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Single-sided deafness (SSD) is an extreme case of partial hearing deprivation

and results in a significant decline in higher-order hearing abilities, including

sound localization and speech-in-noise recognition. Clinical studies have

reported that patients with SSD recover from these higher-order hearing

abilities to some extent over time. Neuroimaging studies have observed

extensive brain functional plasticity in patients with SSD. However, studies

investigating the role of plasticity in functional compensation, particularly

those investigating the relationship between intrinsic brain activity alterations

and higher-order hearing abilities, are still limited. In this study, we used

resting-state functional MRI to investigate intrinsic brain activity, measured by

the amplitude of low-frequency fluctuation (ALFF), in 19 patients with left SSD,

17 patients with right SSD, and 21 normal hearing controls (NHs). All patients

with SSD had durations of deafness longer than 2 years. Decreased ALFF values

in the bilateral precuneus (PCUN), lingual gyrus, and left middle frontal gyrus

were observed in patients with SSD compared with the values of NHs. Longer

durations of deafness were correlated with better hearing abilities, as well as

higher ALFF values in the left inferior parietal lobule, the angular gyrus, the

middle occipital gyrus, the bilateral PCUN, and the posterior cingulate gyrus.

Moreover, we observed a generally consistent trend of correlation between

ALFF values and higher-order hearing abilities in specific brain areas in patients

with SSD. That is, better abilities were correlated with lower ALFF values in

the frontal regions and higher ALFF values in the PCUN and surrounding

parietal-occipital areas. Furthermore, mediation analysis revealed that the ALFF

values in the PCUN were a significant mediator of the relationship between

the duration of deafness and higher-order hearing abilities. Our study reveals

significant plasticity of intrinsic brain activity in patients with SSD and suggests
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that reorganization of intrinsic brain activity may be one of the compensatory

mechanisms that facilitate improvement in higher-order hearing abilities in

these patients over time.

KEYWORDS

single-sided deafness, resting-state fMRI, intrinsic brain activity, speech recognition,

sound localization, compensatory mechanism

Introduction

Single-sided deafness (SSD) is an extreme case of partial

hearing deprivation and refers to severe to profound hearing

loss in one ear and normal hearing in the other ear. Due to

hearing deprivation in one ear, patients with SSD can only

obtain monaural clues from the environment. This causes

these patients to have sharply decreased higher-order hearing

abilities, particularly sound localization and speech-in-noise

(SIN) recognition (Agterberg et al., 2014; Asp et al., 2018;

Liu et al., 2018; Adigun and Vangerwua, 2021). Studies have

observed better hearing abilities in SSD patients with longer

durations of deafness than in those with shorter durations

of deafness, suggesting that functional compensation occurs

over time (Peckham and Sheridan, 1976; Lieu et al., 2012;

Liu et al., 2018). Since the peripheral auditory input in

most patients with SSD could hardly be improved due to

the irreversible property of sensorineural hearing loss and

the lack of binaural clues remains unchanged, it could be

conjectured that central plasticity promoting better usage of

limited peripheral auditory input probably plays an important

role in functional compensation.

To date, a growing number of neuroimaging studies have

explored the central structural and functional plasticity that

occurs due to SSD. Structural studies via magnetic resonance

imaging (MRI) have observed extensive morphological

alterations in gray and white matter, as well as structural

connectivity involving auditory areas, other sensory areas, and

higher-order cognitive-related brain areas (Lin et al., 2008; Wu

et al., 2009; Rachakonda et al., 2014; Yang et al., 2014; Fan et al.,

2015; Wang et al., 2016; Li et al., 2019). Regarding function,

both functional MRI (fMRI) and event-related potential (ERP)

studies using auditory stimuli have found that the auditory

cortex shows a more symmetrical and synchronous response to

monaural sound stimuli in patients with SSD than in individuals

with normal hearing (NH) (Scheffler et al., 1998; Bilecen et al.,

2000; Ponton et al., 2001; Khosla et al., 2003; Langers et al.,

Abbreviations: SSD, single-sided deafness; ALFF, amplitude of low-

frequency fluctuation; NH, normal hearing control; LSSD, left single-sided

deafness; RSSD, right single-sided deafness; PTA, pure-tone audiometry;

SIN, speech-in-noise; ASL, accuracy rate of sound localization; RMS,

root-mean-square.

2005). Studies using visual or visual-audio tasks have revealed

cross-modal plasticity in patients with SSD (Schmithorst et al.,

2014; Qiao et al., 2019). Furthermore, functional alterations in

brain regions related to higher-order cognitive function have

been observed in auditory, visual, and visual-audio task studies

(Schmithorst et al., 2014; Shang et al., 2018; Qiao et al., 2019).

Compared with task-based studies examining task-related brain

activity, an advantage of resting-state imaging approaches is

that they allow the examination of intrinsic brain function in

the absence of theory-driven tasks. Widespread resting-state

functional connectivity alterations were observed in patients

with SSD in brain regions and networks related not only to

auditory processing but also to other sensory functions, such

as vision, as well as higher-order cognitive control (Wang

et al., 2014; Zhang et al., 2015, 2016, 2018a,b; Xu et al., 2016;

Zhu et al., 2021). However, most of these studies did not

investigate the relationship between central plasticity and

higher-order hearing abilities in patients with SSD. Therefore, it

is difficult to determine which of the above plasticity conditions

contribute to auditory functional compensation in patients

with SSD.

A previous fMRI study of children with unilateral

sensorineural hearing loss performing SIN recognition tasks

reported changes in activation in regions of the attention

network, in addition to changes in secondary auditory

processing areas and visual associated areas (Propst et al.,

2010). However, this study did not investigate the correlation

between brain activation and behavioral performance on

the SIN recognition task. Therefore, this study does not

provide reliable evidence that brain functional plasticity

is compensatory for hearing abilities. Li’s et al. diffusion

tensor imaging (DTI) study revealed a strong correlation

between SIN recognition ability and the strength of structural

network connectivity, mainly in the frontoparietal regions,

suggesting that the structural reorganization of cognitive-

related networks may be one of the compensatory mechanisms

(Li et al., 2019). However, to the best of our knowledge, no

similar study has explored the relationship between functional

reorganization and higher-order hearing abilities in SSD. Thus,

the underlying mechanisms of compensation in SSD require

further study.

