
Research Article
Potential Mitochondrial Isocitrate Dehydrogenase
R140Q Mutant Inhibitor from Traditional Chinese
Medicine against Cancers

Wen-Yuan Lee,1,2,3 Kuan-Chung Chen,4 Hsin-Yi Chen,1 and Calvin Yu-Chian Chen1,2,5

1 Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
2 School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
4 School of Pharmacy, China Medical University, Taichung 40402, Taiwan
5 Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan

Correspondence should be addressed to Calvin Yu-Chian Chen; ycc929@MIT.edu

Received 16 February 2014; Revised 4 March 2014; Accepted 4 March 2014; Published 5 June 2014

Academic Editor: Chung Y. Hsu

Copyright © 2014 Wen-Yuan Lee et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A recent research of cancer has indicated that the mutant of isocitrate dehydrogenase 1 and 2 (IDH1 and 2) genes will induce
various cancers, including chondrosarcoma, cholangiocarcinomas, and acute myelogenous leukemia due to the effect of point
mutations in the active-site arginine residues of isocitrate dehydrogenase (IDH), such as IDH1/R132, IDH2/R140, and IDH2/R172.
As the inhibition for those tumor-associated mutant IDH proteins may induce differentiation of those cancer cells, these tumor-
associated mutant IDH proteins can be treated as a drug target proteins for a differentiation therapy against cancers. In this study,
we aim to identify the potent TCM compounds from the TCM Database@Taiwan as lead compounds of IDH2 R140Q mutant
inhibitor. Comparing to the IDH2 R140Q mutant protein inhibitor, AGI-6780, the top two TCM compounds, precatorine and
abrine, have higher binding affinities with target protein in docking simulation. AfterMD simulation, the top two TCMcompounds
remain as the same docking poses under dynamic conditions. In addition, precatorine is extracted fromAbrus precatorius L., which
represents the cytotoxic and proapoptotic effects for breast cancer and several tumor lines. Hence, we propose the TCMcompounds,
precatorine and abrine, as potential candidates as lead compounds for further study in drug development process with the IDH2
R140Q mutant protein against cancer.

1. Introduction

Nowadays, in accordance with more and more mechanisms
of diseases being identified [1–6], there are increasing num-
bers of potential target proteins against each disease, which
are useful for drug design [7–11].The recent research of cancer
has indicated that the mutant of isocitrate dehydrogenase
1 and 2 (IDH1 and 2) genes will induce various cancers
[12, 13]. Somatic mutations in the isocitrate dehydrogenase
1 and 2 genes affecting point mutations in the active-site
arginine residues of isocitrate dehydrogenase (IDH), such
as IDH1/R132, IDH2/R140, and IDH2/R172, occur frequently
in many cancers, including chondrosarcoma, cholangiocar-
cinomas, and acute myelogenous leukemia [14–22]. The

inhibition for those tumor-associated mutant IDH proteins
may induce differentiation of those cancer cells. The tumor-
associated mutant IDH proteins can be treated as a drug
target proteins for a differentiation therapy against cancers
[23].

Nowadays, the computer-aided drug design has been
widely used in drug designing [24, 25]. Increasing numbers
of compounds extracted from traditional Chinese medicine
(TCM) have been indicated as potential lead compounds
against cancers [26–28], inflammation [29], influenza [30],
viral infection [31], metabolic syndrome [32], diabetes [33],
stroke [34–36], and many other diseases [37–41]. A recent
research of mutant IDH2 protein shows a compound,
AGI-6780, which can inhibit the tumor-associated mutant
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IDH2/R140Q [42]. For drug development of TCM com-
pounds, we aim to identify the potent TCM compounds
from the TCM Database@Taiwan [43] as lead compounds
of IDH2 R140Q mutant inhibitor. As structural disordered
disposition in the protein may induce the side effect and
reduce the occupancy for ligand to bind with target protein
[44, 45], PONDR-Fit protocol was performed to predict
the disordered disposition in IDH2 protein before virtual
screening. After virtual screening, the MD simulation was
performed to validate the stability of interactions between
IDH2 R140Q mutant proteins and each ligand.

