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Summary

Populations of European ash trees (Fraxinus excelsior) are being devastated by the invasive alien
fungus Hymenoscyphus fraxineus, which causes ash dieback (ADB). We sequenced whole
genomic DNA from 1250 ash trees in 31 DNA pools, each pool containing trees with the same
ADB damage status in a screening trial and from the same seed-source zone. A genome-wide
association study (GWAS) identified 3,149 single nucleotide polymorphisms (SNPs) associated
with low versus high ADB damage. Sixty-one of the 192 most significant SNPs were in, or close
to, genes with putative homologs already known to be involved in pathogen responses in other
plant species. We also used the pooled sequence data to train a genomic prediction model, cross-
validated using individual whole genome sequence data generated for 75 healthy and 75 damaged
trees from a single seed source. Using the top 20% of our genomic estimated breeding values from
200 SNPs, we could predict tree health with over 90% accuracy. We infer that ash dieback
resistance in £ excelsioris a polygenic trait that should respond well to both natural selection and
breeding, which could be accelerated using genomic prediction.
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Introduction

Results

Fraxinus excelsior (European ash), is a broad-leaved tree species widespread in Europe, with
953 ecologically associated species in the UK, and with high genetic diversity?. Its
populations are being severely reduced by the invasive alien fungus Hymenoscyphus
fraxineus, which causes ash dieback3. Several previous studies have shown that there is a
low frequency of heritable resistance to ADB in European ash populations®. Estimates of
breeding values of mother trees based on observed ADB damage in their progeny have an
approximately normal distribution, hinting that resistance is a polygenic trait® that would
respond well to selection. An associative transcriptomics study on 182 Danish ash trees
found expression levels of 20 genes associated with ADB damage scores but no genomic
SNPs2. In model organisms, crops and farm animals, analysis of genomic information has
been widely used to discover candidate genes involved in phenotypic traits, or to identify
individuals with desirable breeding values’~13. The identification of candidate loci typically
makes use of genome-wide association studies (GWAS) whereas genomic prediction (GP)
methods can be used to select individuals with high breeding values. These methods have
seldom been applied to keystone species in natural ecosystems due to the typically high
genetic variability of such species and the high cost of genome-wide genotyping. Previous
studies have demonstrated that estimation of allele frequencies by sequencing of pooled
DNA samples (pool-seq) can reduce the cost of a GWAS4, but thus far such data have not
been applied to the training of GP models. Here, we applied pool-seq GWAS and pool-seq
trained GP models to European ash populations, finding a large number of SNPs associated
with ADB damage that allow us to make accurate estimates of breeding values (Extended
Data Fig. 1).

Genome-wide association study

For 1250 ash trees we generated average genome coverage of 2.2x per tree, within DNA
pools of 30-58 trees (Supplementary Table 1). Each pool contained DNA from trees from
one of thirteen geographical seed source zones, and from trees that were either healthy or
highly damaged by ADB in a mass screening trial® (Supplementary Table 2). On average
98.3% of reads per pool mapped to the ash reference genome assembly? (Supplementary
Table 1). After filtering read alignments for quality, coverage, indels and repeats, we
calculated allele frequencies at 9,347,243 SNP loci. A correspondence analysis (CA), on the
major allele frequencies for all 31 pools showed a distribution reflecting the geographic
origin of the seed sources (Fig. 1), in which axis 1 (summarising 10% of variation) reflected
latitude and axis 2 (summarising 9% of variation) reflected longitude. Allele frequency
measures were highly correlated in technical and biological replicates (Extended Data Fig.
2). We carried out a GWAS of allele frequencies in healthy versus ADB-damaged pools
paired by seed source zone using a Cochran-Mantel-Haenszel (CMH) test. We excluded
15,739 SNPs (0.17% of the 9,347,243 SNP loci) that were found in contaminant contigs
comprising 0.50% of the reference genome (Extended Data Fig. 3). We found 3,149 SNP
loci significantly associated with ash dieback damage level with a local FDR cut-off at 1x
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10 (Supplementary Table 3, Extended Data Fig. 4). Imposing a more stringent cut-off of 1
x 10713, we found 192 significant SNP loci (Fig. 2).