The amplitude of low-frequency fluctuation (ALFF) of

resting-state fMRI reflects the intensity of regional brain activity
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at baseline (Zang et al., 2007; Zou et al., 2008; Wang et al., 2011).

ALFF has been widely used in studies of various neurological

and sensory dysfunctional diseases, such as Alzheimer’s disease

(Wang et al., 2011; Mu et al., 2020; Yang et al., 2020), attention-

deficit hyperactivity disorder (An et al., 2013; Jiang et al., 2020),

high myopia, and monocular blindness (Huang et al., 2016;

Fang et al., 2020). A previous study using ALFF investigated

the alteration in intrinsic brain activity in patients with right-

sided unilateral hearing loss and observed decreased ALFF

values in the precuneus (PCUN), inferior parietal lobule (IPL),

inferior frontal gyrus (IFG), and insula (INS) and increased

ALFF values in the inferior temporal gyrus and middle temporal

gyrus compared with the values of NHs (Yang et al., 2014).

Furthermore, a positive correlation between disease duration

and ALFF values was observed in certain brain regions,

including the superior temporal gyrus, IFG, INS, and superior

frontal gyrus (SFG) (Yang et al., 2014). These results suggest

that ALFF is a promising biomarker of neurophysiological

consequences that can indicate changes in regional signals of

brain intrinsic activity. However, no study has used ALFF

to explore the contribution of brain functional plasticity to

the compensation of higher-order hearing abilities in patients

with SSD.

The present study aimed to investigate the alteration in

intrinsic brain activity in patients with long-term SSD and

clarify the relationship among brain activity, duration of

deafness, and higher-order hearing abilities. We used ALFF to

investigate the alteration in intrinsic brain activity. We also

evaluated the patients’ higher-order hearing abilities, including

sound localization and SIN recognition, which are most often

affected after losing the ability to detect binaural cues. We

hypothesized that patients with SSD would exhibit significant

alterations in intrinsic brain activity in sensory- and cognitive-

related brain regions. In addition, we conjectured that SSD

patients with longer durations of deafness would exhibit better

hearing abilities than those with shorter durations of deafness.

Furthermore, we hypothesized that alterations in intrinsic brain

activity may be closely related to hearing abilities in patients

with SSD and act as compensatory mechanisms to facilitate

improvement in hearing abilities over time.

Materials and methods

Subjects

A total of 57 subjects participated in this study, including

21 NHs (12 men, 41.3 ± 14.4 years old), 19 patients with

left SSD (LSSD, 13 men, 44.1 ± 10.5 years old), and 17

patients with right SSD (RSSD, 7 men, 39.1 ± 9.4 years old).

All subjects were native speakers of Mandarin and had no

history of neurological or mental illness or contraindications

to MRI scans. The demographic information for these subjects

is presented in Table 1. There was no significant difference in

age, sex, handedness, or education time among individuals in

the three groups. All the durations of deafness were longer than

2 years in individuals in the SSD group, and the durations

were not different between patients in the LSSD and RSSD

groups. Among all patients with SSD, three with LSSD and two

with RSSD could not provide a clear onset age of deafness and

probably had prelingual onset. All other patients with SSD had

postlingual onset. There was no significant difference in the age

of deafness onset between participants in the two SSD groups.

No history of hearing aid usage was reported by any patient

with SSD.

Audiological inclusion criteria

In our study, normal hearing was defined as air-conduction

pure-tone audiometry (PTA) threshold of 25 dB HL or less

from 0.5 to 2 kHz. The average PTA threshold was defined as

the average air conduction threshold at 0.5, 1, 2, and 4 kHz.

In the NH group, all subjects had normal hearing in their

bilateral ears (Table 2). All patients with SSD had persistent

severe to profound sensorineural hearing loss with an average

PTA threshold of deaf ear >70 dB HL and had normal hearing

on the other side (Table 2). The average PTA threshold was 98.82

± 17.03 and 100.07 ± 17.49 dB HL in the LSSD and RSSD

groups, respectively, and showed no significant difference (t =

−0.22, p= 0.828) between them.

Evaluation of higher-order hearing
abilities

SIN recognition evaluation

The SIN recognition test was implemented using the

Hearing-in-Noise Test (HINT, Version 7.2; Bio-logic Systems

Corp, Mundelein, IL, USA), which was administered in a

soundproof booth. The speechmaterial was theMandarin HINT

(Wong et al., 2007). The SIN threshold on the deaf side was

measured for patients in the two SSD groups. The sentence

materials were presented by a speaker on the deaf side 1m from

the subjects, while noise was presented by a speaker in front of

the participant. For participants in the NH group, we evaluated

the SIN thresholds on the left side and right side (with noise

presented in the front), and the average value of both sides

was recorded as their SIN threshold. The speech-shaped noise

masker was fixed at an intensity of 65 dB SPL. The speech signals

were presented beginning at a −10 dB signal-to-noise ratio and

adjusted according to the correct or wrong response provided

by the subjects. The threshold was defined as the signal-to-noise

ratio at which the subjects repeated sentences correctly 50% of

the time.
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TABLE 1 Demographic characteristics of the three groups.

LSSD

(n = 19)

RSSD

(n = 17)

NH

(n = 21)

Statistics

Sex (male/female) 13/6 7/10 12/7 χ2 = 2.72 p= 0.257

Age [year, mean (SD)] 44.1 (10.5) 39.1 (9.4) 41.3 (14.4) F = 0.81 p= 0.451

Handedness (right/left) 18/1 15/2 20/1 Fisher’s exact test= 0.97 p= 0.674

Education time [year, mean (SD)] 14.6 (3.4) 14.3 (4.2) 15.2 (2.9) Kruskal–Wallis test= 0.61 p= 0.736

Duration of deafness [year, mean (SD)] 11.3 (11.2) 9.3 (12.2) – t = 0.52 p= 0.608

Age of deafness onset [year, mean (SD)] 32.7 (18.6) 29.8 (15.2) – t = 0.52 p= 0.606

TABLE 2 Auditory abilities of the left single-sided deafness, right single-sided deafness, and normal hearing control groups.

