
1. Introduction
Sub-Saharan Africa remains the world's region with the greatest malaria burden despite massive efforts over the 
past decades to lower or eliminate malaria (WHO, 2020). Though poor health care systems and low socio-economic 
status (Degarege et al., 2019; Yadav et al., 2014) are contributing factors, the climate suitability of the region for 
malaria transmission has a major influence (Caminade et al., 2014). Generally, climate variables such as temper-
ature, rainfall and relative humidity are known to have a significant influence on the development and survival of 
both the malaria parasites and their vectors. Malaria parasite development is not possible at temperatures below 
16°C and temperatures above 40°C have adverse effects on mosquito population turnover (Blanford et al., 2013; 
Mordecai et al., 2013; Parham & Michael, 2010; Shapiro et al., 2017). Rainfall provides the environment for 

Abstract A new database of the Entomological Inoculation Rate (EIR) was used to directly link the risk of 
infectious mosquito bites to climate in Sub-Saharan Africa. Applying a statistical mixed model framework to 
high-quality monthly EIR measurements collected from field campaigns in Sub-Saharan Africa, we analyzed 
the impact of rainfall and temperature seasonality on EIR seasonality and determined important climate 
drivers of malaria seasonality across varied climate settings in the region. We observed that seasonal malaria 
transmission was within a temperature window of 15°C–40°C and was sustained if average temperature 
was well above 15°C or below 40°C. Monthly maximum rainfall for seasonal malaria transmission did not 
exceed 600 in west Central Africa, and 400 mm in the Sahel, Guinea Savannah, and East Africa. Based on a 
multi-regression model approach, rainfall and temperature seasonality were found to be significantly associated 
with malaria seasonality in all parts of Sub-Saharan Africa except in west Central Africa. Topography was 
found to have significant influence on which climate variable is an important determinant of malaria seasonality 
in East Africa. Seasonal malaria transmission onset lags behind rainfall only at markedly seasonal rainfall areas 
such as Sahel and East Africa; elsewhere, malaria transmission is year-round. High-quality EIR measurements 
can usefully supplement established metrics for seasonal malaria. The study's outcome is important for the 
improvement and validation of weather-driven dynamical mathematical malaria models that directly simulate 
EIR. Our results can contribute to the development of fit-for-purpose weather-driven malaria models to support 
health decision-making in the fight to control or eliminate malaria in Sub-Saharan Africa.

Plain Language Summary In this study, we provide evidence of the direct link between climate 
variables and the risk of humans to infectious mosquito bites. The study informs our understanding of the 
connection between climate variables and both the malaria vector and parasite biology and how that translates 
into malaria seasonality in Sub-Saharan Africa. Information from this study is key for the improvement and 
validation of weather-driven dynamical malaria models that directly simulates metrics that connects climate to 
malaria transmission. Our findings provide an understanding of geographical heterogeneous malaria risk from 
climate effect and support future malaria modeling and forecasting efforts. The study also supplements previous 
works describing clinical patterns of malaria infection and morbidity. Taking into account the seasonality of 
malaria management, findings in this study could lead to significant public health advantages by assisting 
in determining when, where, and how to use vector and parasite control strategies. It can, therefore, help 
stakeholders establish a robust framework for monitoring, forecasting and control of malaria.
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significant drivers of malaria 
seasonality in all parts of Sub-Saharan 
Africa except in west Central Africa

•  Malaria transmission onset lags 
behind rainfall only at markedly 
seasonal rainfall areas, otherwise, 
malaria transmission is year-round
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vector breeding (Ermert et al., 2011; Kar et al., 2014; Tompkins & Ermert, 2013) and relative humidity of at least 
60% appears necessary for vector survival (Thompson et al., 2005). Rainfall, therefore, affects the availability, 
persistence and dimensions of Anopheles vectors and their larval habitats (Afrane et al., 2012; Asare, Tompkins, 
Amekudzi, & Ermert, 2016; Boyce et al., 2016; Fournet et al., 2010). Previous work studying the relationship 
between sporozoite development and the survival of infectious mosquitoes found optimal temperatures for effi-
cient malaria transmission between 25°C and 27°C (Bayoh, 2001; Lunde, Bayoh, & Lindtjørn, 2013; Lunde, 
Korecha, et  al.,  2013). In Sub-Saharan Africa, most countries have annual mean temperatures between 20°C 
and 28°C (Lunde, Bayoh, & Lindtjørn, 2013). Given Sub-Saharan Africa's warm tropical climate, a plethora of 
efficient and effective malaria parasite and vectors thrive in this setting (Murray et al., 2012; Sinka et al., 2010). 
Understanding the relative importance of climate drivers of malaria seasonality is crucial for describing the 
geographic patterns of the heterogeneous risk and burden of malaria across the sub-region (Gething et al., 2011; 
Reiner et al., 2015). This could translate to substantial public health gains, taking into account the seasonality in 
malaria control and prevention interventions, by helping to determine when, where and how to apply vector and 
parasite control measures.