Seven genes contained missense variants caused by ten of these 192 SNPs (Table 1, Fig. 3,
Supplementary Table 5). We were able to model the proteins encoded by four of these genes
(Extended Data Fig. 5). Similarity searches on these seven genes suggested that four of them
are already known to be involved in stress or pathogen responses in other plant species.
Gene FRAEX38873_v2_000003260, is putatively homologous to an Arabidopsis BED
finger-NBS-LRR-type Resistance (R) gene (At5963020)18 and is affected by a leucine/
tryptophan variant close to the protein’s nucleotide binding site (Extended Data Fig. 5a) with
the tryptophan being rarer overall, but at a higher frequency in the healthy than the damaged
trees (Supplementary Table 5). This R gene is located (see Fig. 3b) on Contig 10122 less
than 5Kb from gene FRAEX38873_v2_ 000003270, which is putatively homologous to a
Constitutive expresser of Pathogenesis-Related genes-5 (CPR5)-like protein and affected by
an isoleucine/serine variant, a 5> UTR start codon variant and 16 non-coding variants. This
CPR5-like gene is likely to regulate disease responses via salicylic acid signallingl’. Gene
FRAEX38873_v2_000164520 is a putative F-box/kelch-repeat protein SKIP6 homolog,
which encodes a subunit of the Skp, Cullin, F-box containing (SCF) complex, catalysing
ubiquitination of proteins prior to their degradation!®. One of our candidate SNPs encodes
an arginine/glutamine substitution in this gene, with the arginine being rarer overall, but at a
higher frequency in the healthy than the damaged trees. The substitution is located close to
the gene’s F-box motif (Extended Data Fig. 5b) and is likely to affect binding within the
SCF complex due to the charge difference between the two amino acids. In pine trees, F-
Box-SKP6 proteins have been linked to fungal resistancel®. Gene

FRAEX38873_v2_ 000305440, may also be involved in ubiquitination: although the CDS hit
an uncharacterised gene in olive (Table 1), the mRNA hit an E3 ubiquitin-protein ligase.
This gene contains a glycine to aspartic acid substitution.

The other three genes with missense mutations have putative homologs with functions that
have not been previously linked directly to disease resistance. Gene

FRAEX38873_v2_ 000116110 is a 60S ribosomal protein L4-1 (RPL4-1) homolog, with
four missense and nine synonymous variants associated with ADB damage level. The amino
acid positions affected are in disordered regions in close proximity to one another (Extended
Data Fig. 5d). Changes in this gene may affect the efficiency of mRNA translation?0, Gene
FRAEX38873 v2 000346660 is a Heat Intolerant 4 like protein with a phenylalanine to
leucine variant. Gene FRAEX38873_v2_ 000180950 is a homolog of Damaged DNA-
Binding 2 (DBB2), which has a role in DNA repair?! and contains a proline/leucine
substitution within its WD40 protein binding domain (Extended Data Fig. 5¢). This gene is
found on Contig 332 between two G-type lectin S-receptor-like serine/threonine-protein
kinase LECRKS3 genes (FRAEX38873_v2_000180940 and FRAEX38873_v2_000180960)
whose putative homologs are involved in brown planthopper resistance in rice?2.

A further 24 genes contain significant (p < 1 x 10"13) SNPs encoding variants that are
transcribed but not translated (Table 1) and may therefore affect expression of these genes.
Of these, four match genes that have been previously identified as involved in disease
resistance in other species. Gene FRAEX38873_v2_ 000234590 encodes a WPP domain-
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interacting protein 1-like, and WPP domains have been linked to viral resistance in potato?3.
Gene FRAEX38873_v2 000305460 encodes a PHR1-LIKE 3-like protein which may play a
role in immunity2* via the salicylic acid and jasmonic acid pathways2°. Gene
FRAEX38873 v2_ 000013250 encodes a Membrane Attack Complex and Perforin
(MACPF) domain-containing Constitutively Activated cell Death (CAD) 1-like gene, which
controls the hypersensitive response via salicylic acid dependent defence2®.
FRAEX38873_v2_000211580 is a Squalene monooxygenase-like gene involved in the
synthesis of phytosterols 27, which have a role in plant immunity?28.

Other genes involved in regulation were found to have significant (p < 1 x 10"13) non-
translated variants. FRAEX38873_v2_000266510 is a zinc finger CCCH domain-containing
protein 11-like that is likely to be involved in regulation, perhaps of resistance
mechanisms29. FRAEX38873_v2_000047060 is a short-chain dehydrogenase TIC 32,
chloroplastic-like gene that is involved in the regulation of protein import30.
FRAEX38873 v2_ 000074310 is putatively homologous to a squamosa promoter-binding
(SBP)-like protein 8 that controls stress responses in Arabidopsis3t. Two genes with non-
coding variants seem to affect phenology: gene FRAEX38873_v2_000145630 encodes a
Vernalisation Insensitive 3 (VIN3) like protein 132 and gene FRAEX38873_v2_000168770
encodes a Late Flowering-like protein. A further two intron variants were located on another
putative DNA repair gene (in addition to FRAEX38873_v2_000180950, which had a
missense variant); gene FRAEX38873_v2_ 000308800 encoding a probable DNA helicase
MiniChromosome Maintenance (MCM) 8 protein.

