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Abstract

Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of
interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to
technical bias caused by variation in extraneous factors such as RNA quality and array hybridization conditions. If such
technical bias is correlated with the clinical variable of interest, the likelihood of identifying false positive genes is increased.
Here we describe a method to visualize an expression matrix as a projection of all genes onto a plane defined by a clinical
variable and a technical nuisance variable. The resulting plot indicates the extent to which each gene is correlated with the
clinical variable or the technical variable. We demonstrate this method by applying it to three clinical trial microarray data
sets, one of which identified genes that may have been driven by a confounding technical variable. This approach can be
used as a quality control step to identify data sets that are likely to yield false positive results.
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Introduction

Discovery of novel biomarkers is an important goal in many

areas of biomedical research. In particular, we are interested in

predictive tumor biomarkers that can aid in patient treatment

decisions by identifying the anti-cancer therapies that are most

likely to cure a given patient. One approach to biomarker

discovery is to obtain gene expression profiles of pre-treatment

tumor specimens from a cohort of patients, and to search for genes

or combinations of genes whose expression is correlated with

individual drug response.

There are at least two potential hurdles to associative, or data-

driven, approaches to biomarker discovery. First, multiple

hypothesis testing is likely to generate false positives if not

considered in the analysis; fortunately, this problem is fairly well-

understood in principle [1]. Second, the consistent measurement

of gene expression is particularly tricky in large clinical trials, due

to extraneous technical factors, such as batch effects and varying

specimen quality, that cause non-random measurement error and

lead to large sets of genes with spurious correlation to the technical

factor [2,3].

A particularly undesirable situation can arise if extraneous

technical factors are correlated, even weakly, with the clinical

outcome of interest in a particular data set. In this case, the

(potentially large number of) genes affected by the technical factor

have an increased likelihood of appearing to be correlated with

clinical outcome, and standard methods for controlling false

positives are inadequate. Here we propose a simple visualization

method to assess the impact of extraneous technical factors on false

positives in associative gene expression studies.

Methods

The input data consists of three elements: 1) An gene expression

matrix X with dimension n6m, where n is the number of probes (or

probe sets) and m is the number of specimens, and the matrix

element xij represents the normalized expression level of probe i in

specimen j. 2) An outcome vector Y of length m, where element yj

indicates the outcome (or other variable of interest) of specimen j.

In practice, Y might be coded as a binary response (e.g. 1, 0 for

resistant vs. sensitive), as coded levels (e.g. 1–5 for the Miller-Payne

score), or as a continuous variable (e.g. change in tumor volume).

3) A bias vector B of length m, where each element bj indicates the

relative influence of technical bias (or other nuisance variable) on

the data from specimen j. The vectors          , as well as each

gene vector

unity Euclidean length.

The first step is to identify a quantifiable source of technical bias

that is expected to affect gene expression measurements but is not

caused by cellular or physiological factors. Several such technical

factors affect the biological specimen, e.g. RNA yield and integrity

can be quantified by chromatography [4]. Batch identifiers may

indicate technical bias; but in the biasogram this is only

appropriate if there are exactly two batches (although .2 batches

can be analyzed using multiple biasograms; see Case Study 3).

Other factors may be available from microarray processing

software, such as a quality score or signal-to-noise ratio. In some

cases the normalization algorithm itself may be a source of bias

[5]. Several technical factors can be inferred post hoc from raw

microarray data; e.g. the level of negative control probes can

indicate changes in the noise floor, or the width of the distribution
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Y and B
xiN            , are individually scaled to have a mean of zero and 



of expression values can indicate dynamic range [3]. We do not

necessarily expect the bias metrics to be independent of each

other. Furthermore, we recognize that some of these bias metrics

are likely to reflect multiple sources of technical bias; it is difficult

to separate these effects due to normalization at various steps of

the microarray protocol.

The second step is to identify an appropriate orthogonal

projection. The gene vectors xiN, as well as the vectors Y and B, can

be interpreted as points in m-dimensional space Rm, with each

dimension corresponding to an individual experiment. The

orthogonal projection matrix P is chosen such that all points in

Rm are projected into a two-dimensional subspace S of Rm that

includes Y and B. Thus, the projection ‘‘flattens’’ the genes onto

the most interesting plane – the one containing the two variables of

interest, Y and B. Conveniently, this projection of the data has an

intuitive geometric interpretation: Y and B define the axes in a

skew coordinate system, where the cosine of the angle between the

axes is equal to the Pearson correlation coefficient (PCC) between

Y and B. Furthermore, the position of a gene vector xiN along these

axes indicates the PCC between each gene and Y or B (Fig. 1).