To our knowledge, there are insufficient field studies using Entomological Inoculation Rate (EIR, defined as the 
number of infectious mosquito bites a person receives per time) data to relate climate to malaria seasonality in 
Sub-Saharan Africa. M. L. H. Mabaso et al. (2007) assessed the relationship between EIR seasonality and envi-
ronmental variables in Africa using a rainfall seasonality index (Markham, 1970). However, this index used in 
their study has an inherent problem in that it is unable to accurately capture seasonality in regions with bimodal 
rainfall regimes. Furthermore, their study did not take into consideration the impact of diverse climatic conditions 
on seasonality outcomes but aggregated data from sites of different climate and environmental settings into a 
single study, which has the potential to skew the results. Other research has examined the link between malaria 
and climate variables but primarily relied on clinical data or malaria suitability indices (Komen et al., 2015; 
Lowe et al., 2013; Midekisa et al., 2015). Both malaria indices and case data have drawbacks to studying malaria 
seasonality.

Malaria indices are derived using statistical relationships between weather and malaria measures and their 
out-of-sample generalization over space and time for seasonality studies is subject to significant uncertain-
ties. Clinical case data are also subject to significant uncertainties due to inaccurate diagnostics (often counts 
of suspected cases, with temporal inconsistency in the use of Rapid Diagnostic Test [RDT] or slide analysis) 
and under-counting due to varying health-seeking behavior and health policies (Afrane et  al.,  2012). Given 
that the biology of the malaria parasite and its vector mosquito are temperature and rainfall dependent (Ermert 
et al., 2011), and that EIR can directly quantify parasite-infected mosquitoes and their propensity to transmit the 
parasites to humans (MARA, 1998; Shaukat et al., 2010) or estimate the seasonality of the exposure of a popu-
lation to malaria parasite inoculations (Beier et al., 1999; Takken & Lindsay, 2003), then EIR should be able to 
usefully relate climate to malaria seasonality better than malaria cases.

In this study, we investigated the impact of climate variables on EIR seasonality in diverse climate settings 
across Sub-Saharan Africa with the goal of identifying significant climate determinants of malaria seasonality, 
their relative importance and variability across the region. To our knowledge, this is the first study to use EIRm 
to explore the impact of climatic variables on malaria seasonality in Sub-Saharan Africa on this wider scale. 
We applied a mixed model statistical framework to a high-quality malaria EIR data (Yamba et al., 2018, 2020) 
gathered from publicly available field campaigns of sufficient duration and determined the climate effect that 
explained significant variations in EIR seasonality. Our findings are intended to provide an understanding of 
geographically heterogeneous malaria risk from climate effect and support future malaria modeling and fore-
casting efforts. It will contribute to the development of malaria models especially weather-driven dynamical 
malaria models fit-for-purpose to support health decision-making in the fight to control or eliminate malaria in 
Sub-Saharan Africa.

2. Data and Methods
2.1. Study Area

The study area includes locations in Sub-Saharan Africa (as shown in Figure 1), where mosquitoes have previ-
ously been collected for malariometrics such as Human Biting Rate, CircumSporozoite Protein Rates, and EIR. 
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The geographical coordinates and elevation of each location are detailed in Tables S1–S4 in Supporting Informa-
tion S1. The study locations are grouped into four distinct climate zones namely Sahel, Guinea, WCA, and EA 
(see Figure 1). Each zone has unique climate conditions from others (see Figure S1 in Supporting Information S1) 
and therefore has different climate implications on malaria seasonality (Yamba, 2016). The division into zones 
is, therefore, to ensure that malaria transmission patterns are consistent across geographical areas with similar 
climate characteristics. The seasonal distribution of rainfall and temperature for each zone is shown in Figure 
S1 in Supporting Information S1. In the Sahel, rainfall is markedly seasonal, with a single wet season (usually 
June–October) and a protracted dry season (November–May). Seasonal temperature ranges between a minimum 
value of 20°C during the harmattan season and to a maximum of about 40°C during the pre-monsoon season. In 
general, temperatures are higher in the Sahel and colder in EA due to the fact that most areas are characterized 
by higher altitudes.