Six genes with putative roles in disease resistance have significant (p < 1 x 10"13) SNPs
within 5Kb up- or down-stream of them and are the closest known genes to those SNPs
(Table 1). FRAEX38873_v2_000296810 matches an ankyrin repeat-containing protein
NPR4-like gene; in Arabidopsisthe NPR4 gene is involved in defence against fungal
pathogens and in mediation of the salicylic acid and jasmonic acid/ethylene-activated
signalling pathways33, FRAEX38873_v2_000190500 is a putative ethylene-responsive
transcription factor ERF098-like gene which may be involved in regulation of disease
resistance pathways3*. Gene FRAEX38873_v2_000342260 is a palmitoyltransferase or
protein S-acyltransferases (PATSs) 8-like gene3®, which is likely to have a role in protein
trafficking and signalling; in Arabidopsis, some PATSs regulate senescence via the salicylic
acid pathway36, FRAEX38873_v2_000025560 encodes a probable xyloglucan
endotransglucosylase/hydrolase protein 27 which may play a role in extracellular defence
against pathogens37:38, FRAEX38873_v2_0000258470 encodes an F-box/FBD/LRR-repeat
protein likely to be involved in ubiquitination (see above). FRAEX38873_v2_0000340820 is
a putative dehydration-responsive element-binding protein 2C-like (DREB2C) gene which
has a role in osmotic-stress signal transduction pathways3°.

For 49 of the 192 most significant GWAS SNPs (p < 1 x 10'13), their closest gene was
between 5Kb and 100Kb distant; these were identified by SNPeff as “intergenic SNPs”
(Table S4). These included some with previous evidence of disease resistance functions.
Gene FRAEX38873_v2_ 000086110 is a Leucine-rich repeat receptor-like serine/threonine-
protein kinase p-amylase (BAM) 3, which is involved in fungal resistance in Arabidopsis“°.
Gene FRAEX38873_v2_000291580 is a bHLH162-like transcription factor whose putative
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Arabidopsis homolog is induced by infection with the downy mildew pathogen
Hyaloperonospora arabidopsidis **. Gene FRAEX38873_v2_000169770 is likely to be
involved in vacuolar protein sorting which can play a role in defence responses®2. A cluster
of SNPs on contig1355 are located at approximately 13-kb from gene

FRAEX38873_v2_ 000037990, a small ubiquitin-like modifier (SUMO) conjugating enzyme
UBC9-like gene. Inhibition of SUMO conjugation in Arabidopsis causes increased
susceptibility to fungal pathogens*3. Gene FRAEX38873_v2_000282910 is a nitrate
regulatory gene 2 (NRG2) which could mediate nitrate signalling or mobilisation#4. Gene
FRAEX38873_v2_ 000340830 is a trichome birefringence-like (TBL) 33 gene; mutants of
TBL genes in rice plants confer reduced resistance to rice blight disease*®.

Genomic prediction

We individually sequenced from the same trials 150 trees that had not been included in the
DNA pools. These 150 trees were 75 healthy and 75 unhealthy trees from seed-source NSZ
204. For them we generated a total of 2.9Tbp data in 19.5 billion reads (Dataset B). Each
individual tree was sequenced to 22X genome coverage on average. Quality metrics and GC
content were very similar to Dataset A (Supplementary Table 1). On average the percentage
of reads mapped to the reference genome assembly per sample was 98.4% and 32,443,401
SNPs were found with read depth > 9 and mapping quality > 15.

To evaluate the genomic estimated breeding values (GEBV) of ADB damage, we used the
pool-seq data as a training population and the 150 NSZ 204 individuals as a test population.
We obtained highest accuracy (correlation of observed scores and GEBV, r=0.35;
frequency of correct allocations, 7= 0.67) using the top 10,000 SNPs by p-value from the
GWAS, of which 9,620 SNPs had been successfully called in the test population (Fig. 4).
Smaller and larger SNP-dataset sizes performed less well. With a view to using a subset of
these SNP for prediction, we reran the analysis using a subsets of SNPs with the largest
(absolute) estimated effect sizes and observed a small increase in correlation (Fig. 4), finding
the best result with 25% of the dataset of 10,000 SNPs (r=0.37; = 0.67). Estimated effect
sizes for all SNPs with models trained on 100 to 50,000 SNPs are shown in Supplementary
Table 7c-j.

Using the GWAS p-values as the criterion for selecting candidate SNPs for GP was far more
effective than using a random selection from the genome, as judged by rand fscores (Fig.
4). Despite this effect, there was not a strong association between the GWAS p-values and
the effect size estimated by the genomic prediction: only 66 of the 2500 SNPs with the
largest effect size were in the top 192 SNPs identified by the GWAS.

In a relatively small population with large heritable effects, spurious associations between
some SNP alleles and a trait can arise. A sufficiently large number of randomly chosen
SNPs will convey all the information on the relatedness of the individuals which, in turn, can
be used to predict a trait simply because related individuals have similar trait values. To
evaluate this effect, the 150 NSZ 204 individuals were used for GP as both a training dataset
and a test dataset. The accuracy of the prediction with the top 50,000 GWAS-identified
SNPs was no better than a random selection of 50,000 SNPs (Extended Data Fig. 6). Given
this, we re-ran GP training on the pool-seq data with the pools from the same seed source of
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the test population (NSZ 204) excluded in case their inclusion had given spurious
associations that contributed to the success of the first GP. This more stringent cross-
validation showed a comparable performance to our previous GP trained on the full pool-seq
dataset (maximum /= 0.36, maximum /= 0.67; Extended Data Fig. 7).