In practice, we calculate P by applying singular value

decomposition (SVD) to a 26m input matrix created by joining

the scaled Y and B vectors. The resulting V* matrix (whose

columns contain the right singular vectors of the 26m input

matrix) is a projection matrix that meets our criteria by bringing Y

and B entirely into two dimensions. However PY and PB both

have components in each of the two dimensions; in order to

provide a more intuitive reference point, we give P an additional

‘‘rotation’’such that PB falls entirely in the second dimension (i.e.

PB aligns with the positive vertical axis), and PY has a positive

value in the first dimension (defining the skew, but generally more

horizontal, axis) and is being ‘‘rotated’’ accordingly so that the

angle between PB and PY is kept constant.

The ‘‘biasogram’’ plot contains the following elements, each of

which are projected into the plane using P: 1) The B vector drawn

as a line from the origin, which by definition points directly along

the positive vertical axis with unit length. 2) The Y vector drawn as

a line from the origin, which by definition has unit length. In the

infinitesimally likely case Y and B are completely uncorrelated, Y

would point along the horizontal axis. 3) The individual genes xiN,

which could be displayed as points for small n, or more typically

displayed as a color-coded bivariate histogram in order to reveal

the overall distribution. Finally, in lieu of skewed gridlines, we add

circles centered at the origin so that the magnitude of the

correlation can be estimated. Examples of the plot are presented in

the figures and are discussed below.

This plot reveals several aspects of the data: First, by the angle

between Y and B, we can quickly see whether the technical bias is

correlated with outcome. If the angle is close to orthogonal, the

bias is uncorrelated with outcome and is unlikely to increase the

false positive rate. Second, from the shape of the gene cloud, we

can see how strongly the genes as a group are correlated with bias

and with outcome. If a substantial number of genes fall along the B

vector, we might interpret this to indicate that the technical bias is

likely to be influencing the results. Finally, from shape of the cloud

around the Y vector we can estimate how many (if any) genes are

correlated with outcome without falling into the bias cloud.

Because the B vector points straight up, the eye can easily

distinguish breaking of the left-right symmetry that would suggest

that some genes may have higher-than-random correlation with

outcome.

R functions to generate the biasogram plot are provided in the

‘‘Biasogram’’ package, available from our website at http://cbs.

dtu.dk/biotools/biasogram/. The R code used to generate the

figures in the case studies is available as Supporting Document S1.

Results

Case study 1: Docetaxel response in breast cancer
In a study published in 2003, pre-treatment biopsies were

collected from 26 patients with locally advanced breast cancer,

who were subsequently given neoadjuvant docetaxel [6]. Based on

fraction of residual disease after treatment, 11 of these patients

were defined as sensitive and 13 as resistant. Specimens were gene

expression profiled on Affymetrix HG-U95Av2 microarrays, and

variance filtering and t tests were used to identify 92 potentially

discriminatory genes [6].

We noticed a moderate correlation between docetaxel resistance

category and the fraction of ‘‘present’’ calls (FPC) in the associated

array (Fig. 2A). We have previously observed in many Affymetrix

data sets that the FPC tends to be more correlated with individual

gene expression levels than expected by chance, and that this

correlation is expression level-dependent, suggesting that the FPC

reflects a source of technical bias ([3]and data not shown).

Therefore, we considered the possibility that some or all of the 92

genes may have been identified in this study as a result of

confounding with technical bias, rather than a genuine biological

association with drug sensitivity.

To assess the potential for confounding bias, we obtained the

original dChip-normalized expression values from GEO. We

defined the bias vector B as the FPC for each patient, and the

outcome vector Y with yj elements as 1 or 0 if patient j was sensitive

or resistant, respectively. We used B and Y to define a projection

matrix and generated a biasogram (Fig. 2B). From the biasogram

we first see that the B and Y vectors form a fairly acute angle,

Figure 1. Interpretation of the ‘‘biasogram’’. The biasogram is an
orthogonal projection of a gene expression matrix onto a plane defined
by previously defined vectors quantifying an outcome Y and bias B for
each patient. Each point represents a gene, or probe set. Y and B define
axes for a skew coordinate system in which the position of each point
indicates its Pearson correlation coefficient with Y and B, respectively.
The angle between Y and B represents the correlation between Y and B.
For the sake of explanation, only a single gene is represented in this
figure. In general, a biasogram for many thousands of genes can be
represented by a heatmap rather than by individual points. PCC,
Pearson correlation coefficient.
doi:10.1371/journal.pone.0061872.g001

Biasogram: Visualization of Confounding Bias
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reflecting their moderate correlation. Furthermore, it is apparent

that the genes generally lie along the B vector rather than the Y

vector, suggesting (but not proving) that the overall gene

expression profile is more influenced by technical bias than by

the clinical response of interest. Finally, by inspecting the 92

discriminating genes indicated in green, we see that many of these

genes are more correlated with bias than with outcome, suggesting

that their identification may have been spurious. Indeed, only one

of these genes, CYBA, was successfully validated in an indepen-

dent cohort of 72 patients [7]. However, with an uncorrected P-

value of 0.035 in the validation cohort, we consider it likely that

even CYBA is not generally associated with docetaxel response,

and that all of the 92 genes were originally identified only due to

confounding with technical bias.