2.2. Data

2.2.1. Monthly EIR Data

Monthly malaria EIR data (hereafter referred to as EIRm) were obtained from a newly compiled and published 
monthly malaria EIR database (Yamba et al., 2018, 2020) for each study location shown in Figure 1. The years 
and months for which the EIRm data were available for each study location is shown in Table S1–S4 in Supporting 
Information S1. Generally, most locations had 12 months of data while other locations had data varying between 
24 and 36 months. The data also spanned the period 1983–2013 for all locations. The temporal duration of the 
data is mostly limited to 1 year because sampling mosquitoes for EIR is extremely capital and labor intensive 
(Badu et al., 2013; Kilama et al., 2014; Tusting et al., 2014). The EIR database from which data were extracted 
for use in this work is a comprehensive one. It was constructed through an all-inclusive literature review using 
Google scholar and PubMed search facilities. All data in that database was generated from publicly available field 
campaigns of adequate duration and is freely available for public usage in the PANGAEA repository (Yamba 
et  al.,  2018). Details of how this database was constructed including compilation, sources, recording, spatial 
coverage, and temporal resolutions are clearly described in Yamba et al. (2020).

2.2.2. Meteorological Data

Monthly rainfall (RR) and temperature (minimum (Tmin), mean (Tmean), and maximum (Tmax)) data for each study 
location were gathered. Rainfall data were obtained from the Global Precipitation Climatology Centre (GPCC) 

Figure 1. The map of the Sub-Saharan Africa showing field survey sites for Entomological Inoculation Rate (EIR). The 
color gradient of each site show the maximum EIR available. The blue lines delineate the region into climate zones of Sahel, 
Guinea, WCA and EA.
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product, version 2018 (Schneider et al., 2018). The GPCC data are a gridded gauge-analysis product and available 
globally from 1891 to 2016 at a spatial resolution of 0.25°. GPCC was chosen because it is a rain gauge-analysis 
product built from quality-controlled rainfall data from ground-based weather stations. Previous validation stud-
ies (Atiah et al., 2020; Manzanas et al., 2014) have also found it to be reliable and consistent with ground-based 
weather observations. The temperature data were obtained from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) Re-Analysis, 5th generation (ERA5) (Hersbach et  al.,  2020). ERA5 is also a gridded 
re-analysis product and available globally on an hourly time scale from 1979 to present at a high spatial resolution 
of 0.25° by 0.25°. ERA5 was chosen because previous evaluation studies of the product (Gleixner et al., 2020; 
Oses et al., 2020; Tarek et al., 2020) have widely recommended it for meteorological research. RR, Tmin, and Tmax 
were extracted from the respective database for each study location using the nearest grid point of the location's 
geographical coordinates. Tmean values were estimated by averaging the Tmin and Tmax values for the location. 
The extracted temperature and rainfall data had to also conform with the exact years and months at which EIRm 
data were available for each location. The study relied on GPCC and ERA5 because ground-based local weather 
stations from which these data could be gathered were mostly not available at the EIR sites or, if present, often 
have sparse data.

2.3. Data Analysis

The analysis was conducted for each classified zone as shown in Figure 1. EIR data from locations characterized 
by the presence of permanent water bodies and/or irrigation activities were exempted. Irrigation and permanent 
water bodies (such as damps, rivers, streams, swamps etc.) have a significant influence on the intensity and 
length of seasonal malaria transmission (Asare & Amekudzi, 2017; Asare, Tompkins, & Bomblies, 2016; Ermert 
et al., 2011; Tompkins & Ermert, 2013). Their exclusion was, therefore, a means to dissociate the influence of 
these hydrological parameters on malaria seasonality and reducing the impact to climate factors alone.

2.3.1. Pair-Wise Comparison

The study examined the ranges of RR, Tmin, Tmean, and Tmax at which EIRm occurred using a simple pair-wise 
comparison approach. This was done by first aggregating the EIRm data from all locations within each zone into 
a single time series of 12 months irrespective of the year of availability. Similarly, the corresponding RR, Tmin, 
Tmean, and Tmax data were also aggregated. The aggregated monthly timeseries of RR, Tmin, Tmean, Tmax, and EIRm 
were then matched head-to-head as shown in Figure 2. The ranges of RR, Tmin, Tmean, and Tmax at which EIR 
occurred were then determined for each zone.