For a breeding programme for increased resistance to ash dieback, accurate prediction of the
most resistant trees is needed. We therefore examined the accuracy with which our highest
GEBVs were assigning trees correctly to the undamaged health category. For the trees with
the top 20% and 30% GEBYV scores, we obtained predictive accuracies of £>0.9 and 7> 0.8
respectively, using as few as 200 predictive SNPs (Fig. 5).

Discussion

Many of the top SNP loci that we found associated with ash tree resistance to ash dieback
are in, or close to, genes with putative homologs in other species that have been previously
shown to detect pathogens, signal their presence, or regulate pathogen responses. Using
SNPs identified by the GWAS to train GP on the pool-seq data, we obtained much greater
accuracy in predicting the ADB damage score in 150 separate individuals than when we
used the same number of randomly selected SNPs. These results demonstrate we can use
genotype to predict performance across different seed-sources, and suggest that other genes
that have not previously been implicated in plant pathogen resistance may be involved in
resistance to ADB. The distribution of effect sizes and the predictivity peak using 2500
SNPs suggests that £~ excelsiorresistance to H. fraxineus is a highly polygenic trait and may
therefore respond well to artificial and natural selection, allowing the breeding or evolution
of durable increased resistance.

None of our 192 most significant GWAS SNPs were in 20 genes previously identified as
gene expression markers (GEMs) associated with ADB resistance?, but this is not
unexpected given that the previous study? did not find SNPs associated with ADB resistance
in these 20 genes either. Although none of our most significant SNPs had one of these
GEMs as their closest gene we cannot exclude the possibility that our candidate SNPs may
influence expression of these genes. In any case, the GEMs were identified based on a small
sample size of 182 trees? and may have been specific to the Danish populations they were
sampled from.

The levels of accuracy which our GP reached are high, and comparable to those that are used
to inform selections in crop#®-50, tree12:51 and livestock breeding programmes®2:3, Thus,
our results have the potential to increase the speed at which we can successfully breed ash
dieback resistant trees. A common short-coming of GP is that predictions are highly
population specificl25455 and the success of GP using randomly selected SNPs when
training GP models within the individually sequenced trees suggests that population-specific
GP can be easily made for ash. However, we made successful predictions in the individually
sequenced trees using the pool-seq trained GP even when the pool-seq data for their seed-
source was not used in training the model. This suggests we have successfully identified
widespread alleles that are involved in ADB resistance in many populations. There may well
be further population-specific alleles that our methods have not detected. Thus, we have
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used pool-seq data to train a trans-populational GP model. The success of this approach in
European ash — a genetically variable species — suggests it may be useful in many other
ecologically important species as a cost-effective approach to successful genomic prediction
of evolving traits.

This study is based on a Forest Research mass screening trial planted in spring 2013, in
areas of high natural Hymenoscyphus fraxineus inoculum pressure. The trial comprises 48
hectares of trials on 14 sites in southeast England as described in Stocks et a/. 201715,
Briefly, each site was planted in spring 2013 with two-year-old saplings grown from seed
sources from up to 15 different native seed zones (NSZ). These were 10 British NSZ (NSZ
106, NSZ 107, NSZ 109, NSZ 201, NSZ 204, NSZ 302, NSZ 303, NSZ 304, NSZ 403, NSZ
405), Germany (DEU), France (FRA), Ireland (CLARE and IRL DON), and a Breeding
Seedling Orchard (BSO) planted by Future Trees Trust (FTT) comprised of half-sibling
families from “plus” trees across Britain. Each of the sampled sites had four complete
replications. Each site was planted at the high density of 5,000 trees/ha (a spacing of 1 x 2
meters).

Phenotyping and sampling

A survey of the two trial sites with the highest levels of ADB infection (Site 16, near
Norwich, Norfolk and Site 35 near Tunbridge Wells, Kent) was carried out in 2016 and is
reported in Stocks et a/. 201715, In July/August 2017 we revisited these sites and collected
leaf samples from all trees that were healthy at the time of sampling (score 7 on the scale of
Pliura et a/.5®). For each healthy tree we sampled, we also sampled a tree with considerable
ADB damage (scores 4 or 5 on the scale of Pliura et a/56). The number of healthy trees at
these two sites were insufficient for our experimental design, so we also sampled two other
severely affected sites, 21 (near Maidstone, Kent) and 23 (near Norwich, Norfolk). In total
we examined 38,784 trees and found only 792 (1.96%) healthy trees. These trees are
unlikely to have escaped inoculation, as all had direct neighbours that were diseased and the
trees were densely planted. Initially a total of 1536 trees were sampled. Of these, after DNA
quantity and quality checks, 623 healthy and 627 damaged trees were selected for pooled
sequencing with the total number of trees for each seed source and health status described in
Table S2. For individual sequencing, we selected 75 healthy and 75 damaged trees, across
the four sampled sites, from a seed source that had a large number of healthy trees (NSZ
204).