2. Materials and Methods

2.1. Data Collection. The X-ray crystallography structure of
the human mitochondrial isocitrate dehydrogenase (IDH2)
R140Q mutant was downloaded from RCSB Protein Data
Bank with PDB ID: 4JA8 [42]. To predict the disordered
amino acids, PONDR-Fit [46] protocol was employed with
the sequence of IDH2 protein from Swiss-Prot (UniPro-
tKB: P48735). In preparation section, X-ray crystallogra-
phy structure of IDH2 R140Q mutant protein was proto-
nated with Chemistry at HARvardMacromolecularMechan-
ics (CHARMM) force field [47] and removed crystal
water by Prepare Protein module in Discovery Studio 2.5
(DS2.5). The final structure of TCM compounds from TCM
Database@Taiwan [43] was protonated and filtered by Lipin-
ski’s Rule of Five [48] using Prepare Ligand module in DS2.5.
The binding site for virtual screening was defined by the
volume of the cocrystallized IDH2 R140Q mutant inhibitor,
AGI-6780.

2.2. Docking Simulation. TheTCMcompoundswere docking
into the binding site using a shape filter and Monte-Carlo
ligand conformation generation by LigandFit protocol [49] in
DS 2.5. The docking poses were optionally minimized with
CHARMM force field [47] and filtered the similar poses by
the clustering algorithm. Each docking pose was evaluated by
the following Dock Score energy function:

Dock Score = − (ligand/receptor interaction energy +
ligand internal energy).

2.3. Molecular Dynamics (MD) Simulation. The molecular
dynamics (MD) simulation utilizing Gromacs 4.5.5 [50]
was employed using classical molecular dynamics theory
to simulate each protein-ligand complex under dynamic
conditions. In preparation section, the IDH2 R140Q mutant
proteins were prepared by pdb2gmx protocol of Gromacs
to provide topology and parameters with charmm27 force
field, and each ligand was prepared by SwissParam pro-
gram [51]. A cubic box solvated using TIP3P water model
was defined based upon the edge approx. 1.2 nm from the
protein complexes periphery. In the minimization section,
the steepest descent [52] minimization was employed with
a maximum of 5,000 steps to remove bad van der Waals
contacts. Gromacs program creates a neutral system using
0.145M NaCl model, followed by another steepest descent
minimization with a maximum of 5,000 steps to remove bad
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Figure 1: Disordered disposition predicted by PONDR-Fit.

van derWaals contacts. In the equilibration section, Gromacs
program performs a position-restrainedmolecular dynamics
with the linear constraint algorithm for all bonds, NVT
equilibration, Berendsen weak thermal coupling method,
and particle mesh Ewald method. In the production section,
Gromacs program performs a total of 5000 ps production
simulationwith time step in unit of 2 fs underNPT ensembles
and particle mesh Ewald (PME) option. A series of protocols
in Gromacs program was utilized to analyze the 5000 ps MD
trajectories. The CAVER 3.0 [53] was employed to analyze
the presumably pathways for small molecule under dynamics
conditions.

3. Results and Discussion

3.1. Disordered Protein Prediction. The sequence of IDH2
protein from Swiss-Prot (UniProtKB: P48735) was employed
to predict the disordered disposition by PONDR-Fit protocol.
As illustrated in Figure 1, the key residues in the binding
domain have no disordered disposition, which express a
stable binding domain in protein folding. It indicates that
the binding domain in the crystallography structure of target
protein will be suitable for docking simulation as the residues
in the binding domain have no significant variation.

3.2. Docking Simulation. To validate the accuracy of
LigandFit protocol, we redock the cocrystallized IDH2
R140Q mutant inhibitor, AGI-6780, into the binding site of
IDH2 R140Q mutant proteins. Root-mean-square deviation
(RMSD) value between crystallized structure and docking
pose of AGI-6780 is 0.3683 Å (Figure 2), which indicates that
the docking simulation by LigandFit protocol is suitable for
virtual screening with IDH2 R140Q mutant proteins. After
virtual screening, the chemical scaffolds of AGI-6780 and
top two TCM compounds are displayed in Figure 3 with
Dock Score and sources. Precatorine is extracted from Abrus
precatorius L., and abrine is extracted fromAbrus fruticuIosus
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Figure 2: Binding site of IDH2 R140Q mutant protein defined as the volume of AGI-6780 and root-mean-square deviation value between
crystallized structure (orange) and docking pose (violet) of AGI-6780.
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Figure 3: Chemical scaffold of controls and top two TCM candidates with their scoring function and sources.