2.3.2. Relative Importance of Climate Predictors

The relative importance of RR, Tmin, Tmean, and Tmax in predicting EIRm for each climate zone was analyzed using 
a multiple regression model of the form:

𝐸𝐸𝐸𝐸𝐸𝐸m ∼ 𝐸𝐸𝐸𝐸 + 𝑇𝑇max + 𝑇𝑇min + 𝑇𝑇mean (1)

where EIRm is the response variable and RR, Tmin, Tmean, and Tmax are the predictors. The contribution of each 
predictor to EIRm outcome was then quantified (see Tables 1 and 2). Each regressor's contribution was considered 
as the R 2 from univariate regression, and all univariate R 2 values add up to the full model R 2 (Grömping, 2007). 
The R package “relaimpo” (Grömping, 2007) was utilized for the calculation of the contribution of the regressors 
in the model. It implements six different metrics for assessing relative importance of regressors namely: first, last, 
pratt, betasg, lmg, and pmvd. Among these, lmg and pmvd are computer intensive and have an advantage over 
others in the sense that they decompose R 2 into non-negative contributions that automatically sum to the total R 2 
(Grömping, 2007). In this study, lmg was invoked since pmvd is patent protected. The lmg calculates the relative 
contribution of each predictor to the R 2 with the consideration of the sequence of predictors appearing in the 
model. It intuitively decomposes the total R 2 by adding the predictors to the regression model sequentially. Then, 
the increased R 2 is considered as the contribution by the predictor just added. The following are mathematical 
descriptions of lmg metric referenced from Grömping (2007):

For a model with regressors in set S, the R 2 is given as:

𝑅𝑅
2(𝑆𝑆) =

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆(𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑚𝑚𝑚𝑚𝑀𝑀𝑚𝑚𝑚𝑚𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆)

𝑇𝑇 𝑀𝑀𝑚𝑚𝑇𝑇𝑀𝑀𝑆𝑆𝑆𝑆
 (2)
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To add regressors in set M to a model with the regressors in set S, the additional R 2 is given as:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
(𝑀𝑀|𝑆𝑆) = 𝑠𝑠

2
(𝑀𝑀𝑀𝑀𝑆𝑆) −𝑠𝑠

2
(𝑆𝑆) (3)

where the order of the regressors is a permutation of the available regressors x1, …., xp denoted by the tuple of 
indices r = (r1, …., rp). Let Sk(r) denote the set of regressors entered into the model before regressor xk in the order 
r. Then the portion of R 2 allocated to regressor xk in the order r can be written as:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
({𝑥𝑥k}|𝑆𝑆k(𝑟𝑟)) = 𝑠𝑠

2
({𝑥𝑥k}𝑈𝑈𝑆𝑆k(𝑟𝑟)) −𝑠𝑠

2
(𝑆𝑆k(𝑟𝑟)) (4)

With Equation 4, the metric lmg (in formulas denoted as LMG) can be written as:

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥k) =
1

𝑃𝑃 !

∑

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠
2({𝑥𝑥k}|𝑟𝑟) (5)

Orders with the same Sk(r) = S can be summarized into one summand, which simplifies the formula into:

𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥k) =
1

𝑝𝑝!

∑

𝑆𝑆𝑆{𝑥𝑥1 ,. . . .,𝑥𝑥p}∖{𝑥𝑥k}

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
({𝑥𝑥k}|𝑆𝑆) (6)

The analysis also assessed the relative importance of each regressor (in Equation 1) by looking at what each 
regressor alone can explain (i.e., comparing the R 2 value of regression model with one regressor only without 
considering the dependence of others as is the case of the metric lmg). The metric first in the “relaimpo” package 
was invoked for this purpose because, unlike lmg, it is completely ignorant of the other regressors in the model 

Figure 2. A pair-wise comparison showing the ranges of RR, Tmin, Tmean, and Tmax at which EIRm occurs. The colored circles 
show log-transformed EIRm values.
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and so no adjustment takes place (Grömping,  2007). Since first does not 
decompose R 2 into contributions like lmg), the contribution of the individual 
regressors alone does not naturally add up to the overall R 2. The sum of these 
individual contributions is often far higher than the overall R 2 of the model 
with all regressors together.