DNA extraction and sequencing

Leaf samples were transported to the lab using cool boxes. Fresh Genomic DNA was
extracted from liquid nitrogen frozen leaf tissue using the DNeasy Plant Mini Kit or the
DNeasy 96 Plant Kit (Qiagen) and eluted in 70 ul of Qiagen AE buffer. Quantification of
genomic DNA was performed using the Quantus™ Fluorometer on all extractions. DNA
purity quality checks were carried out using the Thermo Scientific™ NanoDrop 2000 for
nucleic acid 260/280 and 260/230 absorbance ratios. Of the total number of extractions,
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1400 were selected based on DNA quantity and quality thresholds. A minimum
concentration of >20 ng/ul, 0D260/280 >1.7 and total amount >1.0 ug of DNA was
necessary for the sample to pass. Of the 1400 samples, 1250 were separated for the pooling
and sequencing procedures and will be referred to as dataset A. A separate 150 individuals
from NSZ 204, that were not included in the pools, were selected for individual genotyping
and will be referred to as dataset B.

For the pooling procedure equal amounts of DNA from each sample were pooled together
based on their initial DNA concentrations, adjusting the total volume of each sample
accordingly. Pooling was based on seed source origin and health status with two pools for
each seed source, one healthy and the other damaged. A total of 31 pools were created
(Supplementary Table 2), one being a technical replicate of the healthy trees from NSZ 204
that was made by independently repeating all quantification, quality and pooling steps on the
same 40 trees. NSZ 106 and NSZ 107 had 4 pools each as the samples were divided to
maintain an average of 42 trees per pool. These therefore provide biological replicates.
Studies have shown that pools sizes as small as 12 have provided robust and reliable
population allele frequency estimates4:57.

TruSeq DNA PCR-Free (lllumina) sequencing libraries were prepared, using 350 base pair
inserts. All sequencing was carried out using HiSeq X at Macrogen (South Korea) with 150
paired end reads with the goal of achieving a whole genome coverage (based on the
estimated genome size of the £ excelsior reference individual? of 80x per pool (2x coverage
per individual) for dataset A and 20x for dataset B.

Mapping to reference and filtering

Trimmomatic v0.38%8 was used for read trimming and adapter removal. Leading and trailing
low quality or N bases below a quality of 3 were removed. Reads were scanned with a 4-
base wide sliding window, cutting when the average quality per base dropped below 15 and
excluding reads below 36 bases long®8. Reads were then aligned to the reference genome for
Fraxinus excelsior, assembly version BATGO0.52, using the Burrows-Wheeler Alignment
Tool (BWA MEM)®9, v. 0.7.17 with default settings. The mapped reads were filtered for a
mapping quality of 20 with SAMtools v1.980. On average the percentage of reads mapped to
the reference was 98.3% for dataset A and 98.4% for dataset B. For both datasets Sequence
Alignment Map (SAM) and binary version (BAM) files were created using SAMtools.
Indels were detected and removed using PoPoolation262 scripts (identify-indel-regions.pl
and filter-sync-by-gtf.pl) that include five flanking nucleotides on both sides of an indel. The
position of repeats in the reference genome was annotated previously? using RepeatMasker
v. 4.0.5 (with option -nolow) and that information used to remove repeats from these data
using the same removal script provided by PoPoolation2.

Genetic structure of seed sources

Major allele frequency information was extracted from dataset A for each of the 31
populations using a modified output of the allele frequency differences script (snp-
frequency-diff.pl) from the PoPoolation2 package. This table of major allele frequencies was
imported and converted to a genpop object and subsequently analysed using the R package
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adegenet®2 by performing a Correspondence Analysis in order to seek a typology of
populations. Correlation between populations was calculated and plotted, for the major allele
frequencies from dataset A, using the corrplot R package3.

Genome wide association study

Dataset A was analyzed using the software package PoPoolation26 in a genome wide
association study (Extended Data Fig. 1). An mpileup input was generated using SAMtools
followed by the creation of a file that had all the variants synchronized across the pools,
requiring a base quality of at least 20. The Cochran-Mantel-Haenszel (CMH) test64 was used
to identify significant and consistent allele frequency differences between damaged and
healthy trees, with each seed source pair used as an independent measurement. The technical
replicate of NSZ 204 was not used, and the biological replicates of NSZ 106 and NSZ 107
were treated as independent measurements. Thus, a 2x2 data table was created for each SNP
locus in each pair of pools. The counts of each allele for each phenotype were treated as the
dependent variables. The parameters set for PoPoolation2 were: min count 15 (minimum
allele count to be included), min coverage 40, max coverage 3000. The “-- population”
option was used to define the pair-wise comparisons between the pools from each seed
source. False discovery rate control was performed using the R package g-value®®.