LSSD

(n = 19)

RSSD

(n = 17)

NH

(n = 21)

Statistics

ANOVA Post-hoc test

LSSD vs.

NH

RSSD vs.

NH

LSSD vs.

RSSD

Average PTA of normal ear

[dB HL, mean (SD)]

16.32 (7.15) 14.78 (6.18) 12.79* (5.74) F = 1.54,

p= 0.223

p= 0.259 p= 1 p= 1

SIN threshold [dB, mean (SD)] 2.73 (1.59) 3.00 (1.68) −6.88** (1.64) F = 236.02,

p < 0.001

p < 0.001 p < 0.001 p= 1

ASL [%, mean (SD)] 35.32 (9.21) 32.13 (9.17) 84.95 (6.49) F = 253.01,

p < 0.001

p < 0.001 p < 0.001 p= 0.759

RMS error [◦ , mean (SD)] 64.37 (17.05) 72.30 (18.01) 17.01 (4.19) F = 88.19,

p < 0.001

p < 0.001 p < 0.001 p= 0.295

*The average PTA of normal ears in the NH group is the average value of both ears.

**The SIN threshold in the NH group is the average value of the SIN threshold for the left and right sides.

NH, normal hearing control; LSSD, left single-sided deafness; RSSD, right single-sided deafness; PTA, pure tone audiometry; SIN, speech-in-noise; ASL, accuracy rate of sound localization;

RMS, root-mean-square. ANOVA, analysis of variance.

Sound localization evaluation

Sound localization evaluation was carried out in the sound

field of a soundproof booth. Thirteen loudspeakers (15◦ apart

and numbered 1-13) were horizontally placed in a 180◦ arc in

front of the subjects, with the subject as the center, with a radius

of 1m. The height of the sound field speakers was consistent

with the height of the subject’s ears. During the test, the subjects

were instructed to remain still and face forward. Low-frequency

(0.5 kHz) and high-frequency (3 kHz) pure tones at 50 dB HL

were randomly presented two times from each of the 13 speakers

as sound stimuli. After each sound stimulus, subjects were

instructed to determine from which speaker the sound came

and report the speaker number. When the deviation between

the speaker location reported by the subject and the actual

position of the stimulus was ≤15◦, the answer was defined as

correct. The correct rate was recorded as the accuracy of sound

localization (ASL). The root-mean-square (RMS) error between

the azimuth of the speaker location and the listener’s response

was also used to quantify localization accuracy. A higher ASL

value indicated better sound localization ability, while a higher

RMS error indicated greater deviation in identifying the sound

source position, suggesting poorer sound localization capability.

MRI acquisition

All MRI data were acquired on a 3 T Philips Achieva MRI

scanner (Philips Healthcare, Best, The Netherlands) with a 32-

channel head coil. Subjects were instructed to remain still in

a supine position. Headphones and foam padding were used

to reduce scanner noise and limit head motion. Subjects kept

their eyes closed but remained awake during scanning. Resting-

state functional images were collected axially using an echo-

planar imaging (EPI) sequence with the following settings:

37 slices; slice thickness = 3.5mm; gap = 0.5mm; repetition

time (TR) = 2,000ms; echo time (TE) = 30ms; flip angle

(FA) = 90◦; field of view (FOV) = 230 × 230 mm2; and

sampling matrix = 80 × 80. The resting-state scan lasted 368 s

(184 volumes). Three-dimensional T1-weighted magnetization-

prepared rapid-acquisition gradient-echo (MPRAGE) coronal
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images were collected by using the following settings: slice

thickness = 1.0mm without gap; TR = 7.6ms; TE = 3.7ms; FA

= 8◦; FOV = 256 × 256 mm2; and sampling matrix = 256 ×

256× 180.

fMRI preprocessing

Data preprocessing was performed with Data Processing

& Analysis for (Resting-State) Brain Imaging (DPABI V5.1)

(Yan et al., 2016) based on Statistical Parametric Mapping

(SPM12, http://www.fil.ion.ucl.ac.uk/spm). The first 10 volumes

of the acquired fMRI images for each subject were discarded

for magnetization equilibrium and the subject’s adaptation

to scanning noise. Then, slice timing and motion correction

were performed. All participants were retained under the head

motion criteria of translation <2mm or rotation <2◦ in any

direction. The remaining fMRI time series was coregistered to

the T1 images. Then, the T1 images were normalized to the

Montreal Neurological Institute (MNI) space, and the resulting

deformation fields were used to project the functional images

to the MNI space with a voxel size of 3∗3∗3mm. Nuisance

covariate regression including Friston 24 parameters (Friston

et al., 1996) was performed to remove the effects of head motion.

In addition, the linear trend of time courses was removed. Then,

the functional images were spatially smoothed with a 6-mm full

width at a half-maximum Gaussian kernel.

Calculation of ALFF values

The ALFF values of the preprocessed functional images were

calculated using DPABI. Briefly, the time courses were first

transformed to the frequency domain using the fast Fourier

transform. The square root of the power spectrum obtained

by fast Fourier transform was computed and then averaged

across 0.01–0.08Hz at each voxel, which was then taken as the

ALFF value. To reduce the global effects of variability across

the subjects and achieve standardization, the individual data

were transformed to Z scores (i.e., the global mean value is

subtracted from the score, and then the result is divided by the

standard deviation) (Zou et al., 2008). Finally, we obtained the

standardized whole-brain ALFF map.

Statistical analysis

Demographic and auditory data

Statistical analysis of the demographic and auditory data was

performed using the SPSS 23.0 statistical package (SPSS Inc.,

Chicago, IL, USA). The age differences among individuals in

the three groups were tested by analysis of variance (ANOVA).

Sex and handedness differences among individuals in the

groups were analyzed by the chi-square test and Fisher’s exact

test, respectively. The differences in education time among

individuals in the groups were analyzed by the Kruskal–Wallis

test. The differences in age and auditory parameters among

individuals in the three groups were tested by analysis of

variance (ANOVA), and then post-hoc tests were conducted

by Bonferroni correction. The intergroup difference in PTA

thresholds of the deaf ear between patients with LSSD and RSSD

was tested using a two-sample t-test.