Whether lmg or first, each metric's outcome was bootstrapped to ensure that 
the relative importance of each regressor was clearly defined (i.e., those 
different and those that are similar in terms of relative importance). Boot-
strapping in “relaimpo” was done using the function boot in the package. 
Prior to calculating the lmg and first metrics, all data series (i.e., EIRm, RR, 
Tmin, Tmean, and Tmax timeseries) were log-transformed. The essence of the log 
transformation was to decrease the variabilities in the data pairs and make 
them conform more closely to a normal distribution with similar variance 
and standard deviation (Curran-Everett, 2018).

2.3.3. EIR Lag Behind Rainfall

Seasonal malaria transmission onset lags behind rainfall season onset because 
of the time taken for mosquito breeding and vector population growth after 
rainfall season onset (Asare & Amekudzi, 2017; Badu et al., 2013; Tompkins 
& Ermert, 2013). This lag time as influenced by climate and whether it varies 
from one climate zone to another is not known. In this analysis, we quanti-
fied this lag time for each climate zone using a cross-correlation statistics 
performed between RR and EIRm data pairs. In this statistic, RR was treated 
as the predictor variable and the corresponding EIRm as the response varia-
ble. The pairs were then cross-correlated at lags of −5 to 0 months and the 
correlation co-efficient at each lag was calculated. The lag with the strong-
est positive correlation coefficients was identified as the optimum period of 
delay between rainfall onset and the EIR season for the zone.

3. Results
3.1. Pair-Wise Comparison

Figure 2 shows the EIRm response ranges of pairs of rainfall (RR) and temper-
ature (Tmin, Tmean, and Tmax). In the Sahel, maximum rainfall (RR) ranges were 

about 400 mm per month. Temperature ranges generally varied between 20°C–40°C in this zone. Tmax ranges 
were clustered between 25°C–40°C, Tmin within 20°C–30°C, and Tmean observed within 25°C–35°C. In Guinea, 
RR ranges were also centered around 400 mm per month. Temperature response ranges were mostly observed 
within 25°C–35°C for Tmax, 20°C–25°C for Tmin, and 24°C–30°C for Tmean. In WCA, maximum RR ranges were 
centered at about 600 mm per month, which is higher compared to ranges observed in the Sahel, Guinea and 
EA. Temperature response ranges in this zone were slightly lower than observed in the Sahel and Guinea. These 
include 24°C–32°C for Tmax, 20°C–25°C for Tmin, and 22°C–27°C for Tmean. The EA maximum RR ranges were 
also about 400 mm. Temperature ranges of 20°C–30°C for Tmax, 15°C–27°C for Tmin, and 18°C–29°C for Tmean 
were observed.

3.2. Relative Importance of Climate Predictors

In Tables 1 and 2, the relative importance of climate variables in predicting EIRm is presented for locations with 
elevations ≤500 m and >1,000 m respectively. The predictors with p-value ≤ 0.05 were considered significant 
and interpreted that the respective climate variable significantly predicted the EIR seasonality in that zone. At 
lower elevations (≤500  m) in Sahel, rainfall and temperature were all significant drivers of EIR seasonality 
cumulatively contributing about 30.72% of the variations in EIR seasonality. At these lower elevation areas, 
important predictors of EIRm seasonality were RR and Tmax. At higher elevations (>1,000 m), rainfall and temper-
ature are together responsible for about 40% of the variations in EIRm with insignificant contribution from Tmin. 

Table 1 
The Relative Contribution of RR, Tmin, Tmean, and Tmax in Predicting EIRm 
Bootstrapped at a Confidence Interval of 95% for Locations With Elevations 
≤500 m

Zone R 2 (%) Variable
lmg 
(%)

First 
(%)