Contaminant sequences were detected using Blobtools v1.156. This used three input files:
the reference assembly fasta file (BATGO0.5), a coverage file and a hits file. The coverage file
was a mapping to BATGO.5 of paired 100bp Illumina reads with insert sizes of 200bp,
300bp and 500b that were used in the original assembly of BATGO0.52 using Bowtie 2 v.2.3.0
with the “very-sensitive” preset and setting “maxins” to 1000. The mapping was converted
to BAM format and sorted using the “view” and “sort” functions in SAMtools v.1.4.1. The
hits file was a BLAST+ output for all contigs in the £ excelsior reference assembly with the
top score results in the outfmt 6 format including fields “gseqid sseqid staxids bitscore”.
Blobtools function “create” was used to assign a taxonomy under a given taxonomic rule to
each sequence in the assembly. NCBI nodes and names files were provided to infer the
taxonomy at each rank. Of the 89,514 scaffolds and contigs in the BATG0.5 genome
assembly, 2,408 short contigs appeared to be contaminant as they showed a phylum
taxonomic rank different to Streptophyta (Extended Data Fig. 3, Supplementary Table 7a).

Putative functions for genes containing, or near, the pool-seq GWAS top 192 SNPs were
assigned by obtaining the CDSs from the Ash Genome websiteZ and using the command line
NCBI Basic Local Alignment Search Tool (BLAST+) optimized for the megablast algorithm
to search the GenBank Nucleotide database. The top result for every BLAST search was
extracted and their predicted gene functions were used to functionally annotate the ash
genes. Any search that yielded no matches when using megablast was then repeated using
the blastn algorithm and ultimately cDNA sequences if the latter was also uninformative.
Potential functional impacts for each of the top 192 GWAS SNP loci were determined using
SNPeff (v. 4.3T)87. A custom genome database was built from the £, excelsior reference
assembly using the SnpEff command “build” with option “-gtf22”; a gtf file containing the
annotation for all genes, as well as fasta files containing the genome assembly, CDS and
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protein sequences, were used as input. Annotation of the impact of the 192 SNPs was
performed by running SnpEff on all £ excelsior genes with default parameter settings.

Protein modelling

Proteins containing SNPs identified by SnpEff as coding for amino acid substitutions were
modelled. Protein coding sequences were taken from the predicted proteome of the BATG
0.5 reference genome? and modelled both with the amino acid(s) associated with ADB
damage in our GWAS, and with the amino acid(s) associated with healthy trees. Models
were predicted using three /n silico methods: RaptorX-Binding (http://raptorx.uchicago.edu/
BindingSite/), SWI1SS-MODELS8 and Phyre29 (for the full list of wwPDB proteins selected
and used as templates by Phyre see Supplementary Table 6). These models were compared
by using the align function in PyMOL v.2.079, and only those with congruent models were
taken forward, based on their Phyre2 and RaptorX-Binding models. Potential binding sites
and candidate ligands were analysed using RaptorX-Binding and literature searches. SDF
files for candidate ligands were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov)
and converted to 3d pdb files using Online SMILES Translator and Structure File Generator
(https://cactus.nci.nih.gov/translate/). Docking with our protein models was analysed using
Autodock Vina v.1.1.271 with the GUI PyRx v.0.872. Following docking, ligand binding site
coordinates were exported as SDF files from Pyrex and loaded into PyMOL with the
corresponding protein model file for the “healthy” and “damaged” protein models. Binding
sites were then annotated and the variable residues were labelled. Possible RNA and DNA
binding sites were predicted using DRONA (http://crdd.osdd.net/raghava/drona/links.php).
The presence of signal peptides were detected using SignalP 4.1 server and Phobius server
(http://phobius.sbc.su.se/index.html); both were run with default parameters and for Phobius
the “normal prediction” method was used. The presence of a signal peptide was confirmed
only if it was predicted by both methods. Motif search (https://www.genome.jp/tools/motif/)
and ScanProsite (https://prosite.expasy.org/scanprosite/) were used to predict protein
domains and their locations for our candidate genes.

Genomic Prediction

We trained a GP model based on the pool-seq data (Dataset A) excluding contaminant SNPs.
Subsets of 100, 200, 500, 1000, 5000, 10000, 25000 and 50000 SNPs with the most
significant GWAS results were selected from Dataset A and used as a training set. Results
were compared with SNP sets of the same size drawn at random from the genome. We
constructed a pipeline available at https://github.research.its.gmul.ac.uk/btx330/gppool. The
vector of ADB damage scores for each pool, y, was predicted by the rrBLUP model as: y =
XPB + e, where B is a vector of allelic effects (treated as normally distributed random
effects), and the residual variance is Var[e]. The genetic data are encoded in the design
matrix X which has a row for each pool and a column for each SNP allele. The entry for
pool pand locus /is X[p,I] = 7,/ - us, where f5/is the frequency of the focal allele and s is
its mean frequency across the pools from the same seed-source as p.