Because the authors of the original study filtered out genes with

low expression or low variance before identifying discriminatory

genes, we applied a similar filter and generated a second

biasogram (Fig. 2C). We found that the shape of the data cloud

was fairly similar, indicating that variance filtering did not suffice

to eliminate the biased probes.

Case study 2: T/FAC response in breast cancer
Our second example comes from a clinical trial in which 133

breast cancer patients were given neoadjuvant paclitaxel, fluoro-

uracil, doxorubicin, and cyclophosphamide (T/FAC) chemother-

apy [8]. The authors applied diagonal linear discriminant analysis

(DLDA) to a training subset of 82 patients to identify a 30-gene

predictor of pathological complete response (pCR) to T/FAC.

We obtained dChip-normalized expression values from the

authors’ webpage (http://bioinformatics.mdanderson.org/

pubdata.html) and plotted a biasogram, using pCR as the

outcome vector Y and FPC as the bias vector B (Fig. 3A) for

the entire 133-patient cohort. As in the first case study, we

observed many probes correlated with the bias vector B,

confirming that technical bias has a major impact on this gene

expression data set. However, in contrast to the first case study, the

B vector lies nearly orthogonal to the outcome vector Y, suggesting

that this type of bias is unlikely to be a confounding factor. Thus, it

is not surprising that the authors’ 30 genes tend to fall along the Y

vector rather than B vector – and this suggests that the 30 genes

are indeed ‘‘driven’’ by their association with clinical outcome and

not by technical bias. Consistent with this hypothesis, the

DLDA30 signature was confirmed in the testing cohort in the

original study, as well as in an independent cohort [9].

Given that several of the DLDA30 genes show higher

correlation with the bias vector than with the outcome vector,

we hypothesized that it might be possible to improve the predictor

by eliminating biased genes. Starting with the genes with highest

absolute correlation with bias in the training cohort, we removed

one gene at a time from the DLDA30 signature. For each resulting

subset of the original 30 genes, we derived a new DLDA classifier

and tested its performance in the independent testing cohort

(Fig. 3C). We observed a small improvement in prediction

performance, with the AUC increasing from 0.72 to a maximum

of 0.76 when seven genes were removed, which was not a

statistically significant improvement (P = 0.18). We explored this

aspect further, using the independent validation dataset to plot a

biasogram with the DLDA30 signature probes (Fig. 3B). We found

that the two probes resulting in the greatest increase in DLDA

signature performance, ‘‘214124_x_at’’ and ‘‘219741_x_at’’, were

correlated with the bias vector B in the training as well in the

validation set. However, as expected, correlation with the outcome

vector Y was high only in the training set.

Case study 3: Platinum-based chemotherapy response in
ovarian cancer

In a controversial study published in 2007, gene expression

profiles from 83 advanced stage serous ovarian tumors were used

to derive a predictor of response to platinum-based chemotherapy

[10]. A correspondence published shortly afterwards pointed out

several critical flaws [2]. The flaws were initially denied, but the

article was ultimately retracted in 2012. One of the flaws described

in the correspondence is that response and survival are confound-

ed with clearly separated batches based on run date. However, the

Figure 2. Case study 1: 26 breast tumors treated with neoadjuvant docetaxel. A) Tumor response is correlated with the fraction of present
calls. B) Biasogram with a heatmap representing all 12,625 probe sets, and the 92 putatively discriminatory genes indicated in green. C) Biasogram
displaying only the 1191 probe sets with variance above 2. In the biasograms, Y indicates the outcome vector (tumor response), B indicates the bias
vector (fraction of present calls), the colorgram indicates a bivariate histogram of expression values, and the green circles indicate probe sets
identified in the original study. The arrow indicates CYBA, the only gene that was validated in a second patient cohort.
doi:10.1371/journal.pone.0061872.g002

Biasogram: Visualization of Confounding Bias
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effect of this confounding on the resulting predictor was never

established.