Coefficient 
(R) P-value

Sahel 30.72 RR 7.73 15.76 0.3497 0.0000

Tmax 12.03 17.54 −15.7276 0.0000

Tmin 4.89 1.79 3.6380 0.0138

Tmean 6.07 3.20 −6.8674 0.0033

Guinea 13.59 RR 5.85 10.22 0.4848 0.0000

Tmax 4.09 9.65 −13.3808 0.0000

Tmin 0.64 0.19 2.7410 0.3760

Tmean 3.01 6.38 −15.7753 0.0000

WCA 1.69 RR 0.34 0.23 0.0974 0.5550

Tmax 0.60 0.95 5.4640 0.3770

Tmin 0.42 0.49 −4.5700 0.5810

Tmean 0.33 0.35 6.8450 0.5280

EA 31.83 RR 0.62 0.00 −0.0141 0.9360

Tmax 10.23 26.50 −23.2210 0.0000

Tmin 8.84 20.10 −12.1120 0.0000

Tmean 12.14 26.04 −18.2160 0.0000

Note. Variables with significant p-values contributions are boldfaced. R 2 
represents the total proportion of variance in EIR explained by all the climate 
predictors. lmg values show the individual contribution of each predictor to 
R 2 relative to others. First is the contribution of each predictor alone to R 2 
with complete ignorance of the others.
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Like the Sahel, temperature and rainfall were also significant determinants 
of EIRm at lower elevations (≤500 m) in Guinea just that their contribution 
to EIRm variations is small (about 13.59%) compared to that of Sahel (about 
30.72%). In Guinea, also, EIRm data were unavailable for locations >1,000 m 
for further analysis in this regard. In WCA, rainfall and temperature were 
insignificantly associated with EIRm seasonality whether at lower or higher 
elevations. Their percentage explanation of the variation in EIRm were also 
low (extremely low at lower elevation areas and slightly higher for higher 
elevation areas) compared to other climate zones. In EA, temperature varia-
bles (Tmin, Tmean, and Tmax) were the significant drivers of EIR seasonality at 
locations ≤500 m. It explained about 31% of the seasonality in EIRm in these 
areas with extremely insignificant contribution from rainfall. But at areas 
>1,000 m, all the climate variables were significant contributors with rainfall 
showing higher contribution to EIRm variation than temperature.

3.3. EIR Lag Behind Rainfall

In Figure 3 the monthly distribution of rainfall and EIR is displayed. It is 
observed that EIRm distribution positively correlated with rainfall at all loca-
tions. Both rainfall and EIR showed significant peaks at Sahel and EA with 
EIR peaks lagging behind rainfall for about 1 month. However, at Guinea 
and WCA EIR peaks showed no lag behind rainfall. The cross-correlation 
statistics determining the lag between the onset of the rainy season and the 
start of the EIR season are shown in Figure 4. It was observed that the lag at 
which EIRm seasonality strongly and positively correlated with rainfall was 
1 month in the Sahel and EA but 0 months in Guinea and WCA.

4. Discussion
Our study first examined the seasonal ranges of rainfall and temperature at 
which EIRm occurred in a pair-wise comparison study. In general, tempera-
ture ranges of EIRm response were mostly clustered between a minimum of 

Table 2 
Same as Table 1 but for Locations With Elevation >1,000 m

Zone R 2 (%) Variable
lmg 
(%)

First 
(%)

Coefficient 
(R) P-value

Sahel 40.47 RR 7.43 14.83 0.3745 0.0780

Tmax 17.66 35.91 −10.8070 0.0036

Tmin 3.69 4.17 −1.4543 0.5950

Tmean 11.69 23.40 −7.7660 0.0513

Guinea – RR – – – –

Tmax – – – –

Tmin – – – –

Tmean – – – –

WCA 16.55 RR 1.41 1.25 −0.0844 0.7653

Tmax 6.70 0.23 6.1700 0.6620

Tmin 1.53 0.39 14.1000 0.5970

Tmean 6.91 1.32 12.2800 0.5300

EA 18.22 RR 10.44 13.37 0.5510 0.0000

Tmax 1.82 3.94 8.1570 0.0289

Tmin 2.88 7.77 10.2080 0.0011

Tmean 3.08 6.95 11.0460 0.0026

Note. In Guinea, EIR data were unavailable for locations at this elevation hence 
represented as dashed lines. The boldfaced values show the corresponding 
climate variables (RR, Tmax, Tmin, and Tmean) that are significant drivers or 
determinants of malaria seasonality in Sub-Saharan Africa.