The Reduced Maximum Likelihood solution to the model was obtained using the
mixed.solve function in rrBLUP v4.673 to give estimated effect sizes (EES) for the minor
and major alleles at each SNP under consideration. Subsets of the 10 — 50,000 SNPs with
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the greatest EES were used to predict GEBV for each of the 150 individuals from NSZ 204.
For these individuals (dataset B) variant calling was performed using BCFtools with the raw
set of called SNPs filtered using VCFtools (vcfutils) - set at minimum read depth of 10 and
minimum mapping quality 15. Filtering of loci was carried out using thresholds of >95%
call rate and >5% MAF. Samples were filtered based on a >95% call rate and <1%
inbreeding coefficient. SNPs were also filtered if they deviated significantly from Hardy-
Weinberg equilibrium. GEBV was calculated as the sum of the EES and the relative
frequency of each focal allele. Predictions were repeated with seed-source NSZ 204
excluded from the training dataset to avoid spurious correlations due to population
stratification.

Test trees were assigned to high and low susceptibility groups based on their GEBV and the
accuracy of the assignment was tested using the formula: 7= correct assignments/total
assignments, with correct assignments defined as those that corresponded to the observed
phenotypes. Correlation of GEBV and phenotypic classification, 7, was calculated using the
Pearson correlation coefficient.

We also carried out genomic prediction based solely on the 150 individuals in Dataset B. A
ratio of 60/40 was used for training and testing populations and missing markers were
imputed using the function R package A.mat’# with default settings. SNPs were selected
from the GWAS output ordered by p-value. A total of 100, 500, 1000, 5000, 10000, 50000,
100000, 250000, 500000, 1000000 and 5000000 SNPs were selected from each filtered set
and used for training and testing of the GP model. The same number of SNPs were selected
at random (using R) from the fully filtered dataset and also used for training and testing the
GP model. We used the mixed.solve function in rrBLUP v4.6 and Genomic Selection in R
course scripts available at http://pbgworks.org. A total of 500 iterations were run of the
rrBLUP. For the randomly selected SNPs, the 500 iterations were repeated ten times.

Data, materials and software availability

All trimmed reads are available at the European Nucleotide Archive with primary accession
number: PRIEB31096. A guide to these is given in Supplementary Table 7b. The reference
F. excelsior genome is available for download at www.ashgenome.org and is Assembly
GCA _900149125.1 at the European Nucleotide Archive. Biological Materials from the
Forest Research Mass Screening trials are available through negotiation of a Materials
Transfer Agreement with Forest Research, Northern Research Station, Roslin, Midlothian
EH25 9SY. The gppool pipeline developed as part of the project to run GP trained on pool-
seq data can be found at https://github.research.its.gmul.ac.uk/btx330/gppool. All software
used (Trimmomatic v0.38, BWA MEM v0.7.17, SAMtools v1.9, BCFtools v1.8, VCFtools v
0.1.15, PoPoolation2, R v3.5.3, Repeatmasker v. 4.0.5, Bowtie v. 2.3.0, Blobtools v. 1.1,
SNPeff v. 4.3T, Haploview, rrBLUP v4.6, NCBI BLAST, RaptorX-Binding, SWISS-
MODEL Phyre2, SMILES, Autodock Vina v.1.1.2, PyRx v.0.8, PyMOL v.2.0, DRONA,
SignalP 4.1 server, Phobius server, and NetPhos 3.1 Server) are commercially or freely
available.

Extended Data
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Extended Data Fig. 1. Schematic overview of the study design.
Showing sampling and pooling strategies and dependencies of analyses for genome-wide
association study and genomic prediction.
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Extended Data Fig. 2. Circle plot of major allele frequency correlation values between all 31
poolsin the Pool-seq dataset.

Numbers after seed source code correspond to health status (1 - healthy or 2 - damaged by
ADB). Pool NSz204:1 (with low ADB damage) was technically replicated (NSZ204:1R)
using the same set of trees. Both pools from NSZ106 and NSZ107 were biologically
replicated for both high and low damage pools, using different sets of trees. High correlation
for both technical (NSZ204:1R) and biological replicates (NSZ 106 & 107) can be seen.
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Extended Data Fig. 3. Detection of contamination in the F. excelsior reference genome
(BATGO.5).

Blobtools plot for the showing taxonomic affiliation at the phylum rank level, distributed
according to GC content and base coverage. Contigs that were not classified as streptophyta

corresponded to 0.5% of the genome assembly and 0.24% of all mapped reads.
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Extended Data Fig. 4. Pool-seq GWAS p-value density histogram with line plots of the g-values
and local False Discovery Rate (FDR) values ver sus p-values.

The 0 estimate is also displayed.
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c, PR (5

Extended Data Fig. 5. Predicted protein structuresfor genes containing amino acid changes
associated with tree health statusunder ADB pressure.