To explore the effect of deafness time on higher-order

hearing abilities, we took the median duration of deafness (3

years) as the time point and used a two-sample t-test to compare

the difference in higher-order hearing abilities of SSD patients

with durations of deafness <3 years (including 3 years) and

those with durations of more than 3 years. Considering that

the duration of deafness in SSD did not conform to a normal

distribution, Spearman’s rank correlation analysis was used to

explore the correlation between the duration of deafness and

higher-order hearing abilities.

ALFF analysis

An ALFF analysis was performed with the Resting-State

fMRI Data Analysis Toolkit (REST 1.8, http://rest.restfmri.net).

To explore the within-group ALFF pattern, one-sample t-tests

were performed on the individual ALFF maps in a voxelwise

way for each group. The within-group statistical threshold was

set at Z > 3.09 (voxel-level p < 0.001 and cluster-level p <

0.05, one-tailed) (Wang et al., 2011). The Gaussian random-

field theory (GRF) correction was used to correct multiple

comparisons. This correction was confined within the gray

matter mask obtained by selecting a threshold of 0.2 on themean

gray matter map of all subjects (volume = 53,156 voxels). To

compare the differences in the ALFF pattern, voxelwise two-

sample t-tests were performed on the ALFF map between NHs

and patients with LSSD and between NHs and patients with

RSSD. Participants’ age and sex were controlled as covariates.

The between-group statistical threshold was set at | Z | > 2.58

(voxel-level p< 0.01 and cluster-level p< 0.05, two-tailed). GRF

correction was used for correcting multiple comparisons, and

this correction was also confined within the group gray matter

mask. To further observe the different trends of the ALFF values

between groups, region-of-interest (ROI)-wise two-sample t-

tests were performed. The ROI was defined as a sphere with

a radius of 10mm (containing 171 voxels) and centered at the

peak point of clusters in each contrast.

Correlation analysis

To explore the relationship between the ALFF values and

duration of deafness in the patients with SSD, voxelwise partial

correlation analysis was performed between the ALFF values

and duration of deafness in patients with LSSD and RSSD
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together, controlling for the effects of age and sex. To explore the

relationship between the ALFF values and higher-order hearing

abilities in patients with SSD, voxelwise partial correlation

analysis was also performed between ALFF values and hearing

abilities of patients with SSD, including SIN threshold, ASL,

and RMS error, controlling for the effects of age and sex.

The statistical threshold was set at | Z | > 1.96 (voxel-level

p < 0.05 and cluster-level p < 0.05, two-tailed) with GRF

correction (Wang et al., 2011). Through the above voxelwise

partial correlation analysis, brain areas showing a significant

correlation between ALFF values and clinical parameters were

found. We also performed ROI-wise partial correlation analysis,

controlling for the effects of age and sex, between higher-

order hearing abilities and the averaged ALFF values of the

abovementioned areas.

Mediation analysis

Mediation analysis was performed using model 4 (simple

mediation model) of the PROCESS (v3.3) macro in SPSS (Hayes

and Ph, 2012). This model used a non-parametric bootstrap test

with 5,000 resamplings to calculate the 95% confidence intervals

for statistical significance. The mediation effect of the ALFF

value on the relationship between deafness duration and higher-

order hearing abilities was tested by controlling for sex and age

(more details are provided in the Supplementary materials).

Results

Demographic characteristics and
auditory abilities

As presented in Table 1, there were no differences among

NHs, LSSD patients, and RSSD patients in sex (χ2 = 2.72,

p = 0.257), age (F = 0.81, p = 0.451), handedness (Fisher’s

exact test = 0.97, p = 0.674), or education time (Kruskal—

Wallis test = 0.61, p = 0.736). The duration of deafness (t =

0.52, p = 0.608) and the age of deafness onset (t = 0.52, p

= 0.606) were not significantly different between patients with

LSSD and RSSD.

The results of auditory ability are presented in Table 2.

The average PTA of normal ears was not significantly different

among NHs, patients with LSSD, and patients with RSSD (F =

1.54, p = 0.223). For the SIN recognition evaluation, the SIN

threshold of NHs was significantly lower than that of patients

with LSSD and RSSD (F = 236.02, p < 0.001), suggesting

better performance in NHs. In the sound localization evaluation,

NHs showed significantly higher ASL than did patients with

LSSD or RSSD (F = 253.01, p < 0.001) and significantly lower

RMS error than patients with LSSD or RSSD (F = 88.19, p <

0.001). Both results suggest better sound localization abilities

in NHs than in patients with SSD, whether left or right. There

was no difference between patients with LSSD and RSSD in

the average PTA of the normal ear, SIN threshold, ASL, or

RMS error.

The results of higher-order hearing abilities in SSD patients

with different durations of deafness are shown in Figure 1.

Taking the median duration of deafness (3 years) as the time

point, we compared the higher-order hearing abilities of SSD

patients with deafness durations <3 years (including 3 years)

and longer than 3 years. There was no significant age difference

between participants in the two groups (t = 0.14, p = 0.257).

Although the SSD patients with deafness durations<3 years had

lower average PTA both for deaf ears (t =−3.25, p= 0.002) and

for normal ears (t = −2.03, p = 0.048) than SSD patients with

longer deafness durations, SSD patients with longer deafness

durations showed a significant reduction in RMS error (t =

−2.49, p = 0.018), a marginally significant reduction in the SIN

threshold (t = −1.95, p = 0.060), and a marginally significant

increase in ASL (t = 1.97, p = 0.057) than SSD patients with

deafness durations of <3 years (see Figure 1A). The results of

Spearman’s correlation analysis between the duration of deafness

and higher-order hearing abilities are shown in Figure 1B. The

duration of deafness showed a significant negative correlation

with the SIN threshold (rs = −0.37, p = 0.025) and RMS

error (rs = −0.35, p = 0.036), indicating that duration was

positively correlated with hearing abilities. However, there was

no significant correlation between ASL and duration of deafness

(rs= 0.16, p= 0.367).

ALFF results

The within-group ALFF patterns of NHs, patients with

LSSD, and patients with RSSD are shown in Figure 2. Visually,

participants in all three groups showed similar patterns with

higher ALFF values in the PCUN, IPL, posterior cingulate gyrus

(PCG), medial prefrontal cortex (MPFC), and occipital areas.