Figure 3. Average monthly time series of EIRm and rainfall.
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15°C and a maximum of 40°C. This outcome suggests that seasonal malaria transmission is barely impossible 
below 15°C or above 40°C. Previous studies (Lunde, Bayoh, & Lindtjørn, 2013; Mordecai et al., 2013; Parham & 
Michael, 2010; Shapiro et al., 2017) have indicated that malaria parasite development is not possible at temper-
atures below 16°C and that temperatures above 40°C have adverse effect on mosquito population turnover. The 
outcome of our study using EIRm corroborates these previous findings. It provides an additional justification that 
the number of infectious mosquito bites a person receives per time is associated with temperature changes. While 
Tmin may be below 16°C as observed in the Sahel and EA (see Figure 2), the daily Tmean must be greater than 16°C 
particularly for the Anopheles mosquitoes for transmission to occur. It should also be significantly less than 40°C 
for Anopheles mosquitoes to survive thermal stress and possible death if seasonal transmission has to take place. 
Similarly, maximum monthly rainfall value for EIRm occurrence was 600 mm in WCA but 400 m in the Sahel, 
Guinea, and EA. The higher monthly maximum rainfall in WCA is due to the fact that annual total rainfall is 
mostly higher in this region than in others (Froidurot & Diedhiou, 2017; Nicholson, 2013). Previous works (Craig 
et al., 1999; Ermert et al., 2011) have demonstrated that the least monthly amount of rainfall required for malaria 
transmission is about 80 mm. Our findings suggest that the monthly maximum limit required for seasonal malaria 
transmission should be about 600 in WCA but 400 mm in Sahel, Guinea and EA. Excess of these thresholds 
could result in flooding of breeding grounds and flushing out and killing the water-bound stage vectors (Ermert 
et al., 2011; Paaijmans et al., 2010).

The evaluation of the relative importance of RR, Tmin, Tmean, and Tmax in predicting EIR seasonality (see details in 
Tables 1 and 2) revealed climate variables that were significantly associated with EIR seasonality in Sub-Saharan 
Africa. These climate variables are observed as the drivers of malaria seasonality in those zones of the sub-region. 
The climate variables with the highest contribution to EIR variance in each zone are attributed as the most signifi-
cant drivers. This means that any changes in these significant drivers can result in a substantial changes in malaria 
seasonality in those areas. Elevation or topography was also observed to play a significant role in determining the 
important climate drivers of seasonal malaria transmission. In EA for instance, temperature was the important 
determinant of EIR seasonality at lower elevated areas (≤500 m). On the contrary, both rainfall and temperature 
significantly influenced EIRm seasonality at higher elevated areas (>1,000 m). Though temperature and rainfall 
are important factors in malaria transmission, our study does not find them to have any significant association 
with EIR seasonality in WCA. This suggest that malaria seasonality in this zone is importantly driven by other 
factors other than climate. This requires additional studies to unravel these factors driving malaria seasonality 
in this zone. M. L. H. Mabaso et al. (2007) predicted EIR seasonality from environmental data and found that 
seasonality in rainfall, minimum temperature, and irrigation were important determinants of seasonality in EIR 
in Sub-Saharan Africa. Though this study outcome is important, it is not climate specific as it does not justify the 
implications of diverse climate conditions on EIR seasonality as demonstrated in this study. Other studies (M. 

Figure 4. The cross-correlation between Rainfall and EIRm at different lags. The numbers 39, 36, 13, and 29 show the 
number of location observations contributing to the box-and-whisker for each lag.
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L. Mabaso et al., 2006; Simple et al., 2018) have used malaria case records from hospitals and found significant 
correlation between rainfall and temperature. As stated in the introduction, malaria case records have drawbacks 
for studying malaria seasonality as they are subject to significant uncertainties due to the inaccurate diagnostics 
and under counting due to varying health-seeking behavior and health policies (Afrane et al., 2012).

The cross-correlation statistics showed the lag(s) at which rainfall strongly correlated with EIRm in each zone. The 
lag period suggest the time taken for malaria season to start after rainfall season has started. The lag of 1 month in 
Sahel and EA signifies that malaria transmission season delays 1 month after the start of rainfall season at these 
zones. In Guinea and WCA, this lag period was 0 months suggesting that there is no delay between rainfall season 
onset and the start of the malaria season. Hence malaria transmission in these zones is year-round. In markedly 
seasonal rainfall zones such as the Sahel and EA, the delay between rainfall onset and the start of the malaria 
season is expected. Rainfall in the Sahel is markedly seasonal, lasting from June to October, followed by about 
6–8 months of dry period (Froidurot & Diedhiou, 2017; Nicholson, 2013). Hence, mosquitoes are barely present 
during the dry and long hot season. Even if present, they are inactive due to low humidity and high temperature 
and only recover within the rainy season when rainfall and temperature requirements are suitable. The absence of 
delay between rainfall season onset and the start of malaria season at Guinea and WCA is also expected. These 
zones are highly humid with shorter dry seasons (Froidurot & Diedhiou, 2017; Nicholson, 2013). For this reason, 
vectors are able to persist all year round at these zones resulting in year-round transmission at these areas. Previ-
ous studies (Ikeda et al., 2017; Reiner et al., 2015; Simple et al., 2018; Tompkins & Di Giuseppe, 2015) have 
reported malaria lagging behind rainfall at about 1–2 months but our study has further demonstrated that malaria 
season onset may lag behind rainfall only at markedly seasonal rainfall areas in Sub-Saharan Africa.