The protein structures to the left were more common in damaged trees, and those to the right
were more common in healthy trees. Variant amino acids are coloured in magenta and
indicated with a black arrowhead. (a) Gene FRAEX38873_v2_ 000003260, a BED finger-
NBS-LRR resistance protein, where position 157 is a leucine (left) versus tryptophan (right)
variant. Two ATP molecules are shown in orange to indicate the location of nucleotide
binding sites. (b) Gene FRAEX38873_v2_000164520, a F-box/kelch-repeat, where position
13 is a glutamine (left) versus arginine (right) variant. (c) FRAEX38873_v2_000180950, a
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Protein DAMAGED DNA-BINDING, where position 99 is a proline (left) versus leucine
(right) variant. DNA molecules are shown in orange docked at the proteins’ DNA binding
sites. (d) Gene FRAEX38873 _v2_ 000116110, a 60S ribosomal protein L4-1, where position
251 is an arginine (left) versus glycine (right) variant, position 285 is a methionine (left)
versus arginine (right) variant, position 287 is an asparagine (left) versus lysine (right)
variant and position 297 is a threonine (left) versus alanine (right) variant.
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Extended Data Fig. 6. Genomic prediction results using the 150 individually genotyped samples
asboth training and testing set, showing little difference in accuracy between GWAS SNPs and
random SNPs.

(A) GWAS candidate SNPs with all data filters applied (mapping quality, indel and repeat
removal); (B) GWAS candidate SNPs only filtering by mapping quality and indel removal;
(C) random selection of SNPs using all data filters (mean and standard error shown for
N=10 runs, each of 500 iterations); (D) GP allocation accuracy calculated using data with all
filters applied. The scale on the left hand vertical axis is for correlation, and the scale on the
right hand vertical axis is for accuracy. 100 to 5 million SNPs used to train and test the
rrBLUP model.
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Extended Data Fig. 7. Genomic prediction using Pool-seq data for training and 150 NSZ 204

individuals for testing.

Dashed lines show results excluding Pool-seq data from NSZ 204 (the test seed source) from
the training dataset, whereas solid lines show results with NSZ 204 included. The left
column shows correlation of observed phenotype and GEBV and the right column shows

accuracy of phenotypic assignment from GEBV.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Summary of variation among the sequenced DNA pools using Correspondence
Analysis (CA).

Major allele frequencies were used for all 31 seed source populations (including replicate).
Numbers after seed source code correspond to health status (1 - healthy or 2 - infected by
ADB). The vertical axis represents Principal Coordinate 1, which accounts for 10% of the
variation and the horizontal axis represents Principal Coordinate 2, which accounts for 9%
of the variation.

Nat Ecol Evol. Author manuscript; available in PMC 2020 May 18.

-1.2



s1dLIosnUB JoyIny sispund DN adoin3 o

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Stocks et al. Page 25
50 A v -
40 A -
30 - . -
—
Q . .
N—’ ] 3
8 .
(@)
9
1
-.--0-,‘--‘---;.:----'--- .‘.---:..-...-....._----.....-:.;---‘-o'

2,000,000 4,000,000 6,000,000 8,000,000
SNP number

Figure 2. Manhattan plot for pool-seq genome-wide association study of tree health under
natural ash dieback inoculation.

For each SNP a -log1g(p) value is shown. The green line represents the p = 1 x 1013
threshold. Loci are ordered by position in the £ excelsior reference genome (BATGO.5).
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Figure 3. Manhattan plotsfor contigs containing geneswith missense variants associated with
tree health under natural ash dieback inoculations.

Points representing SNPs within genes are colored and those genes containing missense
SNPs are named above the plot in the same colour as the points representing SNPs within
them. The red line represents the p = 1 x 10713 threshold.
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Figure 4. Performance of genomic prediction models for health under ash dieback pressure.
For 150 individual ash trees, with models trained on pooled sequencing of 1250 trees, using

varying numbers of SNPs in training and test sets. Solid lines show results for SNPs selected
using the pool-seq GWAS; dashed lines show mean results for repeated runs (n=10) of
randomly selected SNPs, with bars indicating standard error. Left column: correlation of
genomic estimated breeding value (GEBV) with observed health status. Right column:
accuracy of health status assignment from GEBV.

Nat Ecol Evol. Author manuscript; available in PMC 2020 May 18.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Stocks et al.

Accuracy of Assignment: Top 20% of Test Trees

0.8 1

0.6 1

0.44

0.2

Page 28
1.0
[}
[0
o
= o081
3
'_
ks
2
o
[$)
g
'_
= 0.6
=
Q
£
c
=
[7]
(2]
<
ks
>
[S]
© 0.4
>3
[&]
o
<
0.24
50 100 150 200 250 0 50 100 150 200 250
Number of SNPs used to calculate GEBV Number of SNPs used to calculate GEBV
SNPs in Training Set == 1000 == 5000 == 10000 == 25000 == 50000
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