites, and prevalence of infection of kv in ticks: Pe = 1 –(1 –kv)n.

Infection testing

Ticks were returned to the lab in 95% ethanol and tested using previously published methods

[50]. Briefly, total genomic DNA was extracted from each tick (Qiagen, Valencia, California,

US), which was then subject to quantitative PCR with a probe for B. burgdorferi 16s rDNA.

The forward primer, at 900 nM, was 50-CGTGTAAACGATGCACACTTGGT, and the reverse

primer was 50-GGCGGCACACTTAACACGTTAG. The dye-labeled probe, at 200 nM, was

6FAM-TTCGGTACTAACTTTTAGTTAA, with a minor groove binding (MGB) protein

(Applied Biosystems, Foster City, California, US). The thermal cycler was set for 50˚C for 2

minutes, followed by 45 cycles of 95˚C for 15 seconds and 63˚C for 60 seconds. Each 96-well

plate included negative extraction controls, negative PCR controls (PCR water), positive PCR

controls, and the specimens for testing.

Statistical analyses

Regression analyses were carried out using the GLM procedure in SAS, version 9.4. Overall

analyses of species diversity measures with latitude used arrays as replicates at each latitude.

For species richness, we estimated the total number of species at each site using SPECRICH.

We also carried out finer-tuned analyses of trends of species diversity, species richness, and

evenness of mammals and lizards at each sampling array with latitude separately in 2011 and

2012 and specifically during the time of year when larvae and nymphs were active (S1 Table).

GLM analyses to assess log numbers of ticks per mouse at all sites, with “North versus South”

as a class variable, found significant differences between northern and southern sites for both

larvae (p = 0.0002) and nymphs (p< 0.0001), so we analyzed northern sites separately from

southern sites in Table 2. GLMs that analyzed the roles of various factors affecting the numbers

of ticks per mouse or per skink (Table 2) all used “site” as a class variable (to account for differ-

ent environmental conditions among sites) and used tick abundance (the mean number of

ticks collected from all hosts per sample over the season), host abundance (the mean number

of host animals captured per sample over the season), and host species richness (the total num-

ber of host species collected at each site over the entire project) as independent variables. The

effect of year was not significant in any of these analyses, so “year” was not included in the
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final models. There were no significant interactions among the metric variables in these analy-

ses, so the results from the models with only main effects are presented in Table 2.
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S1 Table. Dates of first and last appearances of larval and nymphal Ixodes scapularis in

samples (including both flag/drag samples and samples from hosts).

(DOCX)

S2 Table. Relationships of mean numbers of ticks per host animal with latitude.

(DOCX)

S1 Fig. The numbers of nymphal Ixodes scapularis divided by the numbers of adults cap-

tured in flag/drag samples at our sample sites. The lower ratios of nymphs/adults at the

southern sites demonstrate the difficulty in collecting nymphs using flag/drag samples in the

south. Data are available in S2 Data.

(TIFF)

S2 Fig. Field sampling array. Each major sample site had 2 or 3 sampling arrays for tick hosts,

ticks from hosts, and host-seeking ticks. Dashed lines are flag/drag transects.

(TIFF)

S1 Data. Infection of adult Ixodes scapularis collected by flag/drag sampling. Samples taken

from 9 sites. AEDC, Arnold Air Force Base, Tennessee; CACO, Cape Cod National Seashore,

Massachusetts; FTM, Fort McCoy, Wisconsin; MNWR, Mattamuskeet National Wildlife Ref-

uge, North Carolina; NJ, scattered oak/pine barrens sites in central New Jersey; OTNF, Oak-

mulgee Talladega National Forest, Alabama; SRS, Savannah River Site, South Carolina; Rhode

Island, scattered sites in southern Rhode Island; TTRS, Tall Timbers Research Station, Florida.

Binomial 95% confidence intervals calculated using the estimator at the website http://

vassarstats.net/prop1.html based on [51,52].

(XLSX)

S2 Data. Ixodes scapularis collected by flag/drag sampling. “Best estimate” based on field

identifications and counts corrected by morphological identifications in lab (database date: 7

March 2017).

(XLSX)

S3 Data. Ixodes scapularis collected from hosts. “Best estimate” based on field identifications

and counts corrected by morphological identifications in lab (database date: 7 March 2017).

Raw data and species codes are provided, along with estimates of diversity calculated as

detailed in the Materials and methods section.

(XLSX)
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S4 Data. Tick densities on hosts in each array at each site in 2011 and 2012. Means are aver-

age numbers of ticks collected from all hosts per sample.

(XLSX)

S5 Data. Proportions of hosts in each host category and proportions of ticks collected

from hosts in each category, 2011 and 2012.

(XLSX)

S6 Data. Results of logistic regressions of proportions of ticks from each host category

with latitude. OR with 95% confidence limits for latitudinal trends in proportion from each

host category. OR, odds ratio.

(XLSX)

S7 Data. Percent similarity of proportional distribution of hosts collected in each category

with proportional distribution of ticks collected from hosts in each category at each site.

(XLSX)

S8 Data. Number of ticks per animal sampled in each host category, with numbers of host

animals used for each calculation.

(XLSX)

S9 Data. Probability of exposure to pathogen at various numbers of tick bites at several lev-

els of pathogen prevalence in ticks. Estimated total numbers of ticks per mouse over the sea-

son at each site based on data from 2011 and 2012. See Materials and methods section for

calculation methods.

(XLSX)
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