Wall. ex Wight et Arn.The compounds extracted from Abrus
precatorius L. had been indicated to have the antimicrobial
activity [54], antibacterial activity [55], cytotoxic and
proapoptotic effects for breast cancer [56], and several tumor
lines [57]. Figure 4 illustrated the docking poses of IDH2
R140Q mutant protein complexes with AGI-6780 and top

two TCM compounds, respectively.The IDH2 R140Qmutant
protein inhibitor, AGI-6780, has hydrogen bonds (H-bonds)
with residues Gln316 in both chains of IDH2 R140Q mutant
protein and a 𝜋 interaction with residue Ile319 in chain B of
IDH2 R140Q mutant protein. For the top TCM candidates,
they also have H-bonds with residues Gln316 in both chains
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Figure 4: Docking pose of IDH2 R140Q mutant protein complexes with (a) AGI-6780, (b) precatorine, and (c) abrine.
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Figure 5: Root-mean-square deviations in units of nm for protein and ligand over 5000 ps ofMD simulation for IDH2R140Qmutant proteins
and protein complexes with AGI-6780, precatorine, and abrine.

of IDH2 R140Q mutant protein as AGI-6780. For abrine, it
has a 𝜋 interaction with residue Ile319 in chain A of IDH2
R140Q mutant protein.

3.3. Molecular Dynamics Simulation. For the docking simu-
lation performed by LigandFit protocol, the receptor is a rigid
body of IDH2 R140Q mutant proteins. The conformation of
the IDH2 R140Qmutant protein maymodify under dynamic
conditions. We employed the MD simulation to validate
the stability of interactions between IDH2 R140Q mutant
proteins and each ligand. RMSDs illustrated the atomic fluc-
tuations during MD simulation. Figure 5 displays the atomic
fluctuations of IDH2 R140Qmutant proteins in apo form and
complexes with AGI-6780, precatorine, and abrine and the
atomic fluctuations of each compound during 5000 ps MD
simulation. It shows that IDH2 R140Q mutant proteins tend
to be stable after first 100 ps MD simulation, but the ligands
except precatorine are fluctuate during MD simulation. To
consider the variation radii of gyration for protein and total
energy over 5000 ps MD simulation in Figure 6, it indicates
that the radii of gyration for IDH2 R140Q mutant proteins
in apo form were decreased after 4500 ps MD simulation,
but the radii of gyration for complexes of IDH2 R140Q

mutant proteins with AGI-6780, precatorine, and abrine
were more stabilized. In addition, there is no significant
change for the total energies of each IDH2 R140Q mutant
protein complex during MD simulation in Figure 7. The
variation of solvent accessible surface area over 5000 ps MD
simulation in Figure 8 indicates that docking the ligands,
AGI-6780, precatorine, and abrine, would not affect the
solvent accessible surface of IDH2 R140Q mutant protein
under dynamic conditions. The mean square displacement
(MSD) for each protein and ligand in IDH2 R140Q mutant
proteins and protein complexes with AGI-6780, precatorine,
and abrine over 5000 ps of MD simulation is displayed in
Figure 9. Root-mean-square fluctuation (RMSF) for each
residue over 5000 psMD simulation is displayed in Figure 10.
They indicate that IDH2 R140Qmutant protein docking with
precatorine and abrine causes similar diffusion constant and
flexibility for IDH2 R140Q mutant proteins as AGI-6780.