5. Conclusion
Clinical malaria case data is commonly utilized as a malariometric in examining the relationship between climate 
and seasonal malaria transmission in Sub-Saharan Africa. This data, on the other hand, is fraught with uncertainty 
due to out-of-sample generalization over geography and time, erroneous diagnosis, and under-counting due to 
varying health-seeking behavior and policy. As a result, in this work, we explored the applicability of high-quality 
EIR measurements to link rainfall and temperature seasonality to seasonal malaria outcomes in Sub-Saharan 
Africa. The main goal was to determine the climate variables that significantly drive malaria seasonality and 
their relative importance in the sub-region. Sub-Saharan Africa was first divided into four distinct climate zones 
namely Sahel, Guinea, WCA, and EA. The division was necessary because each zone has a unique climate condi-
tions and therefore will have different climate implications on malaria seasonality. Applying a multi-regression 
statistics, pair-wise comparison and cross-correlation approaches to a EIRm database gathered from publicly 
available field campaigns for each zone, the climate variables that explained significant variations in EIR season-
ality were determined.

Findings in this study affirmed previous understanding that seasonal malaria transmission is barely impossi-
ble below 16°C or above 40°C temperature threshold (Mordecai et al., 2013; Shapiro et al., 2017). Hence, for 
seasonal malaria transmission to be sustained, average temperature should be well above the minimum or well 
below maximum threshold. While previous studies (Craig et  al.,  1999; Ermert et  al.,  2011) suggest that the 
monthly minimum rainfall requirement for seasonal transmission is about 80 mm, our study observed monthly 
maximum rainfall limit should be about 600 in WCA, and 400 mm in the Sahel, Guinea, and EA. While rainfall 
and temperature were found to be significantly associated with EIRm seasonality in the Sahel, Guinea and EA, 
they were not important drivers of malaria seasonality in WCA. Important drivers of malaria seasonality in 
WCA may be due to other factors other than climate variables. In zones characterized by elevations such as EA, 
topography has a significant influence on which variable is an important determinant of malaria seasonality. At 
markedly seasonal rainfall areas such as Sahel and EA, malaria seasonal starts 1 month later after the rainfall 
season has started. However, for zones where rainfall season is bimodal such as Guinea and WCA, there is no 
delay between rainfall season onset and malaria season onset.

In this study, we showed that high-quality EIRm measurements can usefully supplement established metrics 
for seasonal malaria by demonstrating evidence for the use of EIR to directly link the risk of humans to 
infectious mosquito bites to climate. The study informs our understanding of the connection between climate 
variables and both the malaria vector and parasite biology and how that translates into malaria seasonality in 
Sub-Saharan Africa. This information is key for the improvement and validation of weather-driven dynamical 
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mathematical malaria models that directly simulate EIR. Our findings provide an understanding of geographi-
cal heterogeneous malaria risk from climate effect and support future malaria modeling and forecasting efforts. 
The study also supplements previous works describing clinical patterns of malaria infection and morbidity. 
Taking into account the seasonality of malaria management, findings in this study could lead to significant 
public health advantages by assisting in determining when, where, and how to use vector and parasite control 
strategies. It can, therefore, help stakeholders establish a robust framework for monitoring, forecasting and 
control of malaria.

This study does not claim to have identified all the EIRm data available across sub-Saharan Africa. It relied on 
EIRm data available in a repository (Yamba et al., 2018) with details explained in (Yamba et al., 2020). The study 
also acknowledges that the observed EIRm data were both spatially and temporally limited and thus unavailable 
for many settings (as shown in Figure 1). This limitation was unavoidable because sampling mosquitoes for the 
determination of EIR is both labor and cost-intensive. Hence, it is very difficult to have EIRm data available for 
many locations and for a long period. Future mosquito sampling should, therefore, focus on areas of unavailable 
data in order to consolidate the spatial homogeneity of available EIRm data distribution. However, an important 
strength of this study is its restricted geographic and climate relevance. To our knowledge, this study is the first 
of its kind and also that EIRm data has not been explored on such a wider scale in Sub-Saharan Africa. With the 
amount of EIRm utilized for each climate zone, it is not anticipated that the inherent limitations may have any 
major adverse influence on the outcome of the study.
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