From the color intensity of Figure 2, it can be observed that

participants in the NH group showed generally higher ALFF

values than participants in the LSSD and RSSD groups.

The results of the between-group ALFF analysis are shown

in Figure 3 and Table 3. The voxelwise between-group analysis

showed that patients with LSSD exhibited significantly lower

ALFF values in the bilateral PCUN than NHs (peak MNI = 12,

−51, 36; Z = −4.13; cluster size = 81 voxels) (see Figure 3A).

The patients with RSSD showed lower ALFF values than NHs in

the bilateral lingual gyrus (LING, peak MNI=−18,−90,−9; Z

= −4.34; cluster size = 149 voxels) and the left middle frontal

gyrus (MFG, peak MNI = −36, 6, 48; Z = −4.06; cluster size

= 102 voxels) (see Figure 3B). To further explore whether the

patients with RSSD and patients with LSSD exhibited a similar

trend of alteration, we performed an ROI analysis using the peak

points found above as the center. For the PCUN ROI, obtained

from the peak point of voxelwise analysis between patients with
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FIGURE 1

Higher-order hearing abilities in patients with SSD with di�erent durations of deafness. (A) Comparison of higher-order hearing abilities,

including the SIN threshold, ASL, and RMS error, between SSD patients with durations of deafness of up to 3 years and more than 3 years. (B)

Spearman’ correlations between duration of deafness and higher-order hearing abilities, including the SIN threshold, ASL, and RMS error. *p <

0.05, SSD, single-sided deafness; SIN, speech-in-noise; ASL, accuracy rate of sound localization; RMS, root-mean-square.

FIGURE 2

Within-group ALFF patterns of participants in the NH (A), LSSD (B), and RSSD (C) groups. NH, normal hearing control; LSSD, left single-sided

deafness; RSSD, right single-sided deafness.

LSSD and NHs, patients with LSSD exhibited significantly lower

ALFF values than NHs (t = 3.26, p = 0.002), and patients with

RSSD exhibited lower ALFF values than NHs by a statistically

nonsignificant margin (t = 0.99, p = 0.328) (see Figure 3C).

Patients with RSSD exhibited significantly lower ALFF values

than NHs in the ROIs of the LING (t = 2.91, p = 0.006) and

MFG (t= 2.66, p= 0.012), and patients with LSSD showed lower

ALFF values in the ROIs of the LING (t = 1.60, p = 0.118) and

MFG (t = 1.78, p = 0.084) but without statistical significance

(see Figures 3D,E).
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FIGURE 3

Di�erences in ALFF values among groups. (A) The patients with LSSD showed significantly lower ALFF values than NHs in the bilateral PCUN in

the voxelwise comparison. (B) The patients with RSSD showed significantly lower ALFF values than NHs in the bilateral LING and left MFG in the

voxelwise comparison. (C) Box plots showing the ALFF values of the three groups in the PCUN ROI. (D) Box plots showing the ALFF values of the

three groups in the LING ROI. (E) Box plots showing the ALFF values of the three groups in the MFG ROI. The centerline indicates the median,

box outlines show the 25th and 75th percentiles, and whiskers indicate the 10th–90th percentile. Extreme values are shown by dots. ⋆p < 0.05/3

= 0.017 (Bonferroni corrected) compared with those of NHs. NH, normal hearing control; LSSD, left single-sided deafness; RSSD, right

single-sided deafness; PCUN, precuneus; LING, lingual gyrus; MFG, middle frontal gyrus.

TABLE 3 Brain regions showing significant between-group di�erences in ALFF values.

Contrast Region Brodmann’s area Maximum Z value Cluster size MNI coordinates

X Y Z

NH vs. LSSD

Bilateral precuneus 7/23 −4.13 81 12 −51 36

NH vs. RSSD

Bilateral lingual gyrus 17/18 −4.34 149 −18 −90 −9

Left middle frontal gyrus 6 −4.06 102 −36 6 48

NH, normal hearing control; LSSD, left single-sided deafness; RSSD, right single-sided deafness.

Correlation results

A voxelwise correlation map between ALFF values and

the duration of deafness is shown in Figure 4. A significantly

positive correlation was shown between the duration of

deafness and ALFF values in the left IPL, the left angular

gyrus (ANG), the left middle occipital gyrus (MOG),

and the bilateral PCUN and extending to the PCG (see

Figure 4A). The scatterplot of ROI-wise analysis displayed

a trend of a significant positive correlation (pr = 0.77, p <
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FIGURE 4

Correlation between ALFF values and auditory parameters in single-sided deafness after controlling sex and age. The brain map in the top panel

shows the results of voxelwise correlation, and the scatterplot in the bottom panel shows the ROI-wise correlation between ALFF values and

auditory parameters. The ALFF values in ROI-wise correlation analysis were extracted from the significant brain area in the voxelwise correlation

in the top panel. Brain regions with positive and negative correlations were extracted separately. (A) Regions showing a significant correlation

between the duration of deafness and ALFF values. (B) Regions showing a significant correlation between ALFF values and the SIN threshold. (C)

Regions showing a significant correlation between ALFF values and ASL. (D) Regions showing a significant correlation between ALFF values and

RMS error. SIN, speech-in-noise; ASL, accuracy rate of sound localization; RMS, root-mean-square.

0.001) between ALFF values and duration of deafness (see

Figure 4A).

Correlations between ALFF values and higher-order hearing

abilities in all SSD subjects are also shown in Figure 4. A

significant negative correlation was observed between the SIN

thresholds and ALFF values in the left superior occipital

gyrus (SOG), the left LING, bilateral calcarine (CAL), and

the bilateral PCUN (see Figure 4B and Table 4). At the same
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TABLE 4 Brain regions showing significant correlations between ALFF values and auditory parameters in voxelwise correlation analysis in SSD.