We obtained RMA-normalized data and clinical covariates

deposited by authors from the website http://bioinformatics.

mdanderson.org/Supplements/ReproRsch-Ovary/and confirmed

confounding between clinical response and run date, with lowest

P-values for the first two run dates, 2002-09-20 and 2002-10-23,

confirming the published observations [2] (not shown). A single

biasogram cannot represent a categorical bias vector with more

than two levels, as is the case here. Therefore, we created

biasograms in which the bias vector was an indicator variable (1 if

scanned on the given date; 0 if not) for each of the two dates

(Fig. 4). As expected, the Y and B vectors were visibly skewed in

both. On the first run date, the bias vector seemed to have a

relatively large correlation with a large number of probe sets

(Fig. 4A), but this did not seem to be the case on the second run

date (Fig. 4B). Therefore, we can conclude that the run date is

indeed a potential confounding factor.

We then attempted to assess whether the selection of predictor

genes was driven by confounding technical bias, as we did in Case

Study 1. However, when we tried to indicate the original

Dressmann signature probe sets, we found that they were located

apparently randomly on the biasograms, with no apparent

preference along either Y or B vector (not shown for clarity).

Indeed, this confirms a separate flaw that was pointed out by

Baggerly et al.–the lack of association between the published probe

sets and clinical response. This somewhat unusual situation in

which the genes in the predictor are not associated with response,

most likely due to human error, prevented us from determining

whether the selection of genes was driven by confounding

technical bias..

Discussion

We have described the biasogram, a method to visualize the

possibly confounding relationship between a variable of interest

(here, clinical outcome) and a nuisance variable (here, technical

bias) on massively parallel measurements (here, gene expression

profiles). The resulting plot provides a fairly intuitive overview of a

large multivariate data set in which the focus is placed on how

each measurement (gene) is correlated with the two variables.

The primary intended use of this method is to flag problematic

data sets in which technical bias ‘‘drives’’ results which would

otherwise be indistinguishable from genuine biological associa-

tions. We have designed and described this method in the context

of gene expression microarray studies, but it this approach is

potentially relevant to other matrix-type data, such as that

resulting from CGH arrays, RNA-seq, etc.

In principle, this method could also be used to refine existing

gene signatures by eliminating genes correlated with technical

bias. We tested this idea in our Case Study 2, and observed a small

improvement in predictor performance on the independent

cohort. However, this improvement was not statistically signifi-

cant. Without additional evidence from similarly paired data sets,

we cannot give a strong recommendation for this approach.

We feel obliged to point out that correlation does not

demonstrate causation: just because a gene is correlated with a

technical bias does not mean that it cannot be genuinely associated

with clinical outcome. However, given the large number of

questionable gene expression signatures described in the literature

[11], we hope that our method can help identify data sets and

results that have an increased likelihood of being misleading.

One noticeable feature of the biasogram is data reduction by

projecting the data matrix onto a plane; this approach is often

applied in principal component analysis (PCA) and related

methods for factorizing matrix data into biologically relevant

components [12,13]. Furthermore, with the addition of arrows,

the biasogram is visually similar to the ‘‘biplot’’ commonly used in

PCA [14]. The biplot is a method for plotting both rows and

columns of a data matrix, as points and arrows respectively, using

a projection defined by PCA. In contrast, the biasogram indicates

the rows of the data matrix as points (or as a heatmap as shown

Figure 3. Case study 2: Breast tumors treated with neoadjuvant paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide. A)
Biasogram representing the training cohort of 133 tumors. B) Biasogram representing the independent validation cohort of 100 tumors. In both
biasograms, Y indicates the outcome vector (tumor response), B indicates the bias vector (fraction of present calls), and the colorgram indicates a
bivariate histogram of 22,283 expression values. The green open or filled circles indicate probe sets in the DLDA30 signature, with the filled circles
indicating probes that, when omitted, improved the predictor’s performance. C) Chart indicating area under the curve (AUC) in the validation cohort
for predictors derived with the indicated number of bias-correlated probe sets omitted.
doi:10.1371/journal.pone.0061872.g003

Biasogram: Visualization of Confounding Bias
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here), and external variables as arrows, and the projection is

defined by the external variables.

The biasogram in its current form has some limitations. First, it

is necessary to identify a likely source of technical bias and define

an appropriate bias vector; this may be readily apparent in some

measurement systems but elusive in others. Another possible

limitation is that this method is based on the assumption of linear

relationships between gene expression, outcome, and bias. In

reality, none of these relationships are likely to be entirely linear in

nature; thus nonlinear methods for data filtering and visualization

may be more sensitive to some relationships [15,16].

Supporting Information

Document S1 A ‘‘Sweave’’ PDF file documenting the R
code used to generate the figures.
(PDF)
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