After MD simulation, we identify the representative
structures of IDH2 R140Q mutant proteins in apo form
and in each complex using the RMSD values and graphical
depiction of the clusters analysis with a RMSD cutoff of
0.105 nm in Figure 11.The docking poses of the representative
structures for complexes of IDH2 R140Q mutant proteins
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Figure 6: Radii of gyration for protein over 5000 ps of MD simulation for IDH2 R140Q mutant proteins and protein complexes with AGI-
6780, precatorine, and abrine.
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Figure 7: Variation of total energy for complex over 5000 ps of MD simulation for IDH2 R140Qmutant proteins and protein complexes with
AGI-6780, precatorine, and abrine.

with AGI-6780, precatorine, and abrine are illustrated in
Figure 12. To compare with the result in docking simulation,
the IDH2 R140Q mutant protein inhibitor, AGI-6780, has
stable hydrogen bonds (H-bonds) with residues Gln316 in
both chains of IDH2 R140Q mutant protein and forms a 𝜋
interaction with residue Val315 in chain B of IDH2 R140Q
mutant protein. For TCM candidates, they have similar
docking poses as docking simulation, which has stable H-
bonds with residues Gln316. The H-bond occupancy for
key residues in complexes of IDH2 R140Q mutant protein
with AGI-6780 and top TCM compounds overall 5000 ps
of molecular dynamics simulation in Table 1 displayed the

stability of H-bonds. Analysis of transport pathways for
each IDH2 R140Q mutant protein complex illustrated in
Figure 13 shows the presumably pathways for small molecule.
They indicate that IDH2 R140Q mutant protein docking
with precatorine and abrine has similar effects of protein
conformation as AGI-6780.

4. Conclusion

This study aims to investigate the potent leadTCMcandidates
for IDH2 R140Q mutant protein inhibitors against cancers.
Compared to the IDH2 R140Q mutant protein inhibitor,
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Figure 8: Variation of (a) total solvent accessible surface area, (b) hydrophobic surface area, and (c) hydrophilic surface area over 5000 ps of
MD simulation for IDH2 R140Q mutant proteins and protein complexes with AGI-6780, precatorine, and abrine.

0.10

0.08

0.06

0.04

0.02

0.00

M
ea

n 
sq

ua
re

 d
isp

la
ce

m
en

t (
nm

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (ps)

Apo
Abrine
AGI-6780

Precatorine

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (ps)

Apo
Abrine
AGI-6780

Precatorine

0.04

0.06

0.02

0.00

M
ea

n 
sq

ua
re

 d
isp

la
ce

m
en

t (
nm

)

(b)

Figure 9: Mean square displacement (MSD) for (a) protein and (b) ligand over 5000 ps of MD simulation for IDH2 R140Q mutant proteins
and protein complexes with AGI-6780, precatorine, and abrine.
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Figure 10: Root-mean-square fluctuation (RMSF) for residues in (a) chain A and (b) chain B of IDH2 R140Q mutant proteins and protein
complexes with AGI-6780, precatorine, and abrine.
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for IDH2 R140Q mutant proteins and protein complexes with AGI-6780, precatorine, and abrine.
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Figure 13: Analysis of transport pathways for IDH2 R140Q mutant protein complexes with (a) AGI-6780, (b) precatorine, and (c) abrine.

Table 1: H-bond occupancy for key residues of IDH2R140Qmutant
protein with AGI-6780 and top TCM compounds overall 5000 ps of
molecular dynamics simulation.

Name H-bond interaction Occupancy

AGI-6780

A:Gln316:OE1/H37 100%
A:Gln316:OE1/H38 100%
B:Gln316:HE22/O13 100%
B:Gln316:OE1/H40 100%

Precatorine

A:Gln316:HE22/O20 67%
A:Gln316:OE1/H29 14%
B:Gln316:HE22/O9 4%
B:Gln316:HE22/O16 12%
B:Gln316:OE1/H28 4%

Abrine
B:Gln316:HE22/N7 22%
B:Gln316:OE1/H30 95%
B:Gln316:O/H30 2%

H-bond occupancy cutoff: 0.3 nm.

AGI-6780, the top two TCM compounds, precatorine and
abrine, have higher binding affinities with target protein

in docking simulation. Both of them has H-bonds with
residues Gln316 in both chains of IDH2 R140Q mutant
protein as AGI-6780. After MD simulation, the top two
TCM compounds remain as the same docking poses under
dynamic conditions. In addition, precatorine is extracted
from Abrus precatorius L., which has been indicated to
have the cytotoxic and proapoptotic effects for breast can-
cer and several tumor lines. Hence, we propose the TCM
compounds, precatorine and abrine, as potential candidates
as lead compounds for further study in drug develop-
ment process with the IDH2 R140Q mutant protein against
cancer.
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