Auditory parameters Region Brodmann’s area Maximum Z-value Cluster size MNI coordinates

X Y Z

Duration of deafness

Positive correlation

Left inferior parietal lobule 40 4.92 189 −51 −39 36

Left angular gyrus 39 4.679 110 −45 −60 39

Left middle occipital gyrus 19 97

Bilateral precuneus 7/23 4.34 254 −18 −63 33

Bilateral posterior cingulate 30 3.41 81 −3 −48 21

SIN threshold

Positive correlation

Bilateral medial frontal gyrus 11 3.72 134 15 24 −6

Bilateral anterior cingulate 106

Negative correlation

Left superior occipital gyrus 19 −3.40 47 −18 −84 42

Left precuneus 7 81

Left lingual gyrus 18 −3.20 146 −12 −63 −6

Left calcarine 17 52

Right calcarine 17/18 −3.09 111 18 −72 15

Right precuneus 23 112

ASL

Positive correlation

Bilateral precuneus 7 3.40 187 3 −72 45

Negative correlation

Right superior frontal gyrus 8/9/10 −3.33 264 27 66 9

Right middle frontal gyrus 152

RMS error

Negative correlation

Right inferior frontal gyrus 44/6 −4.00 64 51 9 15

Bilateral precuneus 7 −4.01 224 −3 −60 33

Bilateral cingulate gyrus 23 97

SIN, speech-in-noise; ASL, accuracy rate of sound localization; RMS, root-mean-square.

time, a significantly positive correlation was observed between

the SIN threshold and ALFF values in the bilateral MFG and

anterior cingulate gyrus (ACG) (see Figure 4B and Table 4). The

scatterplot of ROI-wise analysis is displayed in the bottom panel

for ROIs extracted from regions showing significant negative

correlations (pr = −0.62, p < 0.001) and positive correlations

(pr = 0.61, p < 0.001) between SIN thresholds and ALFF values

(see Figure 4B). A significant negative correlation was observed

in the right SFG and right MFG, and a significant positive

correlation was observed in the bilateral PCUN between ALFF

values and ASL (see Figure 4C and Table 4). The scatterplot

for ROIs extracted from regions showing a significant negative

correlation (pr = −0.54, p = 0.001) and positive correlation

(pr = 0.56, p = 0.001) between ASL and ALFF values is

displayed (see Figure 4C). A significant negative correlation was

revealed between RMS error and ALFF values in the right IFG,

bilateral PCUN, and bilateral PCG (see Figure 4D and Table 4).

The scatterplot for the ROIs extracted from regions showing a

significant negative correlation (pr =−0.71, p < 0.001) between

RMS error and ALFF values is displayed in the bottom panel.

Mediation analysis results

As described above, a significant correlation was observed in

patients with SSD between the duration of deafness and higher-

order abilities, and ALFF values in the PCUN were observed to

be correlated with both these aspects. Thus, it was speculated

that ALFF values in the PCUN may be a mediator of the

relationship between the duration of deafness and higher-order

hearing abilities, including SIN threshold, ASL, and RMS error.

The ALFF values were extracted in the ROIs located in the
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FIGURE 5

Path diagram showing the relationships among duration of deafness, ALFF values in ROIs located in the PCUN, and RMS error in patients with

SSD according to mediation analysis. The lines are labeled with path coe�cients, and standard errors are shown in parentheses. The values in

brackets are the upper and lower limits of the bootstrap 95% confidence interval for indirect e�ects. The predictor (duration of deafness)

connection to the mediator factors (ALFF values in the PCUN) is indirect path a. The connection from the mediator factor (ALFF values in the

PCUN) to the outcome (RMS error) is indirect path b. The connection from the predictor (duration of deafness) to the outcome (RMS error) is

direct path c
′

. *p < 0.05, ***p <0.001. RMS, root-mean-square; PCUN, precuneus.

PCUN, which were defined by the overlap between the PCUN,

as delineated by the Automated Anatomical Labeling atlas,

and regions showing a significant correlation between duration

of deafness and ALFF values. The results of the mediation

analysis are shown in Figure 5. ALFF values in the PCUN had

a significant negative predictive effect on RMS error (β =

−23.211, SE = 11.064, p = 0.044). Furthermore, the indirect

effect of duration of deafness on RMS error was significant [95%

CI = (−1.114, −0.029)], while duration of deafness had no

significant direct predictive effect on RMS error in themediation

model (β = 0.418, SE = 0.347, p = 0.237). Therefore, ALFF

values in the PCUN are a significant mediator of the relationship

between the duration of deafness and RMS error. However,

ALFF values in the PCUN showed no significant mediating

effect in the relationship between duration of deafness and SIN

threshold [95% CI = (−0.057, 0.036)] or in the relationship

between duration of deafness and ASL [95% CI= (0.000, 0.006)]

(more details are provided in the Supplementary materials).

Discussion

In the present study, we investigated the alteration in

intrinsic brain activities and their correlations with higher-order

abilities in patients with long-term SSD using ALFF of resting-

state fMRI. Our study provided several key findings. First, we

confirmed that SSD patients with longer durations of deafness

had better higher-order hearing abilities. Second, we observed

a consistent trend of decreased ALFF values in multiple brain

areas for both patients with LSSD and patients with RSSD. Third,

higher ALFF values were observed to correlate with longer

durations of deafness in multiple parietal-occipital regions,

especially the PCUN. Furthermore, a generally consistent trend

of correlation between ALFF values in specific brain areas and

higher-order hearing abilities was observed in patients with SSD.

That is, better abilities correlated significantly with lower ALFF

values in the frontal areas and higher ALFF values in the PCUN

and the surrounding parietal-occipital regions for both SIN

recognition and sound localization. Finally, mediation analysis

revealed that ALFF values in the PCUN were a significant

mediator of the relationship between the duration of deafness

and higher-order hearing abilities.

Due to hearing deprivation in one ear, no binaural cues (e.g.,

interaural time difference, intensity difference, and binaural

squelch) could be detected by the peripheral auditory system

in patients with SSD. Since these cues are crucial for sound

localization and SIN recognition, these hearing abilities are most

affected in patients with SSD (Agterberg et al., 2014; Asp et al.,

2018; Liu et al., 2018; Adigun and Vangerwua, 2021). However,

according to our behavioral results, SSD patients with longer

durations of deafness showed better sound localization ability,

although their PTA thresholds were even higher than those

of patients with shorter durations of deafness. Furthermore, a

significant correlation between duration and hearing ability was

observed for both SIN recognition and sound localization. These

findings were consistent with previous behavioral studies in both

children and adults (Peckham and Sheridan, 1976; Lieu et al.,

2012; Liu et al., 2018; Nelson et al., 2018). In addition, studies

have reported that sound localization may be improved by active

training in patients with SSD (Firszt et al., 2015; Yu et al., 2018).
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These findings demonstrated that higher-order hearing abilities

could be improved over time without the recovery of binaural

cues. Researchers generally believe that, on the one hand, this

outcome may be due to the adaptation to the loss of binaural

cues over time via the remediation of other sound cues (Liu

et al., 2018). On the other hand, central plasticity in patients with

SSD may be an important mechanism that recruits more brain

resources for auditory processing to make better usage of limited

auditory input (Chang et al., 2016; Li et al., 2019).

Individuals in all three groups (NH, LSSD, and RSSD)

showed higher ALFF values in brain regions of the default-mode

network (DMN), including the PCUN, IPL, PCG, and MPFC,

as well as occipital areas, which were consistent with previous

studies of ALFF (Yan et al., 2009; Spunt et al., 2015; Mak et al.,

2017; Jenkins, 2019). Studies have indicated that regions of the

DMN in the human brain have a distinctive functional profile,

with higher activity than other regions of the brain at baseline

(Zang et al., 2007; Yan et al., 2009; Wang et al., 2011; Spunt

et al., 2015; Mak et al., 2017; Jenkins, 2019; Jiang et al., 2020).

Moreover, we observed a decreasing trend of ALFF in several

regions in patients with SSD compared with those with NHs.

Patients with LSSD showed significantly decreased ALFF in the

bilateral PCUN. In many studies, ALFF on resting-state fMRI

has been considered a promising neurophysiological marker

reflecting intrinsic brain activity (Wang et al., 2011; Liu et al.,

2014; Cheng et al., 2020). Pertinently, decreased ALFF may

indicate brain dysfunction (Wang et al., 2011; Liu et al., 2014;

Mu et al., 2020). The PCUN is considered a key functional hub

in the DMN at rest and plays a distinct role in many high-

level functions, such as episodic memory retrieval (Dörfel et al.,

2009), self-processing (Lou et al., 2004), visuospatial processing

(Wenderoth et al., 2005), and deductive reasoning (Knauff et al.,

2003; see also Cavanna and Trimble, 2006 for review). An

increasing body of evidence suggests that the PCUN participates

in attentional monitoring and is responsible for continuously

collecting and automatically distributing information from the

self and the surrounding environment (Hutchinson et al., 2009;

Halbertsma et al., 2020; Li et al., 2020). Consistent with the

findings of the present study, Yang et al. observed decreased

ALFF in the PCUN in patients with unilateral hearing loss

(Yang et al., 2014). Studies have also observed altered functional

connectivity of the DMN, including the PCUN, during the

resting state (Wang et al., 2014; Zhang et al., 2015, 2018a; Shang

et al., 2020) and have reported altered activation during tasks

in DMN regions in patients with SSD (Schmithorst et al., 2014;

Shang et al., 2018). Based on the information mentioned above,

the decreased ALFF values in the PCUN observed in the present

study may indicate an abnormality in higher-order cognitive

function in patients with SSD after losing auditory input from

one ear.

In the present study, we observed a significant positive

correlation between deafness duration and ALFF values in

the bilateral PCUN and the surrounding parietal regions in

patients with SSD. In other words, the longer the duration of

deafness, the closer to normal the ALFF. This finding suggested

a compensatory mechanism, that is, brain function tended

to recover to a near normal state over time. Furthermore,

we investigated the relationship between ALFF values and

higher-order auditory function. For both SIN recognition and

sound localization, better abilities correlated significantly with

higher ALFF values in the bilateral PCUN. Together with

our behavioral findings that patients with longer durations

showed better auditory performance, it could be conjectured

that the recovery of ALFF values in the PCUN may be one

of the mechanisms mediating the compensation of higher-

order auditory function. The results of the mediation analysis

revealed that ALFF values in the PCUN showed a significant

mediation effect on the relationship between the duration of

deafness and sound localization ability, which further confirmed

this conjecture.

In addition to the PCUN, the MFG showed a significantly

lower ALFF value in patients with SSD. Furthermore, a similar

pattern was observed in the correlation analysis for both SIN

recognition and sound localization, and better abilities were

observed to be correlated with lower ALFF values in the frontal

areas, including the SFG and MFG. The MFG is one of the

secondary language areas that is involved in the nuances of

language expression, such as grammar (Wang et al., 2008),

semantics (Brown et al., 2006), and verbal fluency (Abrahams

et al., 2003). There is also evidence suggesting that the MFG

is involved in information storage and cognitive processing

in working memory (Leung et al., 2002). The SFG has also

been demonstrated to contribute to higher cognitive functions,

particularly to working memory (du Boisgueheneuc et al.,

2006; Alagapan et al., 2018). These results suggested that

functional reorganization of intrinsic activity in the frontal

lobe, particularly regions subserving working memory, not only

occurred in patients with SSD but also had a close relationship

with higher-order auditory abilities.

Previous studies have demonstrated that degraded

peripheral input leads to increased processing demands, that

is, listening effort, including increases in the attentional focus

and time needed to process auditory information (Shinn-

Cunningham and Best, 2008). In addition, more cognitive

areas are engaged in auditory processing when more listening

effort is required (Davis and Johnsrude, 2003; Tyler et al.,

2010; Peelle et al., 2011; Hervais-Adelman et al., 2012; Peelle,

2018; Rosemann and Thiel, 2018). In NHs, both the ANG

and the extensive prefrontal cortex were demonstrated to be

recruited when higher-order linguistic factors improved speech

comprehension under adverse listening conditions (Obleser

et al., 2007). In adults with mild to moderate hearing loss,

Campbell and Sharma observed increased activation in the

frontal areas (e.g., the SFG, MFG, and IFG) when individuals

tried to recognize speech when background noise was presented

simultaneously (Campbell and Sharma, 2013), and Rosemann
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and Thiel observed higher activation in the medial, middle, and

inferior frontal gyri during a task of incongruent audio-visual

conditions that required more listening effort (Rosemann and

Thiel, 2018).

The subjects with SSD have also been demonstrated to

require more listening effort than NHs when performing the

same auditory processing tasks (Lewis et al., 2016). Previous

data-driven studies in SSD have demonstrated that both

structural and functional reorganization in cognitive-related

regions and networks are the most important patterns of

plasticity (Zhang et al., 2018a,b; Li et al., 2019; Zhu et al.,

2021). Furthermore, Li et al. observed a strong correlation

between hearing abilities and connection strength, mainly

in the frontoparietal areas (Li et al., 2019). A previous

auditory working memory task study in patients with SSD

using magnetoencephalography observed reduced gamma band

activity over the frontoparietal cortices related to attention and

working memory, and the author conjectured that the attention

and working memory network were overburdened chronically

in patients with SSD such that no comparable resources could

be allocated relative to the resources available to NHs while

performing challenging auditory tasks (Shang et al., 2018). Our

results further demonstrated that the functional reorganization

of the DMN and other cognitive-related regions, especially those

subserving attention and working memory, contribute to the

compensatory mechanism for the recovery of hearing abilities

in patients with SSD. These alterations happen not only during

auditory processing but also in intrinsic brain activity during the

resting state.

In the current study, significantly decreased ALFF values

were observed in the bilateral LING in patients with RSSD,

and there was a similar lower alteration trend in patients

with LSSD, but the difference was not statistically significant.

Furthermore, brain regions showing significant correlations

between ALFF values and deafness durations involved the left

MOG; moreover, brain regions showing significant correlations

between ALFF values and SIN recognition involved the left

SOG. These findings suggest that the intrinsic activity of the

visual cortex was reorganized in patients with SSD and that this

reorganization has a close relationship with auditory function,

implying cross-modal plasticity. Cross-modal plasticity has been

well-demonstrated in patients with bilateral severe to profound

hearing loss, that is, total hearing deprivation. Recently, growing

evidence has suggested that there is cross-modal plasticity

in patients with partial hearing deprivation, that is, SSD.

Structurally, decreased gray matter volume and decreased white

matter structural network strength in visual brain regions

were found in patients with SSD (Wang et al., 2016; Li

et al., 2019). Functionally, altered regional homogeneity and

functional connections in visual areas were also observed in

patients with SSD using resting-state fMRI (Wang et al., 2014;

Liu et al., 2015; Xu et al., 2016; Zhang et al., 2016, 2018a). Altered

activation in the visual cortex was also observed in studies in

which individuals performed audio-visual, visual, or auditory

tasks (Propst et al., 2010; Schmithorst et al., 2014; Shang et al.,

2018; Qiao et al., 2019). Our findings were consistent with those

of these studies to some extent and further suggested that the

functional reorganization of the visual cortex correlated closely

with the recovery of auditory function.

Since quite a few previous studies on patients with SSD

have reported significant alterations in the interhemispheric

symmetry and synchronization of the auditory cortex,

alterations in the ALFF values were expected in the auditory

cortex (Ponton et al., 2001; Khosla et al., 2003; Langers et al.,

2005). However, it is notable that the auditory cortex is not

among the areas showing significant ALFF alterations or

areas showing a close relationship between ALFF values and

higher-order auditory functions. This is probably because,

although the auditory input is abolished in the deaf ear, most of

the auditory function is retained due to the normal input from

the good ear. Thus, the basic function of the auditory cortex,

especially the primary auditory cortex, remains unchanged.

Using a data-driven approach, our results suggested that the

intrinsic activity of the auditory cortex remains stable in

patients with SSD; at least, it is not among the most obvious

alterations. Similar findings were observed in other data-driven

studies in patients with SSD SSD. A previous study of structural

connectivity networks in patients with SSD observed increased

connectivity strengths in the frontoparietal subnetwork and

decreased connectivity strengths in the visual network but

not in the auditory network (Li et al., 2019). A data-driven

functional connectivity study in patients with SSD observed

that brain regions showing the most obvious alterations are

mainly those related to higher-order cognitive functions instead

of the auditory cortex (Zhu et al., 2021). Another possible

reason for this phenomenon is that the auditory cortex is

not among the regions showing high ALFF values during

the resting state. Thus, this region is less likely to exhibit

reduced ALFF.

It has been well-accepted that there are two streams for

auditory processing: a ventral “what” stream and a dorsal

“where” stream (Hickok and Poeppel, 2000, 2004; Rauschecker

and Tian, 2000). The dorsal stream is also involved in

mapping sound to articulatory-based representations (Hickok

and Poeppel, 2004; Elmer et al., 2017). In the present study,

regions showing a close relationship between ALFF and duration

of deafness involved the IPL and ANG, which are important

parts of the dorsal processing pathway and are linked to the

“phonological-articulatory loop” (Rauschecker and Scott, 2009).

The ANG was demonstrated to be recruited when higher-order

linguistic factors improve speech comprehension (Obleser et al.,

2007). Our findings suggested that functional reorganization

occurred in the dorsal auditory processing pathway over time,

especially in regions related to higher-order linguistic functions.

Furthermore, although SIN recognition and sound localization

were believed to be processed by different mechanisms, a similar
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pattern was observed in voxelwise correlation analysis between

ALFF and auditory abilities.

There were several limitations in the present study. First,

the sample sizes for both the SSD and NH groups were

relatively modest, resulting in reduced sensitivity for ALFF

comparisons between groups. Voxelwise correlation analysis

was implemented for all SSD subjects without differentiating the

deafness laterality to achieve suitable statistical power. Second,

the present study was not able to analyze the prelingual and

postlingual SSD separately due to the relatively small size of

prelingual patients in our cohort. Since there is a critical period

for auditory development and plasticity pattern may be different

between prelingual and postlingual SSD cases (Kral et al., 2013),

further studies are still needed to clarify it. At last, the effects of

other otological symptoms, such as tinnitus and vertigo, were

not assessed. Brain function during the resting state has been

demonstrated to be affected by tinnitus in previous imaging

studies (Schmidt et al., 2013; Hinkley et al., 2015).

Conclusion

In the present study, significant alterations in intrinsic brain

activity were observed inmultiple regions of the brain in patients

with SSD, including cognitive-related regions. These alterations

were closely related to the duration of deafness and higher-order

hearing abilities. These findings suggested that alterations in

intrinsic brain activity, especially in cognitive-related regions,

may be one of the compensatory mechanisms that develop over

the duration of deafness to restore the higher-order hearing

abilities in patients with SSD.
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